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Preface

This seventh edition of Statistical Methods for Psychology, like the previous editions, sur-

veys statistical techniques commonly used in the behavioral and social sciences, especially

psychology and education. Although it is designed for advanced undergraduates and grad-

uate students, it does not assume that students have had either a previous course in statis-

tics or a course in mathematics beyond high-school algebra. Those students who have had

an introductory course will find that the early material provides a welcome review. The

book is suitable for either a one-term or a full-year course, and I have used it successfully

for both. Since I have found that students, and faculty, frequently refer back to the book

from which they originally learned statistics when they have a statistical problem, I have

included material that will make the book a useful reference for future use. The instructor

who wishes to omit this material will have no difficulty doing so. I have cut back on that

material, however, to include only what is still likely to be useful. The idea of including

every interesting idea had led to a book that was beginning to be daunting.

My intention in writing this book was to explain the material at an intuitive level. This

should not be taken to mean that the material is “watered down,” but only that the empha-

sis is on conceptual understanding. The student who can successfully derive the sampling

distribution of t, for example, may not have any understanding of how that distribution is

to be used. With respect to this example, my aim has been to concentrate on the meaning

of a sampling distribution, and to show the role it plays in the general theory of hypothesis

testing. In my opinion, this approach allows students to gain a better understanding, than

would a more technical approach, of the way a particular test works and of the interrela-

tionships among tests.

Contrary to popular opinion, statistical methods are constantly evolving. This is in part

because psychology is branching into many new areas and in part because we are finding

better ways of asking questions of our data. No book can possibly undertake to cover all of

the material that needs to be covered, but it is critical to prepare students and professionals

to be able to take on that material when it is needed. For example, multilevel /hierarchical

models are becoming much more common in the research literature. An understanding of

these models requires specialized texts, but an understanding of fixed versus random

xvii



variables and of nested designs is fundamental to even begin to sort through that literature.

This book cannot undertake the former, deriving the necessary models, but it can, and does,

address the latter by building a foundation under both fixed and random designs and nest-

ing. I have tried to build similar foundations for other topics, for example, more modern

graphical devices and resampling statistics, where I can do that without dragging the reader

deeper into a swamp. In some ways my responsibility is to try to anticipate where we are

going and give the reader a basis for moving in that direction.

Changes in the Seventh Edition

This seventh edition contains several new or expanded features that make the book more

appealing to the student and more relevant to the actual process of methodology and data

analysis:

• I have continued to respond to the issue faced by the American Psychological Associa-

tion’s committee on null hypothesis testing, and have included even more material on

effect size and magnitude of effect. The coverage in this edition goes well beyond that in

previous editions, and should serve as a thorough introduction to the material.

• I have further developed discussion of a proposal put forth by Jones and Tukey (2000) in

which they reconceived of hypothesis testing in ways that I find very helpful. However,

I have also retained the more traditional approach because students will be expected to

be familiar with it.

• I have included new material on graphical displays, including probability plots, kernel

density plots, and residual plots. Each of these helps all of us to better understand our

data and to evaluate the reasonableness of the assumptions we make.

• I have updated some of the material on computer solutions and have adapted the discus-

sion and displays to SPSS Version 16.

• There is now coverage of the Cochran-Mantel-Haenszel analysis of contingency tables.

This is tied to the classic example of Simpson’s Paradox as applied to the Berkeley grad-

uate admissions data. This relates to the underlying goal of leading students to think

deeply about what their data mean.

• I have somewhat modified Chapter 12 on multiple comparison techniques to cut down

on the wide range of tests that I previously discussed and to include coverage of

Benjamini and Hochberg’s False Discovery Rate. As we move our attention away from

familywise error rates to the false discovery rate we increase the power of our analyses

at relatively little cost in terms of Type I errors.

• A new section in the chapter on repeated measures analysis of variance replaces the pre-

vious discussion of multivariate analysis of variance with a discussion of mixed models.

This approach allows for much better treatment of missing data and relaxes unreason-

able assumptions about compound symmetry. This serves as an introduction to mixed

models without attempting to take on a whole new field at once.

• Data for all examples and problems are available on the Web.

• I have spent a substantial amount of time pulling together material for instructors and

students, and placing it on Web pages on the Internet. Users can readily access additional

(and complex) examples, discussion of topics that aren‘t covered in the text, additional

data, other sources on the Internet, demonstrations that would be suitable for class or for

a lab, and so on. Many places in the book refer specifically to this material if the student

wishes to pursue a topic further. All of this is easily available to anyone with an Internet

connection. I continue to add to this material, and encourage people to use it and critique it.

xviii Preface



The address of my own Website, mentioned above, is http://www.uvm.edu/~dhowell/

StatPages/StatHomePage.html (capitalization in this address is critical) and I encourage

users to explore what is there.

This edition shares with its predecessors two underlying themes that are more or less inde-

pendent of the statistical hypothesis tests that make up the main content of the book.

• The first theme is the importance of looking at the data before jumping in with a hypothe-

sis test. With this in mind, I discuss, in detail, plotting data, looking for outliers, and

checking assumptions. (Graphical displays are used extensively.) I try to do this with each

data set as soon as I present it, even though the data set may be intended as an example of

a sophisticated statistical technique. As examples, see pages 330–332 and 517–519.

• The second theme is the importance of the relationship between the statistical test to be

employed and the theoretical questions being posed by the experiment. To emphasize

this relationship, I use real examples in an attempt to make the student understand the

purpose behind the experiment and the predictions made by the theory. For this reason I

sometimes use one major example as the focus for an entire section, or even a whole

chapter. For example, interesting data on the moon illusion from a well-known study by

Kaufman and Rock (1962) are used in several forms of the t test (pages 190), and most

of Chapter 12 is organized around an important study of morphine addiction by Siegel

(1975). Chapter 17 on log-linear models, which has been extensively revised in the

edition, is built around Pugh‘s study of the “blame-the-victim” strategy in prosecutions

for rape. Each of these examples should have direct relevance for students. The increased

emphasis on effect sizes in this edition helps to drive home that point that one must think

carefully about one’s data and research questions.

Although no one would be likely to call this book controversial, I have felt it important

to express opinions on a number of controversial issues. After all, the controversies within

statistics are part of what makes it an interesting discipline. For example, I have argued that

the underlying measurement scale is not as important as some have suggested, and I have

argued for a particular way of treating analyses of variance with unequal group sizes

(unless there is a compelling reason to do otherwise). I do not expect every instructor to

agree with me, and in fact I hope that some will not. This offers the opportunity to give

students opposing views and help them to understand the issues. It seems to me that it is

unfair and frustrating to the student to present several different multiple comparison proce-

dures (which I do), and then to walk away and leave that student with no recommendation

about which procedure is best for his or her problem.

There is a Solutions Manual for the students, with extensive worked solutions to odd-

numbered exercises that can be downloaded from the Web at the book’s Web site—

http://www.uvm.edu/~dhowell/methods/. In addition, a separate Instructor’s Manual with

worked out solutions to all problems is available from the publisher.
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CHAPTER 1

Basic Concepts

Object ives

To examine the kinds of problems presented in this book and the issues

involved in selecting a statistical procedure.

Contents

1.1 Important Terms

1.2 Descriptive and Inferential Statistics

1.3 Measurement Scales

1.4 Using Computers

1.5 The Plan of the Book

1



STRESS IS SOMETHING that we are all forced to deal with throughout life. It arises in our daily

interactions with those around us, in our interactions with the environment, in the face of an

impending exam, and, for many students, in the realization that they are required to take a

statistics course. Although most of us learn to respond and adapt to stress, the learning

process is often slow and painful. This rather grim preamble may not sound like a great way

to introduce a course on statistics, but it leads to a description of a practical research project,

which in turn illustrates a number of important statistical concepts. I was involved in a very

similar project a number of years ago, so this example is far from hypothetical.

A group of educators has put together a course designed to teach high school students

how to manage stress and the effect of stress management on self-esteem. They need an

outside investigator, however, who can tell them how well the course is working and, in

particular, whether students who take the course have higher self-esteem than do students

who have not taken the course. For the moment we will assume that we are charged with

the task of designing an evaluation of their program. The experiment that we design will

not be complete, but it will illustrate some of the issues involved in designing and analyz-

ing experiments and some of the statistical concepts with which you must be familiar.

1.1 Important Terms

Although the program in stress management was designed for high school students, it

clearly would be impossible to apply it to the population of all high school students in the

country. First, there are far too many such students. Moreover, it makes no sense to apply a

program to everyone until we know whether it is a useful program. Instead of dealing with

the entire population of high school students, we will draw a sample of students from that

population and apply the program to them. But we will not draw just any old sample. We

would like to draw a random sample, though I will say shortly that truly random samples

are normally very impractical if not impossible. To draw a random sample, we would fol-

low a particular set of procedures to ensure that each and every element of the population

has an equal chance of being selected. (The common example to illustrate a random sam-

ple is to speak of putting names in a hat and drawing blindly. Although almost no one ever

does exactly that, it is a nice illustration of what we have in mind.) Having drawn our sam-

ple of students, we will randomly assign half the subjects to a group that will receive the

stress-management program and half to a group that will not receive the program.

This description has already brought out several concepts that need further elaboration;

namely, a population, a sample, a random sample, and random assignment. A population

is the entire collection of events (students’ scores, people’s incomes, rats’ running speeds,

etc.) in which you are interested. Thus, if you are interested in the self-esteem scores of all

high school students in the United States, then the collection of all high school students’

self-esteem scores would form a population—in this case, a population of many millions

of elements. If, on the other hand, you were interested in the self-esteem scores of high

school seniors only in Fairfax, Vermont (a town of fewer than 4000 inhabitants), the popu-

lation would consist of only about 100 elements.

The point is that a population can be of any size. They could range from a relatively small

set of numbers, which can be collected easily, to a large but finite set of numbers, which

would be impractical to collect in their entirety. In fact they can be an infinite set of numbers,

such as the set of all possible cartoon drawings that students could theoretically produce,

which would be impossible to collect. Unfortunately for us, the populations we are interested

in are usually very large. The practical consequence is that we seldom, if ever, measure entire

populations. Instead, we are forced to draw only a sample of observations from that popula-

tion and to use that sample to infer something about the characteristics of the population.

2 Chapter 1 Basic Concepts

random sample

randomly assign

population

sample



Assuming that the sample is truly random, we not only can estimate certain character-

istics of the population, but also can have a very good idea of how accurate our estimates

are. To the extent that the sample is not random, our estimates may or may not be meaning-

ful, because the sample may or may not accurately reflect the entire population.

