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UNIT-1 / 3@18-1
An insect crawls at a constant rate u along the spoke of a cart wheel of radius
a. The cart is moving with velocity v. Find the acceleration along and

perpendicular to the spoke of insect at time t. :
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A particle moves in a curve so that its tangential and normal accelerations
e tangent is constant. Find the path.

are equal and the angular velocities of th
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A particle is performing S.H.M. of period T about a centre O and it passes

through a point P (where OP=b) with a velocity v in the direction OP. Prove
turns to P is ztan‘1 5‘%

that the time which elapses before it re .
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A Mass m hangs from g fixed point by a light string and is given :: s;nthe
vez:tlca_l displacement, prove that the motion is S.H.M. If I is the lengtsecon ‘
String in equilibrium position and n the number of oscillations per

Show that the natura] length of the string is | — ——3
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UNIT-II / 331811 it s By
A particle is projected with velocity u along a smooth hor_worlshogv that the
medium whose resistance per unit mass k times Fhe veloc;ty- g
velocity v after a time t and the distance s in that time are given by _
v=ue®, s=2(1-¢k) ,
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A spider hangs from the ceiling by a thread of modulus of elast!mty equal to
its weight. Show that it can climb to the ceiling with an expenditure of work

equal to only three quarters of what would be required, if the thread were
inelastic.
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If vi, v2 be the velocities at the ends of the focal chord of a projectile’s path
and u be the velocity at the vertex of the path (or u be the horizontal
1

component of velocity), Show that -15 ta=—
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A heavy particle of weight W, attached to a fi
string, describes a circle in a vertical plane. The tension of the string has the
values mW and nW respectively, when the

particle is at the highest d
lowest point of its path. Show that n = m+6. c e e
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A particle moves with a central acceleratio i ies i

cube of the distance; if it be projected from Iz:n“:gscg a‘t’a;lfiisstlzrilrrceer S: lf)xl'oa:xsl g:z
origin with a velocity which is v2 times velocity for a circle of radius é show
that the equation to its path is r cos (79_5 = a. ’
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A particle describes an ellipse under a force Widistance)” towards the focus:

if it was projected with velocity V from a point distance r from the centre of

force, show that its pcriodicﬁénc L L !f]ayz
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Find the moment of inertia of a hollow sphere about a diameter, its external
and internal radii being a and b.
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Find the moment of inertia of a circular ring of radius a and mass M about its
diameter. ol
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UNIT=LV / 5@1-1V
In a smooth hemisphere cup is placed a heavy rod, equal in length to the
radius of the cup, the centre of gravity of the rod being one-third of its length
from one end. Show that the angle made by the rod with the vertical is
tan~1(3+/3).
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Forces P, Q, R act along theﬁﬂes BC, CA, AB of a triangle ABC and forces
P, Q’, R act along OA, OBEQC where O is the centre of the circumscribing
circle. Prove that if the six f(:}%%s are in equilibrium -
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(i)  PcosA+QcosB +R cosC =0 (ii) %+%“—+5§-=0

A ladder whose C.G. divides it into two portions of length a and b, rest with
one ends on a rough horizontal floor and the other end against a rough
vertical wall. If the coefficient of friction at the floor and the wall be p and
W respectively, show that the inclination of the ladder to the floor, when
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() Two rough particles connected by a light string rest on an inclined plane. If

their weights and corresponding coefficients of friction are Wi, W2 and .
Hz respectively. Show that greatest inclination of the plane for equilibrium is
tant (L4 W)
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9. (a)  Four rods are jointed to form a parallelogram, the opposite joints are jointed
by strings forming the diagonals, and the whole system is placed on a smooth

horizontal table. Show that their tensions are in the same ratio as their
lengths.
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(b) Four equal jointed rods, each of length a, are hung from an angular point,
which is connected by an elastic string with the opposite point. If the rods
hung in the form of a square and if the modulus of elasticity of the string be
equal to the weight of a rod, show that the unstretched length of the string is

aﬁ
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10. (a) Show that the length of an endless chain which will hang over a circular
pulley of radius a so as to be in contact with two thirds of the circumference
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(b) A uniform string of weight W is suspended from two points at the same level
and a weight W’ is attached to its lowest point. If o and  be now the
inclinations to the horizontal of the tangents at the highest and the lowest

points. Prove that ::7‘; =1+%‘
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