Randomness has at least two aspects that we need to consider. The first has to do with

whether the sample reflects the population to which it is intended to make inferences. This

primarily involves random sampling from the population and leads to what is called

external validity. External validity refers to the question of whether the sample reflects

the population. A sample drawn from a small town in Nebraska would not produce a valid

estimate of the percentage of the U.S. population that is Hispanic—nor would a sample

drawn solely from the American Southwest. On the other hand, a sample from a small town

in Nebraska might give us a reasonable estimate of the reaction time of people to stimuli

presented suddenly. Right here you see one of the problems with discussing random sam-

pling. A nonrandom sample of subjects or participants may still be useful for us if we can

convince ourselves and others that it closely resembles what we would obtain if we could

take a truly random sample. On the other hand, if our nonrandom sample is not representa-

tive of what we would obtain with a truly random sample, our ability to draw inferences is

compromised and our results might be very misleading.

Before going on, let us clear up one point that tends to confuse many people. The prob-

lem is that one person’s sample might be another person’s population. For example, if I

were to conduct a study on the effectiveness of this book as a teaching instrument, one

class’s scores on an examination might be considered by me to be a sample, albeit a non-

random one, of the population of scores of all students using, or potentially using, this

book. The class instructor, on the other hand, is probably not terribly concerned about this

book, but instead cares only about his or her own students. He or she would regard the

same set of scores as a population. In turn, someone interested in the teaching of statistics

might regard my population (everyone using my book) as a very nonrandom sample from a

larger population (everyone using any textbook in statistics). Thus, the definition of a pop-

ulation depends on what you are interested in studying.

In our stress study it is highly unlikely that we would seriously consider drawing a truly

random sample of U.S. high school students and administering the stress management pro-

gram to them. It is simply impractical to do so. How then are we going to take advantage

of methods and procedures based on the assumption of random sampling? The only way

that we can do this is to be careful to apply those methods and procedures only when we

have faith that our results would generally represent the population of interest. If we can’t

make this assumption, we need to redesign our study. The issue is not one of statistical re-

finement so much as it is one of common sense. To the extent that we think that our sample

is not representative of U.S. high school students, we must limit our interpretation of the

results. To the extent that the sample is representative of the population, our estimates have

validity.

The second aspect of randomness concerns random assignment. Whereas random

selection concerns the source of our data and is important for generalizing the results of

our study to the whole population, random assignment of subjects (once selected) to

treatment groups is fundamental to the integrity of our experiment. Here we are speaking

about what is called internal validity. We want to ensure that the results we obtain are

the result of the differences in the way we treat our groups, not a result of who we hap-

pen to place in those groups. If, for example, we put all of the timid students in our sam-

ple in one group and all of the assertive students in another group, it is very likely that

our results are as much or more a function of group assignment than of the treatments

we applied to those groups. In actual practice, random assignment is usually far more

important than random sampling.
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Having dealt with the selection of subjects and their assignment to treatment groups, it

is time to consider how we treat each group and how we will characterize the data that will

result. Because we want to study the ability of subjects to deal with stress and maintain

high self-esteem under different kinds of treatments, and because the response to stress is a

function of many variables, a critical aspect of planning the study involves selecting the

variables to be studied. A variable is a property of an object or event that can take on dif-

ferent values. For example, hair color is a variable because it is a property of an object

(hair) and can take on different values (brown, yellow, red, gray, etc.). With respect to our

evaluation of the stress management program, such things as the treatments we use, the stu-

dent’s self-confidence, social support, gender, degree of personal control, and treatment

group are all relevant variables.

In statistics, we dichotomize the concept of a variable in terms of independent and de-

pendent variables. In our example, group membership is an independent variable, because

we control it. We decide what the treatments will be and who will receive each treatment.

We decide that this group over here will receive the stress management treatment and that

group over there will not. If we had been comparing males and females we clearly do not

control a person’s gender, but we do decide on the genders to study (hardly a difficult deci-

sion) and that we want to compare males versus females. On the other hand the data—such

as the resulting self-esteem scores, scores on personal control, and so on—are the dependent

variables. Basically, the study is about the independent variables, and the results of the

study (the data) are the dependent variables. Independent variables may be either quantita-

tive or qualitative and discrete or continuous, whereas dependent variables are generally, but

certainly not always, quantitative and continuous, as we are about to define those terms.1

We make a distinction between discrete variables, such as gender or high school class,

which take on only a limited number of values, and continuous variables, such as age and

self-esteem score, which can assume, at least in theory, any value between the lowest and

highest points on the scale.2 As you will see, this distinction plays an important role in the

way we treat data.

Closely related to the distinction between discrete and continuous variables is the dis-

tinction between quantitative and categorical data. By quantitative data (sometimes called

measurement data), we mean the results of any sort of measurement—for example,

grades on a test, people’s weights, scores on a scale of self-esteem, and so on. In all cases,

some sort of instrument (in its broadest sense) has been used to measure something, and

we are interested in “how much” of some property a particular object represents.

On the other hand, categorical data (also known as frequency data or qualitative

data) are illustrated in such statements as, “There are 34 females and 26 males in our

study” or “Fifteen people were classed as ‘highly anxious,’ 33 as ‘neutral,’ and 12 as ‘low

anxious.’” Here we are categorizing things, and our data consist of frequencies for each

category (hence the name categorical data). Several hundred subjects might be involved in

our study, but the results (data) would consist of only two or three numbers—the number

of subjects falling in each anxiety category. In contrast, if instead of sorting people with re-

spect to high, medium, and low anxiety, we had assigned them each a score based on some
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more or less continuous scale of anxiety, we would be dealing with measurement data, and

the data would consist of scores for each subject on that variable. Note that in both situa-

tions the variable is labeled anxiety. As with most distinctions, the one between measure-

ment and categorical data can be pushed too far. The distinction is useful, however, and

the answer to the question of whether a variable is a measurement or a categorical one is

almost always clear in practice.

1.2 Descriptive and Inferential Statistics

Returning to our intervention program for stress, once we have chosen the variables to be

measured and the schools have administered the program to the students, we are left with a

collection of raw data—the scores. There are two primary divisions of the field of statistics

that are concerned with the use we make of these data.

Whenever our purpose is merely to describe a set of data, we are employing descriptive

statistics. For example, one of the first things that we would want to do with our data is to

graph them, to calculate means (averages) and other measures, and to look for extreme

scores or oddly shaped distributions of scores. These procedures are called descriptive sta-

tistics because they are primarily aimed at describing the data. Descriptive statistics was

once looked down on as a rather uninteresting field populated primarily by those who drew

distorted-looking graphs for such publications as Time magazine. Twenty-five years ago

John Tukey developed what he called exploratory statistics, or exploratory data analysis

(EDA). He showed the necessity of paying close attention to the data and examining them

in detail before invoking more technically involved procedures. Some of Tukey’s innova-

tions have made their way into the mainstream of statistics, and will be studied in subse-

quent chapters, and some have not caught on as well. However, the emphasis that Tukey

placed on the need to closely examine your data has been very influential, in part because of

the high esteem in which Tukey was held as a statistician.

After we have described our data in detail and are satisfied that we understand what the

numbers have to say on a superficial level, we will be particularly interested in what is

called inferential statistics. In fact, most of this book will deal with inferential statistics.

In designing our experiment on the effect of stress on self-esteem, we acknowledged that it

was not possible to measure the entire population, and therefore we drew samples from that

population. Our basic questions, however, deal with the population itself. We might want

to ask, for example, about the average self-esteem score for an entire population of students

who could have taken our program, even though all that we really have is the average score

for a sample of students who actually went through the program.

A measure, such as the average self-esteem score, that refers to an entire population is

called a parameter. That same measure, when it is calculated from a sample of data that

we have collected, is called a statistic. Parameters are the real entities of interest, and the

corresponding statistics are guesses at reality. Although most of what we will do in this

book deals with sample statistics (or guesses, if you prefer), keep in mind that the reality

of interest is the corresponding population parameter. We want to infer something about

the characteristics of the population (parameters) from what we know about the character-

istics of the sample (statistics). In our hypothetical study we are particularly interested in

knowing whether the average self-esteem score of a population of students who poten-

tially might be enrolled in our program is higher, or lower, than the average self-esteem

score of students who might not be enrolled. Again we are dealing with the area of inferen-

tial statistics, because we are inferring characteristics of populations from characteristics

of samples.
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1.3 Measurement Scales

The topic of measurement scales is one that some writers think is crucial and others think

is irrelevant. Although I tend to side with the latter group, it is important that you have

some familiarity with the general issue. (You do not have to agree with something to think

that it is worth studying. After all, evangelists claim to know a great deal about sin, though

they can hardly be said to advocate it.) An additional benefit of this discussion is that you

will begin to realize that statistics as a subject is not merely a cut-and-dried set of facts but,

rather, a set of facts put together with a variety of interpretations and opinions.

Probably the foremost leader of those who see measurement scales as crucial to the

choice of statistical procedures was S. S. Stevens.3 Zumbo and Zimmerman (2000) have

discussed measurement scales at considerable length and remind us that Stevens’s system

has to be seen in its historical context. In the 1940s and 1950s, Stevens was attempting to

defend psychological research against those in the “hard sciences” who had a restricted

view of scientific measurement. He was trying to make psychology “respectable.” Stevens

spent much of his very distinguished professional career developing measurement scales

for the field of psychophysics and made important contributions. However, outside of that

field there has been little effort in psychology to develop the kinds of scales that Stevens

pursued, nor has there been much real interest. The criticisms that so threatened Stevens

have largely evaporated, and with them much of the belief that measurement scales criti-

cally influence the statistical procedures that are appropriate.

Nominal Scales

In a sense, nominal scales are not really scales at all; they do not scale items along any di-

mension, but rather label them. Variables such as gender and political-party affiliation are

nominal variables. Such categorical data are usually measured on a nominal scale, because

we merely assign category labels (e.g., male or female; Republican, Democrat, or Indepen-

dent) to observations. A numerical example of a nominal scale is the set of numbers as-

signed to football players. Frequently, these numbers have no meaning other than that they

are convenient labels to distinguish the players from one another. Letters or pictures of ani-

mals could just as easily be used.

Ordinal Scales

The simplest true scale is an ordinal scale, which orders people, objects, or events along

some continuum. An excellent example of such a scale is the ranks in the Navy. A com-

mander is lower in prestige than a captain, who in turn is lower than a rear admiral. How-

ever, there is no reason to think that the difference in prestige between a commander and a

captain is the same as that between a captain and a rear admiral. An example from psychol-

ogy would be the Holmes and Rahe (1967) scale of life stress. Using this scale, you count

(sometimes with differential weightings) the number of changes (marriage, moving, new

job, etc.) that have occurred during the past 6 months of a person’s life. Someone who has a

score of 20 is presumed to have experienced more stress than someone with a score of 15,

and the latter in turn is presumed to have experienced more stress than someone with a

score of 10. Thus, people are ordered, in terms of stress, by the number of changes occur-

ring recently in their lives. This is an example of an ordinal scale because nothing is

6 Chapter 1 Basic Concepts
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implied about the differences between points on the scale. We do not assume, for example,

that the difference between 10 and 15 points represents the same difference in stress as the

difference between 15 and 20 points. Distinctions of that sort must be left to interval scales.

Interval Scales

With an interval scale, we have a measurement scale in which we can legitimately speak

of differences between scale points. A common example is the Fahrenheit scale of tem-

perature, where a 10-point difference has the same meaning anywhere along the scale.

Thus, the difference in temperature between 108 F and 208 F is the same as the difference

between 808 F and 908 F. Notice that this scale also satisfies the properties of the two pre-

ceding ones. What we do not have with an interval scale, however, is the ability to speak

meaningfully about ratios. Thus, we cannot say, for example, that 408 F is half as hot as

808 F, or twice as hot as 208 F. We have to use ratio scales for that purpose. (In this regard,

it is worth noting that when we perform perfectly legitimate conversions from one interval

scale to another—for example, from the Fahrenheit to the Celsius scale of temperature—

we do not even keep the same ratios. Thus, the ratio between 408 and 808 on a Fahrenheit

scale is different from the ratio between 4.48 and 26.78 on a Celsius scale, although the

temperatures are comparable. This highlights the arbitrary nature of ratios when dealing

with interval scales.)

Ratio Scales

A ratio scale is one that has a true zero point. Notice that the zero point must be a true zero

point and not an arbitrary one, such as 08 F or even 08 C. (A true zero point is the point cor-

responding to the absence of the thing being measured. Since 08 F and 08 C do not repre-

sent the absence of temperature or molecular motion, they are not true zero points.)

Examples of ratio scales are the common physical ones of length, volume, time, and so on.

With these scales, we not only have the properties of the preceding scales but we also can

speak about ratios. We can say that in physical terms 10 seconds is twice as long as 5 sec-

onds, that 100 lb is one-third as heavy as 300 lb, and so on.

You might think that the kind of scale with which we are working would be obvious.

Unfortunately, especially with the kinds of measures we collect in the behavioral sciences,

this is rarely the case. Consider for a moment the situation in which an anxiety question-

naire is administered to a group of high school students. If you were foolish enough, you

might argue that this is a ratio scale of anxiety. You would maintain that a person who scored

0 had no anxiety at all and that a score of 80 reflected twice as much anxiety as did a score

of 40. Although most people would find this position ridiculous, with certain questionnaires

you might be able to build a reasonable case. Someone else might argue that it is an interval

scale and that, although the zero point was somewhat arbitrary (the student receiving a 0 was

at least a bit anxious but your questions failed to detect it), equal differences in scores repre-

sent equal differences in anxiety. A more reasonable stance might be to say that the scores

represent an ordinal scale: A 95 reflects more anxiety than an 85, which in turn reflects more

than a 75, but equal differences in scores do not reflect equal differences in anxiety. For an

excellent and readable discussion of measurement scales, see Hays (1981, pp. 59–65).

As an example of a form of measurement that has a scale that depends on its use, con-

sider the temperature of a house. We generally speak of Fahrenheit temperature as an inter-

val scale. We have just used it as an example of one, and there is no doubt that, to a

physicist, the difference between 628 F and 648 F is exactly the same as the difference be-

tween 928 F and 948 F. If we are measuring temperature as an index of comfort, rather than

as an index of molecular activity, however, the same numbers no longer form an interval
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scale. To a person sitting in a room at 628 F, a jump to 648 F would be distinctly noticeable

(and welcome). The same cannot be said about the difference between room temperatures

of 928 F and 948 F. This points up the important fact that it is the underlying variable that

we are measuring (e.g., comfort), not the numbers themselves, that is important in defining

the scale. As a scale of comfort, degrees Fahrenheit do not form an interval scale—they

don’t even form an ordinal scale because comfort would increase with temperature to a

point and would then start to decrease.

There usually is no unanimous agreement concerning the measurement scale em-

ployed, so the individual user of statistical procedures must decide which scale best fits the

data. All that can be asked of the user is that he or she think about the problem carefully

before coming to a decision, rather than simply assuming that the standard answer is nec-

essarily the best answer.

The Role of Measurement Scales

I stated earlier that writers disagree about the importance assigned to measurement scales.

Some authors have ignored the problem totally, whereas others have organized whole text-

books around the different scales. A reasonable view (in other words, my view) is that the

central issue is the absolute necessity of separating in our minds the numbers we collect

from the objects or events to which they refer. Such an argument was made for the exam-

ple of room temperature, where the scale (interval or ordinal) depended on whether we

were interested in measuring some physical attribute of temperature or its effect on people

(i.e., comfort). A difference of 28 F is the same, physically, anywhere on the scale, but a

difference of 28 F when a room is already warm may not feel as large as does a difference

of 28 F when a room is relatively cool. In other words, we have an interval scale of the

physical units but no more than an ordinal scale of comfort (again, up to a point).

Because statistical tests use numbers without considering the objects or events to which

those numbers refer, we may carry out any of the standard mathematical operations (addition,

multiplication, etc.) regardless of the nature of the underlying scale. An excellent, entertaining,

and highly recommended paper on this point is one by Lord (1953), entitled “On the Statisti-

cal Treatment of Football Numbers,” in which he argues that these numbers can be treated in

any way you like because, “The numbers do not remember where they came from” (p. 751).

The problem arises when it is time to interpret the results of some form of statistical

manipulation. At that point, we must ask whether the statistical results are related in any

meaningful way to the objects or events in question. Here we are no longer dealing with a

statistical issue, but with a methodological one. No statistical procedure can tell us whether

the fact that one group received higher scores than another on an anxiety questionnaire re-

veals anything about group differences in underlying anxiety levels. Moreover, to be satis-

fied because the questionnaire provides a ratio scale of anxiety scores (a score of 50 is

twice as large as a score of 25) is to lose sight of the fact that we set out to measure anxi-

ety, which may not increase in an orderly way with increases in scores. Our statistical tests

can apply only to the numbers that we obtain, and the validity of statements about the ob-

jects or events that we think we are measuring hinges primarily on our knowledge of those

objects or events, not on the measurement scale. We do our best to ensure that our meas-

ures relate as closely as possible to what we want to measure, but our results are ultimately

only the numbers we obtain and our faith in the relationship between those numbers and

the underlying objects or events.4
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From the preceding discussion, the apparent conclusion—and the one accepted in this

book—is that the underlying measurement scale is not crucial in our choice of statistical

techniques. Obviously, a certain amount of common sense is required in interpreting the

results of these statistical manipulations. Only a fool would conclude that a painting that

was judged as excellent by one person and contemptible by another ought therefore to be

classified as mediocre.

1.4 Using Computers

When I wrote the first edition of this book twenty-five years ago, most statistical analyses

were done on desktop or hand calculators, and textbooks were written accordingly. Meth-

ods have changed, however, and most calculations are now done by computers.

This book attempts to deal with the increased availability of computers by incorporat-

ing them into the discussion. The level of computer involvement increases substantially as

the book proceeds and as computations become more laborious. For the simpler proce-

dures, the calculational formulae are important in defining the concept. For example, the

formula for a standard deviation or a t test defines and makes meaningful what a standard

deviation or a t test actually is. In those cases, hand calculation is emphasized even though

examples of computer solutions are also given. Later in the book, when we discuss multi-

ple regression or log-linear models, for example, the formulae become less informative.

The formula for deriving regression coefficients with five predictors, or the formula for es-

timating expected frequencies in a complex log-linear model, would not reasonably be ex-

pected to add to your understanding of such statistics. In those situations, we will rely

almost exclusively on computer solutions.

At present, many statistical software packages are available to the typical researcher or

student conducting statistical analyses. The most important large statistical packages,

which will carry out nearly every analysis that you will need in conjunction with this book,

are Minitab®, SAS®, and SPSS™, and S-Plus. These are highly reliable and relatively easy-

to-use packages, and one or more of them is generally available in any college or univer-

sity computer center. Many examples of their use are scattered throughout this book. Each

has its own set of supporters (my preference may become obvious as we go along), but they

are all excellent. Choosing among them hinges on subtle differences.

In speaking about statistical packages, we should mention the widely available spread-

sheets such as Excel. These programs are capable of performing a number of statistical cal-

culations, and they produce reasonably good graphics as well as being an excellent way of

carrying out hand calculations. They force you to go about your calculations logically,

while retaining all intermediate steps for later examination. Statisticians often rightly criti-

cize such programs for the accuracy of their results with very large samples or with sam-

ples of unusual data, but they are extremely useful for small to medium-sized problems.

Recent extensions that have been written for them have greatly increased the accuracy of

results. Programs like Excel also have the advantage that most people have one or more of

them installed on their personal computers.

1.5 The Plan of the Book

Our original example, the examination of the effects of a program of stress management on

self-esteem, offers an opportunity to illustrate the book’s organization. In the process of

running the study, we will be collecting data on many variables. One of the first things we

will do with these data is to plot them, to look at the distribution for each variable, to

Section 1.5 The Plan of the Book 9
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calculate means and standard deviations, and so on. These techniques will be discussed in

Chapter 2.

Following an exploratory analysis of the data, we will apply several inferential proce-

dures. For example, we will want to compare the mean score on a scale of self-esteem for a

group who received stress-management training with the mean score for a group who did

not receive such training. Techniques for making these kinds of comparisons will be dis-

cussed in Chapters 7, 11, 12, 13, 14, 16, and 18, depending on the complexity of our exper-

iment, the number of groups to be compared, and the degree to which we are willing to

make certain assumptions about our data.

We might also want to ask questions dealing with the relationships between variables

rather than the differences among groups. For example, we might like to know whether a

person’s level of behavior problems is related to his score on self-esteem, or whether a per-

son’s coping scores can be predicted from variables such as her self-esteem and social sup-

port. Techniques for asking these kinds of questions will be considered in Chapters 9, 10,

15, and 17, depending on the type of data we have and the number of variables involved.

Most students (and courses) never seem to make it all the way through any book. In this

case, that would mean skipping Chapter 18 on nonparametric analyses. I think that would

be unfortunate because that chapter focuses on some of the newer, and important, work on

bootstrapping and resampling methods. These methods have become much more popular

with the drastic increases in computing power, and they make considerable intuitive sense.

I would recommend that you at least skim that chapter early on, and go back to it for the

relevant material as you work through the rest of the book. You do not need an extensive

background to understand what is there, and reading it will give you a real step up on

analyses that you will see in the literature. (I believe that it will also give you a much better

understanding of the parametric analyses in the remainder of the book.)

In this edition, I have made a deliberate effort to introduce concepts that are becoming

important in data analysis but are rarely covered in a book at this level. In doing so, I am

not able to devote the space needed for a thorough understanding of the techniques. Instead

I am trying to provide you with underlying concepts and vocabulary so that you can take

on those techniques on your own or have a step up in a subsequent course. Those tech-

niques are important and you need to be prepared.

Figure 1.1 provides an organizational scheme that distinguishes among the various pro-

cedures on the basis of a number of dimensions, such as the type of data, the questions we

want to ask, and so on. The dimensions should be self-explanatory. This diagram is not

meant to be a guide for choosing a statistical test. Rather, it is intended to give you a sense

of how the book is organized.
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Exercises

1.1 Under what conditions would the entire student body of your college or university be con-

sidered a population?

1.2 Under what conditions would the entire student body of your college or university be

considered a sample?

1.3 If the student body of your college or university were considered to be a sample, as in Exer-

cise 1.2, would this sample be random or nonrandom? Why?

1.4 Why would choosing names from a local telephone book not produce a random sample of the

residents of that city? Who would be underrepresented and who would be overrepresented?

1.5 Give two examples of independent variables and two examples of dependent variables.

1.6 Write a sentence describing an experiment in terms of an independent and a dependent variable.

1.7 Give three examples of continuous variables.

1.8 Give three examples of discrete variables.

1.9 Give an example of a study in which we are interested in estimating the average score of a

population.

1.10 Give an example of a study in which we do not care about the actual numerical value of a

population average, but want to know whether the average of one population is greater than

the average of a different population.

1.11 Give three examples of categorical data.

1.12 Give three examples of measurement data.

1.13 Give an example in which the thing we are studying could be either a measurement or a

categorical variable.

1.14 Give one example of each kind of measurement scale.

1.15 Give an example of a variable that might be said to be measured on a ratio scale for some

purposes and on an interval or ordinal scale for other purposes.

1.16 We trained rats to run a straight-alley maze by providing positive reinforcement with food.

On trial 12, a rat lay down and went to sleep halfway through the maze. What does this say

about the measurement scale when speed is used as an index of learning?

1.17 What does Exercise 1.16 say about speed used as an index of motivation?

1.18 Give two examples of studies in which our primary interest is in looking at relationships be-

tween variables.

1.19 Give two examples of studies in which our primary interest is in looking at differences

among groups.

Discussion Questions

1.20 The Chicago Tribune of July 21, 1995, reported on a study by a fourth-grade student named

Beth Peres. In the process of collecting evidence in support of her campaign for a higher al-

lowance, she polled her classmates on what they received for an allowance. She was sur-

prised to discover that the 11 girls who responded reported an average allowance of $2.63

per week, whereas the 7 boys reported an average of $3.18, 21% more than for the girls. At

the same time, boys had to do fewer chores to earn their allowance than did girls. The story

had considerable national prominence and raised the question of whether the income dis-

parity for adult women relative to adult men may actually have its start very early in life.

a. What are the dependent and independent variables in this study, and how are they

measured?

b. What kind of a sample are we dealing with here?

c. How could the characteristics of the sample influence the results Beth obtained?
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d. How might Beth go about “random sampling”? How would she go about “random as-

signment”?

e. If random assignment is not possible in this study, does that have negative implications

for the validity of the study?

f. What are some of the variables that might influence the outcome of this study separate

from any true population differences between boys’ and girls’ incomes?

g. Distinguish clearly between the descriptive and inferential statistical features of this ex-

ample.

1.21 The Journal of Public Health published data on the relationship between smoking and

health (see Landwehr & Watkins [1987]). They reported the cigarette consumption per adult

for 21 mostly Western and developed countries, along with the coronary heart disease rate

for each country. The data clearly show that coronary heart disease is highest in those coun-

tries with the highest cigarette consumption.

a. Why might the sampling in this study have been limited to Western and developed

countries?

b. How would you characterize the two variables in terms of what we have labeled “scales

of measurement”?

c. If our goal is to study the health effects of smoking, how do these data relate to that

overall question?

d. What other variables might need to be considered in such a study?

e. It has been reported that tobacco companies are making a massive advertising effort in

Asia. At present, only 7% of Chinese women smoke (compared with 61% of Chinese

men). How would a health psychologist go about studying the health effects of likely

changes in the incidence of smoking among Chinese women?
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CHAPTER 2

Describing and

Exploring Data

Object ives

To show how data can be reduced to a more interpretable form by using

graphical representation and measures of central tendency and dispersion.
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A COLLECTION OF RAW DATA, taken by itself, is no more exciting or informative than junk

mail before Election Day. Whether you have neatly arranged the data in rows on a data col-

lection form or scribbled them on the back of an out-of-date announcement you tore from

the bulletin board, a collection of numbers is still just a collection of numbers. To be inter-

pretable, they first must be organized in some sort of logical order. The following actual

experiment illustrates some of these steps.

How do human beings process information that is stored in their short-term memory? If I

asked you to tell me whether the number “6” was included as one of a set of five digits that

you just saw presented on a screen, do you use sequential processing to search your short-term

memory of the screen and say “Nope, it wasn’t the first digit; nope, it wasn’t the second,” and

so on? Or do you use parallel processing to compare the digit “6” with your memory of all the

previous digits at the same time? The latter approach would be faster and more efficient, but

human beings don’t always do things in the fastest and most efficient manner. How do you

think that you do it? How do you search back through your memory and identify the person

who just walked in as Jennifer? Do you compare her one at a time with all the women her age

whom you have met, or do you make comparisons in parallel? (This second example uses

long-term memory rather than short-term memory, but the questions are analogous.)

In 1966, Sternberg ran a simple, famous, and important study that examined how people

recall data from short-term memory. This study is still widely cited in the research literature.

On a screen in front of the subject, he briefly presented a comparison set of one, three, or

five digits. Shortly after each presentation he flashed a single test digit on the screen and re-

quired the subject to push one button (the positive button) if the test digit had been included

in the comparison set or another button (the negative button) if the test digit had not been

part of the comparison set. For example, the two stimuli might look like this:

Comparison 2 7 4 8 1

Test 5

(Remember, the two sets of stimuli were presented sequentially, not simultaneously, so only

one of those lines was visible at a time.) The numeral “5” was not part of the comparison set,

and the subject should have responded by pressing the negative button. Sternberg measured

the time, in 100ths of a second, that the subject took to respond. This process was repeated

over many randomly organized trials. Because Sternberg was interested in how people

process information, he was interested in how reaction times varied as a function of the num-

ber of digits in the comparison set and as a function of whether the test digit was a positive or

negative instance for that set. (If you make comparisons sequentially, the time to make a de-

cision should increase as the number of digits in the comparison set increases. If you make

comparisons in parallel, the number of digits in the comparison set shouldn’t matter.)

Although Sternberg’s goal was to compare data for the different conditions, we can

gain an immediate impression of our data by taking the full set of reaction times, regard-

less of the stimulus condition. The data in Table 2.1 were collected in an experiment simi-

lar to Sternberg’s but with only one subject—myself. No correction of responses was

allowed, and the data presented here come only from correct trials.

2.1 Plotting Data

As you can see, there are simply too many numbers in Table 2.1 for us to be able to inter-

pret them at a glance. One of the simplest methods to reorganize data to make them more

intelligible is to plot them in some sort of graphical form. There are several common ways
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in which data can be represented graphically. Some of these methods are frequency distri-

butions, histograms, and stem-and-leaf displays, which we will discuss in turn. (I believe

strongly in making plots as simple as possible so as not to confuse the message with un-

necessary elements. However, if you want to see a remarkable example of how plotting

data can reveal important information you would not otherwise see, the video at

http://blog.ted.com/2007/06/hans_roslings_j_1.php is very impressive.)

Frequency Distributions

As a first step, we can make a frequency distribution of the data as a way of organizing

them in some sort of logical order. For our example, we would count the number of times

that each possible reaction time occurred. For example, the subject responded in 50/100

of a second 5 times and in 51/100 of a second 12 times. On one occasion he became flus-

tered and took 1.25 seconds (125/100 of a second) to respond. The frequency distribu-

tion for these data is presented in Table 2.2, which reports how often each reaction time

occurred.

From the distribution shown in Table 2.2, we can see a wide distribution of reaction

times, with times as low as 36/100 of a second and as high as 125/100 of a second. The data

tend to cluster around about 60/100, with most of the scores between 40/100 and 90/100.

This tendency was not apparent from the unorganized data shown in Table 2.1.
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Table 2.1 Reaction time data from number identification experiment

Comparison

Stimuli* Reaction Times, in 100ths of a Second

40 41 47 38 40 37 38 47 45 61 54 67 49 43 52 39 46

lY 47 45 43 39 49 50 44 53 46 64 51 40 41 44 48 50 42

90 51 55 60 47 45 41 42 72 36 43 94 45 51 46 52

52 45 74 56 53 59 43 46 51 40 48 47 57 54 44 56 47

1N 62 44 53 48 50 58 52 57 66 49 59 56 71 76 54 71 104

44 67 45 79 46 57 58 47 73 67 46 57 52 61 72 104

73 83 55 59 51 65 61 64 63 86 42 65 62 62 51 62 72

3Y 55 58 46 67 56 52 46 62 51 51 61 60 75 53 59 56 50

43 58 67 52 56 80 53 72 62 59 47 62 53 52 46 60

73 47 63 63 56 66 72 58 60 69 74 51 49 69 51 60 52

3N 72 58 74 59 63 60 66 59 61 50 67 63 61 80 63 60 64

64 57 59 58 59 60 62 63 67 78 61 52 51 56 95 54

39 65 53 46 78 60 71 58 87 77 62 94 81 46 49 62 55

5Y 59 88 56 77 67 79 54 83 75 67 60 65 62 62 62 60 58

67 48 51 67 98 64 57 67 55 55 66 60 57 54 78 69

66 53 61 74 76 69 82 56 66 63 69 76 71 65 67 67 55

5N 65 58 64 65 81 69 69 63 68 70 80 68 63 74 61 85 125

59 61 74 76 62 83 58 72 65 61 95 58 64 66 66 72

*Y 5 Yes, test stimulus was included; N 5 No, it was not included 1, 3, and 5 refer to the number of digits in
the comparison stimuli

frequency

distribution
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Table 2.2 Frequency distribution of reaction times

Reaction Time, in Reaction Time, in

100ths of a Second Frequency 100ths of a Second Frequency

36 1 71 4

37 1 72 8

38 2 73 3

39 3 74 6

40 4 75 2

41 3 76 4

42 3 77 2

43 5 78 3

44 5 79 2

45 6 80 3

46 11 81 2

47 9 82 1

48 4 83 3

49 5 84 0

50 5 85 1

51 12 86 1

52 10 87 1

53 8 88 1

54 6 89 0

55 7 90 1

56 10 91 0

57 7 92 0

58 12 93 0

59 11 94 2

60 12 95 2

61 11 96 0

62 14 97 0

63 10 98 1

64 7 99 0

65 8 . . . . . .

66 8 . . . . . .

67 14 104 2

68 2 . . . . . .

69 7 125 1

70 1

2.2 Histograms

From the distribution given in Table 2.1 we could easily graph the data as shown in Figure 2.1.

But when we are dealing with a variable, such as this one, that has many different values,

each individual value often occurs with low frequency, and there is often substantial fluctua-

tion of the frequencies in adjacent intervals. Notice, for example, that there are fourteen 67s,

but only two 68s. In situations such as this, it makes more sense to group adjacent values



together into a histogram.1 Our goal in doing so would be to obscure some of the random

“noise” that is not likely to be meaningful, but preserve important trends in the data. We

might, for example, group the data into blocks of 5/100 of a second, combining the frequen-

cies for all outcomes between 35 and 39, between 40 and 44, and so on. An example of such

a distribution is shown in Table 2.3.

In Table 2.3, I have reported the upper and lower boundaries of the intervals as whole

integers, for the simple reason that it makes the table easier to read. However, you should

realize that the true limits of the interval (known as the real lower limit and the real upper

limit) are decimal values that fall halfway between the top of one interval and the bottom

of the next. The real lower limit of an interval is the smallest value that would be classed

as falling into the interval. Similarly, an interval’s real upper limit is the largest value that
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1 Different people seem to mean different things when they talk about a “histogram.” Some use it for the distribution
of the data regardless of whether or not categories have been combined (they would call Figure 2.1 a histogram), and
others reserve it for the case where adjacent categories are combined. You can probably tell by now that I am not a
stickler for such distinctions, and I will use “histogram” and “frequency distribution” more or less interchangeably. 
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Table 2.3 Grouped frequency distribution

Cumulative Cumulative

Interval Midpoint Frequency Frequency Interval Midpoint Frequency Frequency

35–39 37 7 7 85–89 87 4 291

40–44 42 20 27 90–94 92 3 294

45–49 47 35 62 95–99 97 3 297

50–54 52 41 103 100–104 102 2 299

55–59 57 47 150 105–109 107 0 299

60–64 62 54 204 110–114 112 0 299

65–69 67 39 243 115–119 117 0 299

70–74 72 22 265 120–124 122 0 299

75–79 77 13 278 125–129 127 1 300

80–84 82 9 287



would be classed as being in the interval. For example, had we recorded reaction times to

the nearest thousandth of a second, rather than to the nearest hundredth, the interval 35–39

would include all values between 34.5 and 39.5 because values falling between those

points would be rounded up or down into that interval. (People often become terribly wor-

ried about what we would do if a person had a score of exactly 39.50000000 and therefore

sat right on the breakpoint between two intervals. Don’t worry about it. First, it doesn’t

happen very often. Second, you can always flip a coin. Third, there are many more impor-

tant things to worry about. Just make up an arbitrary rule of what you will do in those situ-

ations, and then stick to it. This is one of those non-issues that make people think the study

of statistics is confusing, boring, or both.)

The midpoints listed in Table 2.3 are the averages of the upper and lower limits and

are presented for convenience. When we plot the data, we often plot the points as if they all

fell at the midpoints of their respective intervals.

Table 2.3 also lists the frequencies with which scores fell in each interval. For example,

there were seven reaction times between 35/100 and 39/100 of a second. The distribution

in Table 2.3 is shown as a histogram in Figure 2.2.

People often ask about the optimal number of intervals to use when grouping data. Al-

though there is no right answer to this question, somewhere around 10 intervals is usually

reasonable.2 In this example I used 19 intervals because the numbers naturally broke that

way and because I had a lot of observations. In general and when practical, it is best to use

natural breaks in the number system (e.g., 0–9, 10–19, . . . or 100–119, 120–139) rather

than to break up the range into exactly 10 arbitrarily defined intervals. However, if another

kind of limit makes the data more interpretable, then use those limits. Remember that you

are trying to make the data meaningful—don’t try to follow a rigid set of rules made up by

someone who has never seen your problem.
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2 One interesting scheme for choosing an optimal number of intervals is to set it equal to the integer closest to,
where N is the number of observations. Applying that suggestion here would leave us with 

intervals, which is close to the 19 that I actually used. Other rules are attributable to Sturges, Scott,
and Freeman-Diaconis.
17.32 = 17

1N = 1300 =1N
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Notice in Figure 2.2 that the reaction time data are generally centered on 50–70 hun-

dredths of a second, that the distribution rises and falls fairly regularly, and that the distri-

bution trails off to the right. We would expect such times to trail off to the right (referred to

as being positively skewed) because there is some limit on how quickly the person can

respond, but really no limit on how slowly he can respond. Notice also the extreme value

of 125 hundredths. This value is called an outlier because it is widely separated from the

rest of the data. Outliers frequently represent errors in recording data, but in this particular

case it was just a trial in which the subject couldn’t make up his mind which button to push.

2.3 Fitting Smooth Lines to Data

Histograms such as the one shown in Figures 2.1 and 2.2 can often be used to display data

in a meaningful fashion, but they have their own problems. A number of people have pointed

out that histograms, as common as they are, often fail as a clear description of data. This is

especially true with smaller sample sizes where minor changes in the location or width of

the interval can make a noticeable difference in the shape of the distribution. Wilkinson

(1994) has written an excellent paper on this and related problems. Maindonald and Braun

(2007) give the example shown in Figure 2.3 plotting the lengths of possums. The first col-

lapses the data into bins with breakpoints at 72.5, 77.5, 82.5, . . . . The second uses break-

points at 70, 75, 80, . . . . Notice that you might draw quite different conclusions from these

two graphs depending on the breakpoints you use. The data are fairly symmetric in the his-

togram on the right, but have a noticeable tail to the left in the histogram on the left.

Figure 2.2 itself was actually a pretty fair representation of reaction times, but we often

can do better by fitting a smoothed curve to the data—with or without the histogram itself.

I will discuss two of many approaches to fitting curves, one of which superimposes a nor-

mal distribution (to be discussed more extensively in the next chapter) and the other uses

what is known as a kernel density plot.

Fitting a Normal Curve

Although you have not yet read Chapter 3 you should be generally familiar with a normal

curve. It is often referred to as a bell curve and is symmetrical around the center of the dis-

tribution, tapering off on both ends. The normal distribution has a specific definition, but
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we will put that off until the next chapter. For now it is sufficient to say that we will often

assume that our data are normally distributed, and superimposing a normal distribution on

the histogram will give us some idea how reasonable that assumption is.3

Figure 2.4 was produced by SPSS and you can see that while the data are roughly de-

scribed by the normal distribution, the actual distribution is somewhat truncated on the left

and has more than the expected number of observations on the extreme right. The normal

curve is not a terrible fit, but we can do better. An alternative approach would be to create

what is called a kernel density plot.

Kernel Density Plots

In Figure 2.4 we superimposed a theoretical distribution on the data. This distribution only

made use of a few characteristics of the data, its mean and standard deviation, and did not

make any effort to fit the curve to the actual shape of the distribution. To put that a little

more precisely, we can superimpose the normal distribution by calculating only the mean

and standard deviation (to be discussed later in this chapter) from the data. The individual

data points and their distributions play no role in plotting that distribution. Kernel density

plots do almost the opposite. They actually try to fit a smooth curve to the data while at the

same time taking account of the fact that there is a lot of random noise in the observations

that should not be allowed to distort the curve too much. Kernel density plots pay no atten-

tion to the mean and standard deviation of the observations.

The idea behind a kernel density plot is that each observation might have been slightly

different. For example, on a trial where the respondent’s reaction time was 80 hundredths

of a second, the score might reasonably have been 79 or 82 instead. It is even conceivable
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that the score could have been 73 or 86, but it is not at all likely that the score would have

been 20 or 100. In other words there is a distribution of alternative possibilities around any

obtained value, and this is true for all obtained values. We will use this fact to produce an

overall curve that usually fits the data quite well.

Kernel estimates can be illustrated graphically by taking an example from Everitt and

Hothorn (2006). They used a very simple set of data with the following values for the

dependent variable (X).

X 0.0 1.0 1.1 1.5 1.9 2.8 2.9 3.5

If you plot these points along the X axis and superimpose small distributions represent-

ing alternative values that might have been obtained instead of the actual values you have,

you obtain the distribution shown in Figure 2.5a. Everitt and Hothorn refer to these small

distributions by a technical name: “bumps.” Notice that these bumps are normal distribu-

tions, but I could have specified some other shape if I thought that a normal distribution

was inappropriate.

Now we will literally sum these bumps vertically. For example, suppose that we name

each bump by the score over which it is centered. Above a value of 3.8 on the X-axis you

have a small amount of bump_2.8, a little bit more of bump_2.9, and a good bit of

bump_3.5. You can add heights of these three bumps at X 5 3.8 to get the kernel density of

the overall curve at that position. You can do the same for every other value of X. If you do

so you find the distribution plotted in Figure 2.5b. Above the bumps we have a squiggly

distribution (to use another technical term) that represents our best guess of the distribution

underlying the data that we began with.

Now we can go back to the reaction time data and superimpose the kernel density func-

tion on that histogram. (I am leaving off the bumps as there are too many of them to be leg-

ible.) This resulting plot is shown in Figure 2.6. Notice that this curve does a much better

job of representing the data than did the superimposed normal distribution. In particular it

fits the tails of the distribution quite well.

Version 16 of SPSS fits kernel density plots using syntax, and you can fit them using

SAS and S-Plus (or its close cousin R). It is fairly easy to find examples for those programs

on the Internet. As psychology expands into more areas, and particularly into the
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neurosciences and health sciences, techniques like kernel density plots are becoming more

common. There are a number of technical aspects behind such plots, for example the shape

of the bumps and the bandwidth used to create them, but you now have the basic informa-

tion that will allow you to understand and work with such plots.

2.4 Stem-and-Leaf Displays

Although histograms, frequency distributions, and kernel density functions are commonly

used methods of presenting data, each has its drawbacks. Because histograms often portray

observations that have been grouped into intervals, they frequently lose the actual numeri-

cal values of the individual scores in each interval. Frequency distributions, on the other

hand, retain the values of the individual observations, but they can be difficult to use when

they do not summarize the data sufficiently. An alternative approach that avoids both of

these criticisms is the stem-and-leaf display.

John Tukey (1977), as part of his general approach to data analysis, known as

exploratory data analysis (EDA), developed a variety of methods for displaying data in vi-

sually meaningful ways. One of the simplest of these methods is a stem-and-leaf display,

which you will see presented by most major statistical software packages. I can’t start with

the reaction time data here, because that would require a slightly more sophisticated display

due to the large number of observations. Instead, I’ll use a hypothetical set of data in which

we record the amount of time (in minutes per week) that each of 100 students spends play-

ing electronic games. Some of the raw data are given in Figure 2.7. On the left side of the

figure is a portion of the data (data from students who spend between 40 and 80 minutes per

week playing games) and on the right is the complete stem-and-leaf display that results.

From the raw data in Figure 2.7, you can see that there are several scores in the 40s, an-

other bunch in the 50s, two in the 60s, and some in the 70s. We refer to the tens’ digits—

here 4, 5, 6, and 7—as the leading digits (sometimes called the most significant digits)

for these scores. These leading digits form the stem, or vertical axis, of our display. Within

the set of 14 scores that were in the 40s, you can see that there was one 40, two 41s, one

42, two 43s, one 44, no 45s, three 46s, one 47, one 48, and two 49s. The units’ digits 0, 1,
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2, 3, and so on, are called the trailing (or less significant) digits. They form the leaves—

the horizontal elements—of our display.4

On the right side of Figure 2.7 you can see that next to the stem entry of 4 you have one

0, two 1s, a 2, two 3s, a 4, three 6s, a 7, an 8, and two 9s. These leaf values correspond to

the units’ digits in the raw data. Similarly, note how the leaves opposite the stem value of 5

correspond to the units’ digits of all responses in the 50s. From the stem-and-leaf display

you could completely regenerate the raw data that went into that display. For example, you

can tell that 11 students spent zero minutes playing electronic games, one student spent two

minutes, two students spent three minutes, and so on. Moreover, the shape of the display

looks just like a sideways histogram, giving you all of the benefits of that method of graph-

ing data as well.

One apparent drawback of this simple stem-and-leaf display is that for some data sets

it will lead to a grouping that is too coarse for our purposes. In fact, that is why I needed to

use hypothetical data for this introductory example. When I tried to use the reaction time

data, I found that the stem for 50 (i.e., 5) had 88 leaves opposite it, which was a little silly.

Not to worry; Tukey was there before us and figured out a clever way around this problem.

If the problem is that we are trying to lump together everything between 50 and 59, per-

haps what we should be doing is breaking that interval into smaller intervals. We could try

using the intervals 50–54, 55–59, and so on. But then we couldn’t just use 5 as the stem,

because it would not distinguish between the two intervals. Tukey suggested using “5*” to

represent 50–54, and “5.” to represent 55–59. But that won’t solve our problem here, be-

cause the categories still are too coarse. So Tukey suggested an alternative scheme where

“5*” represents 50–51, “5t” represents 52–53, “5f” represents 54–55, “5s” represents

56–57, and “5.” represents 58–59. (Can you guess why he used those particular letters?

Hint: “Two” and “three” both start with “t.”) If we apply this scheme to the data on reac-

tion times, we obtain the results shown in Figure 2.8. In deciding on the number of stems

to use, the problem is similar to selecting the number of categories in a histogram. Again,

you want to do something that makes sense and that conveys information in a meaningful

way. The one restriction is that the stems should be the same width. You would not let one

stem be 50–54, and another 60–69.
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Figure 2.7 Stem-and-leaf display of electronic game data

4 It is not always true that the tens’ digits form the stem and the units’ digits the leaves. For example, if the data
ranged from 100 to 1000, the hundreds’ digits would form the stem, the tens’ digits the leaves, and we would
ignore the units’ digits.
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Notice that in Figure 2.8 I did not list the extreme values as I did in the others. I used

the word High in place of the stem and then inserted the actual values. I did this to high-

light the presence of extreme values, as well as to conserve space.

Stem-and-leaf displays can be particularly useful for comparing two different distribu-

tions. Such a comparison is accomplished by plotting the two distributions on opposite

sides of the stem. Figure 2.9 shows the actual distribution of numerical grades of males and

females in a course I taught on experimental methods that included a substantial statistics

component. These are actual data. Notice the use of stems such as 6* (for 60–64), and 6.

(for 65–69). In addition, notice the code at the bottom of the table that indicates how en-

tries translate to raw scores. This particular code says that |4*|1 represents 41, not 4.1 or

410. Finally, notice that the figure nicely illustrates the difference in performance between

the male students and the female students.
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Figure 2.8 Stem-and-leaf display for reaction time data
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2.5 Describing Distributions

The distributions of scores illustrated in Figures 2.1 and 2.2 were more or less regularly

shaped distributions, rising to a maximum and then dropping away smoothly—although

even those figures were not completely symmetric. However not all distributions are

peaked in the center and fall off evenly to the sides (see the stem-and-leaf display in Figure

2.8), and it is important to understand the terms used to describe different distributions.

Consider the two distributions shown in Figure 2.10(a) and (b). These plots are of data that

were computer generated to come from populations with specific shapes. These plots, and

the other four in Figure 2.10, are based on samples of 1000 observations, and the slight ir-

regularities are just random variability. Both of the distributions in Figure 2.10(a) and (b)

are called symmetric because they have the same shape on both sides of the center.

The distribution shown in Figure 2.10(a) came from what we will later refer to as a nor-

mal distribution. The distribution in Figure 2.10(b) is referred to as bimodal, because it has

two peaks. The term bimodal is used to refer to any distribution that has two predominant

peaks, whether or not those peaks are of exactly the same height. If a distribution has only

one major peak, it is called unimodal. The term used to refer to the number of major peaks

in a distribution is modality.

Next consider Figure 2.10(c) and (d). These two distributions obviously are not symmetric.

The distribution in Figure 2.10(c) has a tail going out to the left, whereas that in Figure 2.10(d)

has a tail going out to the right. We say that the former is negatively skewed and the latter

positively skewed. (Hint: To help you remember which is which, notice that negatively

skewed distributions point to the negative, or small, numbers, and that positively skewed dis-

tributions point to the positive end of the scale.) There are statistical measures of the degree

of asymmetry, or skewness, but they are not commonly used in the social sciences.

An interesting real-life example of a positively skewed, and slightly bimodal, distribu-

tion is shown in Figure 2.11. These data were generated by Bradley (1963), who instructed

subjects to press a button as quickly as possible whenever a small light came on. Most of
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the data points are smoothly distributed between roughly 7 and 17 hundredths of a second,

but a small but noticeable cluster of points lies between 30 and 70 hundredths, trailing off to

the right. This second cluster of points was obtained primarily from trials on which the sub-

ject missed the button on the first try. Their inclusion in the data significantly affects the dis-

tribution’s shape. An experimenter who had such a collection of data might seriously

consider treating times greater than some maximum separately, on the grounds that those

times were more a reflection of the accuracy of a psychomotor response than a measure of

the speed of that response. Even if we could somehow make that distribution look better, we

would still have to question whether those missed responses belong in the data we analyze.

It is important to consider the difference between Bradley’s data, shown in Figure 2.11,

and the data that I generated, shown in Figures 2.1 and 2.2. Both distributions are positively

skewed, but my data generally show longer reaction times without the second cluster of

points. One difference was that I was making a decision on which button to press, whereas

Bradley’s subjects only had to press a single button whenever the light came on. Decisions

take time. In addition, the program I was using to present stimuli recorded data only from

correct responses, not from errors. There was no chance to correct and hence nothing

equivalent to missing the button on the first try and having to press it again. I point out

these differences to illustrate that differences in the way in which data are collected can

have noticeable effects on the kinds of data we see.

The last characteristic of a distribution that we will examine is kurtosis. Kurtosis has a

specific mathematical definition, but basically it refers to the relative concentration of

scores in the center, the upper and lower ends (tails), and the shoulders (between the center

and the tails) of a distribution. In Figure 2.10(e) and (f) I have superimposed a normal dis-

tribution on top of the plot of the data to make comparisons clear. A normal distribution

(which will be described in detail in Chapter 3) is called mesokurtic. Its tails are neither

too thin nor too thick, and there are neither too many nor too few scores concentrated in

the center. If you start with a normal distribution and move scores from both the center and

the tails into the shoulders, the curve becomes flatter and is called platykurtic. This is

clearly seen in Figure 2.10(e), where the central portion of the distribution is much too flat.

If, on the other hand, you moved scores from the shoulders into both the center and the

tails, the curve becomes more peaked with thicker tails. Such a curve is called leptokurtic,

and an example is Figure 2.10(f). Notice in this distribution that there are too many scores

in the center and too many scores in the tails.5

It is important to recognize that quite large samples of data are needed before we can

have a good idea about the shape of a distribution, especially its kurtosis. With sample sizes

of around 30, the best we can reasonably expect to see is whether the data tend to pile up in

the tails of the distribution or are markedly skewed in one direction or another.

So far in our discussion almost no mention has been made of the numbers themselves.

We have seen how data can be organized and presented in the form of distributions, and we

have discussed a number of ways in which distributions can be characterized: symmetry or

its lack (skewness), kurtosis, and modality. As useful as this information might be in cer-

tain situations, it is inadequate in others. We still do not know the average speed of a sim-

ple decision reaction time nor how alike or dissimilar are the reaction times for individual
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5 I would like to thank Karl Wuensch of East Carolina University for his helpful suggestions on understanding
skewness and kurtosis. His ideas are reflected here, although I’m not sure that he would be satisfied by my state-
ments on kurtosis. Karl has spent a lot of time thinking about kurtosis and made a good point recently when he
stated in an electronic mail discussion, “I don’t think my students really suffer much from not understanding
kurtosis well, so I don’t make a big deal out of it.” You should have a general sense of what kurtosis is, but you
should focus your attention on other, more important, issues. Except in the extreme, most people, including statis-
ticians, are unlikely to be able to look at a distribution and tell whether it is platykurtic or leptokurtic without
further calculations.
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trials. To obtain this knowledge, we must reduce the data to a set of measures that carry the

information we need. The questions to be asked refer to the location, or central tendency,

and to the dispersion, or variability, of the distributions along the underlying scale. Mea-

sures of these characteristics will be considered in Sections 2.8 and 2.9. But before going

to those sections we need to set up a notational system that we can use in that discussion.

2.6 Notation

Any discussion of statistical techniques requires a notational system for expressing mathe-

matical operations. You might be surprised to learn that no standard notational system has

been adopted. Although several attempts to formulate a general policy have been made, the

fact remains that no two textbooks use exactly the same notation.

The notational systems commonly used range from the very complex to the very sim-

ple. The more complex systems gain precision at the expense of easy intelligibility,

whereas the simpler systems gain intelligibility at the expense of precision. Because the

loss of precision is usually minor when compared with the gain in comprehension, in this

book we will adopt an extremely simple system of notation.

Notation of Variables

The general rule is that an uppercase letter, often X or Y, will represent a variable as a whole.

The letter and a subscript will then represent an individual value of that variable. Suppose

for example that we have the following five scores on the length of time (in seconds) that

third-grade children can hold their breath: [45, 42, 35, 23, 52]. This set of scores will be re-

ferred to as X. The first number of this set (45) can be referred to as , the second (42) as

, and so on. When we want to refer to a single score without specifying which one, we

will refer to , where i can take on any value between 1 and 5. In practice, the use of sub-

scripts is often a distraction, and they are generally omitted if no confusion will result.

Summation Notation

One of the most common symbols in statistics is the uppercase Greek letter sigma ,

which is the standard notation for summation. It is readily translated as “add up, or sum,

what follows.” Thus, is read “sum the .” To be perfectly correct, the notation for

summing all N values of X is , which translates to “sum all of the  from i 5 1 to

i 5 N.” In practice, we seldom need to specify what is to be done this precisely, and in most

cases all subscripts are dropped and the notation for the sum of the is simply .

Several extensions of the simple case of must be noted and thoroughly understood.

One of these is , which is read as “sum the squared values of X ” (i.e.,

5 8,247). Note that this is quite different from , which

tells us to sum the Xs and then square the result. This would equal 

The general rule, which always applies,

is to perform operations within parentheses before performing operations outside parenthe-

ses. Thus, for , we sum the values of X and then we square the result, as opposed to

, for which we square the Xs before we sum.

Another common expression, when data are available on two variables (X and Y ), is

, which means “sum the products of the corresponding values of X and Y.” The use of

these and other terms will be illustrated in the following example.

Imagine a simple experiment in which we record the anxiety scores (X ) of five students

and also record the number of days during the last semester that they missed a test because

gXY

gX2
(©X)2

(45 1 42 1 35 1 23 1 52)2 = (197)2 = 38,809.

(gX)2 5

gX2452 1 422 1 352 1 232 1 522
gX2

gX

gXXi

XisgN
i=1Xi

XisgXi

1g2

Xi

X2

X1
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they were absent from school (Y ). The data and simple summation operations on them are

illustrated in Table 2.4. Some of these operations have been discussed already, and others

will be discussed in the next few chapters.

Double Subscripts

A common notational device is to use two or more subscripts to specify exactly which value

of X you have in mind. Suppose, for example, that we were given the data shown in

Table 2.5. If we want to specify the entry in the ith row and jth column, we will denote this

as Thus, the score on the third trial of Day 2 is Some notational systems use

, which translates as “sum the where i takes on values 1 and 2 and j takes

on all values from 1 to 5.” You need to be aware of this system of notation because some

other textbooks use it. In this book, however, the simpler, but less precise, is used where

possible, with used only when absolutely necessary, and never appearing.

You must thoroughly understand notation if you are to learn even the most elementary

statistical techniques. You should study Table 2.4 until you fully understand all the proce-

dures involved.

ggXijgXij

gX

Xijsg2
i=1g

5
j=1Xij

X2,3 = 13.Xij.
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Table 2.4 Illustration of operations involving summation notation

Anxiety Score Tests Missed

(X) (Y ) X 2 Y 2

10 3 100 9 7 30

15 4 225 16 11 60

12 1 144 1 11 12

9 1 81 1 8 9

10 3 100 9 7 30

Sum 56 12 650 36 44 141

(gX )(gY ) = (56)(12) = 672

(g(X 2 Y ))2 = 442 = 1936

(gY )2 = 122 = 144

(gX )2 = 562 = 3136

g(XY ) = (10)(3) 1 (15)(4) 1 (12)(1) 1 (9)(1) 1 (10)(3) = 141

g(X 2 Y ) = (7 1 11 1 11 1 8 1 7) = 44

gY2 = (32 1 42 1 12 1 12 1 32) = 36

gX2 = (102 1 152 1 122 1 92 1 102) = 650

gY = (3 1 4 1 1 1 1 1 3) = 12

gX = (10 1 15 1 12 1 9 1 10) = 56

XYX 2 Y

Table 2.5 Hypothetical data illustrating notation

Trial

1 2 3 4 5 Total

Day
1 8 7 6 9 12 42

2 10 11 13 15 14 63

Total 18 18 19 24 26 105



2.7 Measures of Central Tendency

We have seen how to display data in ways that allow us to begin to draw some conclusions

about what the data have to say. Plotting data shows the general shape of the distribution and

gives a visual sense of the general magnitude of the numbers involved. In this section you

will see several statistics that can be used to represent the “center” of the distribution. These

statistics are called measures of central tendency. In the next section we will go a step fur-

ther and look at measures that deal with how the observations are dispersed around that cen-

tral tendency, but first we must address how we identify the center of the distribution.

The phrase measures of central tendency, or sometimes measures of location, refers

to the set of measures that reflect where on the scale the distribution is centered. These

measures differ in how much use they make of the data, particularly of extreme values, but

they are all trying to tell us something about where the center of the distribution lies. The

three major measures of central tendency are the mode, which is based on only a few data

points; the median, which ignores most of the data; and the mean, which is calculated from

all of the data. We will discuss these in turn, beginning with the mode, which is the least

used (and often the least useful) measure.

The Mode

The mode (Mo) can be defined simply as the most common score, that is, the score ob-

tained from the largest number of subjects. Thus, the mode is that value of X that corre-

sponds to the highest point on the distribution. If two adjacent times occur with equal (and

greatest) frequency, a common convention is to take an average of the two values and call

that the mode. If, on the other hand, two nonadjacent reaction times occur with equal (or

nearly equal) frequency, we say that the distribution is bimodal and would most likely re-

port both modes. For example, the distribution of time spent playing electronic games is

roughly bimodal (see Figure 2.7), with peaks at the intervals of 0–9 minutes and 40–49

minutes. (You might argue that it is trimodal, with another peak at 1201 minutes, but that

is a catchall interval for “all other values,” so it does not make much sense to think of it as

a modal value.)

The Median

The median (Mdn) is the score that corresponds to the point at or below which 50% of the

scores fall when the data are arranged in numerical order. By this definition, the median is

also called the 50th percentile.6 For example, consider the numbers (5, 8, 3, 7, 15). If the

numbers are arranged in numerical order (3, 5, 7, 8, 15), the middle score would be 7, and

it would be called the median. Suppose, however, that there were an even number of scores,

for example (5, 11, 3, 7, 15, 14). Rearranging, we get (3, 5, 7, 11, 14, 15), and no score has

50% of the values below it. That point actually falls between the 7 and the 11. In such a

case the average (9) of the two middle scores (7 and 11) is commonly taken as the median.7
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6 A specific percentile is defined as the point on a scale at or below which a specified percentage of scores fall.
7 The definition of the median is another one of those things about which statisticians love to argue. The definition
given here, in which the median is defined as a point on a distribution of numbers, is the one most critics prefer. It
is also in line with the statement that the median is the 50th percentile. On the other hand, there are many who are
perfectly happy to say that the median is either the middle number in an ordered series (if N is odd) or the average
of the two middle numbers (if N is even). Reading these arguments is a bit like going to a faculty meeting when
there is nothing terribly important on the agenda. The less important the issue, the more there is to say about it.
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A term that we will need shortly is the median location. The median location of N

numbers is defined as follows:

Median location

Thus, for five numbers the median location 5 (5 1 1)/2 5 3, which simply means that the

median is the third number in an ordered series. For 12 numbers, the median location 5

(12 1 1)/2 5 6.5; the median falls between, and is the average of, the sixth and seventh numbers.

For the data on reaction times in Table 2.2, the median location 5 (300 1 1)/2 5 150.5.

When the data are arranged in order, the 150th time is 59 and the 151st time is 60; thus the

median is (59 1 60)/2 5 59.5 hundredths of a second. You can calculate this for yourself

from Table 2.2. For the electronic games data there are 100 scores, and the median location

is 50.5. We can tell from the stem-and-leaf display in Figure 2.4 that the 50th score is 44 and

the 51st score is 46. The median would be 45, which is the average of these two values.

The Mean

The most common measure of central tendency, and one that really needs little explana-

tion, is the mean, or what people generally have in mind when they use the word average.

The mean ( ) is the sum of the scores divided by the number of scores and is usually des-

ignated (read “X bar”).8 It is defined (using the summation notation given on page 30) as

follows:

where is the sum of all values of X, and N is the number of X values. As an illustration,

the mean of the numbers 3, 5, 12, and 5 is

For the reaction time data in Table 2.2, the sum of the observations is 18,078. When we di-

vide that number by N 5 300, we get 18,078/300 5 60.26. Notice that this answer agrees

well with the median, which we found to be 59.5. The mean and the median will be close

whenever the distribution is nearly symmetric (as defined on page 27). It also agrees well

with the modal interval (60–64).

Relative Advantages and Disadvantages of the Mode, 
the Median, and the Mean

Only when the distribution is symmetric will the mean and the median be equal, and

only when the distribution is symmetric and unimodal will all three measures be the

same. In all other cases—including almost all situations with which we will deal—some

measure of central tendency must be chosen. There are no good rules for selecting a

measure of central tendency, but it is possible to make intelligent choices among the

three measures.

3 1 5 1 12 1 5

4
=

25

4
= 6.25

gX

X =
aX

N

X

X

=
N 1 1

2
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8 The American Psychological Association would like us to use M for the mean instead of , but I have used for
so many years that it would offend my delicate sensibilities to give it up. The rest of the statistical world generally
agrees with me on this, so we will use throughout.X

XX
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The Mode

The mode is the most commonly occurring score. By definition, then, it is a score that ac-

tually occurred, whereas the mean and sometimes the median may be values that never ap-

pear in the data. The mode also has the obvious advantage of representing the largest

number of people. Someone who is running a small store would do well to concentrate on

the mode. If 80% of your customers want the giant economy family size detergent and 20%

want the teeny-weeny, single-person size, it wouldn’t seem particularly wise to aim for

some other measure of location and stock only the regular size.

Related to these two advantages is that, by definition, the probability that an observa-

tion drawn at random ( ) will be equal to the mode is greater than the probability that it

will be equal to any other specific score. Finally, the mode has the advantage of being ap-

plicable to nominal data, which, if you think about it, is not true of the median or the

mean.

The mode has its disadvantages, however. We have already seen that the mode depends

on how we group our data. Another disadvantage is that it may not be particularly representa-

tive of the entire collection of numbers. This disadvantage is illustrated in the electronic game

data (see Figure 2.3), in which the modal interval equals 0–9, which probably reflects the fact

that a large number of people do not play video games (difficult as that may be to believe).

Using that interval as the mode would be to ignore all those people who do play.

The Median

The major advantage of the median, which it shares with the mode, is that it is unaffected

by extreme scores. The medians of both (5, 8, 9, 15, 16) and (0, 8, 9, 15, 206) are 9. Many

experimenters find this characteristic to be useful in studies in which extreme scores occa-

sionally occur but have no particular significance. For example, the average trained rat can

run down a short runway in approximately 1 to 2 seconds. Every once in a while this same

rat will inexplicably stop halfway down, scratch himself, poke his nose at the photocells,

and lie down to sleep. In that instance it is of no practical significance whether he takes 30

seconds or 10 minutes to get to the other end of the runway. It may even depend on when

the experimenter gives up and pokes him with a pencil. If we ran a rat through three trials

on a given day and his times were (1.2, 1.3, and 20 seconds), that would have the same

meaning to us—in terms of what it tells us about the rat’s knowledge of the task—as if his

times were (1.2, 1.3, and 136.4 seconds). In both cases the median would be 1.3. Obvi-

ously, however, his daily mean would be quite different in the two cases (7.5 versus 46.3

seconds). This problem frequently induces experimenters to work with the median rather

than the mean time per day.

The median has another point in its favor, when contrasted with the mean, which those

writers who get excited over scales of measurement like to point out. The calculation of the

median does not require any assumptions about the interval properties of the scale. With

the numbers (5, 8, and 11), the object represented by the number 8 is in the middle, no mat-

ter how close or distant it is from objects represented by 5 and 11. When we say that the

mean is 8, however, we, or our readers, may be making the implicit assumption that the un-

derlying distance between objects 5 and 8 is the same as the underlying distance between

objects 8 and 11. Whether or not this assumption is reasonable is up to the experimenter to

determine. I prefer to work on the principle that if it is an absurdly unreasonable assump-

tion, the experimenter will realize that and take appropriate steps. If it is not absurdly un-

reasonable, then its practical effect on the results most likely will be negligible. (This

problem of scales of measurement was discussed in more detail earlier.)

A major disadvantage of the median is that it does not enter readily into equations and

is thus more difficult to work with than the mean. It is also not as stable from sample to

sample as the mean, as we will see shortly.

Xi
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The Mean

Of the three principal measures of central tendency, the mean is by far the most common.

It would not be too much of an exaggeration to say that for many people statistics is nearly

synonymous with the study of the mean.

As we have already seen, certain disadvantages are associated with the mean: It is in-

fluenced by extreme scores, its value may not actually exist in the data, and its interpreta-

tion in terms of the underlying variable being measured requires at least some faith in the

interval properties of the data. You might be inclined to politely suggest that if the mean

has all the disadvantages I have just ascribed to it, then maybe it should be quietly forgot-

ten and allowed to slip into oblivion along with statistics like the “critical ratio,” a statisti-

cal concept that hasn’t been heard of for years. The mean, however, is made of sterner stuff.

The mean has several important advantages that far outweigh its disadvantages. Proba-

bly the most important of these from a historical point of view (though not necessarily from

your point of view) is that the mean can be manipulated algebraically. In other words, we

can use the mean in an equation and manipulate it through the normal rules of algebra,

specifically because we can write an equation that defines the mean. Because you cannot

write a standard equation for the mode or the median, you have no real way of manipulat-

ing those statistics using standard algebra. Whatever the mean’s faults, this accounts in

large part for its widespread application. The second important advantage of the mean is

that it has several desirable properties with respect to its use as an estimate of the popula-

tion mean. In particular, if we drew many samples from some population, the sample

means that resulted would be more stable (less variable) estimates of the central tendency

of that population than would the sample medians or modes. The fact that the sample mean

is generally a better estimate of the population mean than is the mode or the median is a

major reason that it is so widely used.

Trimmed Means

Trimmed means are means calculated on data for which we have discarded a certain per-

centage of the data at each end of the distribution. For example, if we have a set of 100 ob-

servations and want to calculate a 10% trimmed mean, we simply discard the highest 10

scores and the lowest 10 scores and take the mean of what remains. This is an old idea that

is coming back into fashion, and perhaps its strongest advocate is Rand Wilcox (Wilcox,

2003, 2005).

There are several reasons for trimming a sample. As I mentioned in Chapter 1, and will

come back to repeatedly throughout the book, a major goal of taking the mean of a sample

is to estimate the mean of the population from which that sample was taken. If you want a

good estimate, you want one that varies little from one sample to another. (To use a term

we will define in later chapters, we want an estimate with a small standard error.) If we

have a sample with a great deal of dispersion, meaning that it has a lot of high and low

scores, our sample mean will not be a very good estimator of the population mean. By trim-

ming extreme values from the sample our estimate of the population mean is a more stable

estimate.

Another reason for trimming a sample is to control problems in skewness. If you have

a very skewed distribution, those extreme values will pull the mean toward themselves and

lead to a poorer estimate of the population mean. One reason to trim is to eliminate the in-

fluence of those extreme scores. But consider the data from Bradley(1963) on reaction

times, shown in Figure 2.11. I agree that the long reaction times are probably the result of

the respondent missing the key, and therefore do not relate to strict reaction time, and could

legitimately be removed, but do we really want to throw away the same number of obser-

vations at the other end of the scale?
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Wilcox has done a great deal of work on the problems of trimming, and I certainly re-

spect his well-earned reputation. In addition I think that students need to know about

trimmed means because they are being discussed in the current literature. But I don’t think

that I can go as far as Wilcox in promoting their use. However, I don’t think that my reluc-

tance should dissuade people from considering the issue seriously, and I recommend

Wilcox’s book (Wilcox, 2003).

2.8 Measures of Variability

In the previous section we considered several measures related to the center of a distribu-

tion. However, an average value for the distribution (whether it be the mode, the median, or

the mean) fails to give the whole story. We need some additional measure (or measures) to

indicate the degree to which individual observations are clustered about or, equivalently, de-

viate from that average value. The average may reflect the general location of most of the

scores, or the scores may be distributed over a wide range of values, and the “average” may

not be very representative of the full set of observations. Everyone has had experience with

examinations on which all students received approximately the same grade and with those

on which the scores ranged from excellent to dreadful. Measures referring to the differences

between these two situations are what we have in mind when we speak of dispersion, or

variability, around the median, the mode, or any other point. In general, we will refer specif-

ically to dispersion around the mean.

An example to illustrate variability was recommended by Weaver (1999) and is based

on something with which I’m sure you are all familiar—the standard growth chart for in-

fants. Such a chart appears in Figure 2.12, in the bottom half of the chart, where you can

see the normal range of girls’ weights between birth and 36 months. The bold line labeled

“50” through the center represents the mean weight at each age. The two lines on each side

represent the limits within which we expect the middle half of the distribution to fall; the

next two lines as you go each way from the center enclose the middle 80% and the middle

90% of children, respectively. From this figure it is easy to see the increase in dispersion as

children increase in age. The weights of most newborns lie within 1 pound of the mean,

whereas the weights of 3-year-olds are spread out over about 5 pounds on each side of the

mean. Obviously the mean is increasing too, though we are more concerned here with

dispersion.

For our second illustration we will take some interesting data collected by Langlois and

Roggman (1990) on the perceived attractiveness of faces. Think for a moment about some

of the faces you consider attractive. Do they tend to have unusual features (e.g., prominent

noses or unusual eyebrows), or are the features rather ordinary? Langlois and Roggman

were interested in investigating what makes faces attractive. Toward that end, they pre-

sented students with computer-generated pictures of faces. Some of these pictures had been

created by averaging together snapshots of four different people to create a composite. We

will label these photographs Set 4. Other pictures (Set 32) were created by averaging across

snapshots of 32 different people. As you might suspect, when you average across four peo-

ple, there is still room for individuality in the composite. For example, some composites

show thin faces, while others show round ones. However, averaging across 32 people usu-

ally gives results that are very “average.” Noses are neither too long nor too short, ears

don’t stick out too far nor sit too close to the head, and so on. Students were asked to

examine the resulting pictures and rate each one on a 5-point scale of attractiveness. The

authors were primarily interested in determining whether the mean rating of the faces in

Set 4 was less than the mean rating of the faces in Set 32. It was, suggesting that faces with

distinctive characteristics are judged as less attractive than more ordinary faces. In this

section, however, we are more interested in the degree of similarity in the ratings of faces.
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Figure 2.12 Distribution of infant weight as a function of age

We suspect that composites of 32 faces would be more homogeneous, and thus would be

rated more similarly, than would composites of four faces.

The data are shown in Table 2.6.9 From the table you can see that Langlois and

Roggman correctly predicted that Set 32 faces would be rated as more attractive than Set 4

9 These data are not the actual numbers that Langlois and Roggman collected, but they have been generated to have
exactly the same mean and standard deviation as the original data. Langlois and Roggman used six composite
photographs per set. I have used 20 photographs per set to make the data more applicable to my purposes in this
chapter. The conclusions that you would draw from these data, however, are exactly the same as the conclusions
you would draw from theirs.



faces. (The means were 3.26 and 2.64, respectively.) But notice also that the ratings for the

composites of 32 faces are considerably more homogeneous than the ratings of the com-

posites of four faces. Figure 2.13 plots these sets of data as standard histograms.

Even though it is apparent from Figure 2.13 that there is greater variability in the rating

of composites of four photographs than in the rating of composites of 32 photographs,

some sort of measure is needed to reflect this difference in variability. A number of meas-

ures could be used, and they will be discussed in turn, starting with the simplest.

Range

The range is a measure of distance, namely the distance from the lowest to the highest

score. For our data, the range for Set 4 is (4.02 2 1.20) 5 2.82 units; for Set 32 it is (3.38 2

3.13) 5 0.25 unit. The range is an exceedingly common measure and is illustrated in every-

day life by such statements as “The price of red peppers fluctuates over a 3-dollar range

from $.99 to $3.99 per pound.” The range suffers, however, from a total reliance on extreme

values, or, if the values are unusually extreme, on outliers. As a result, the range may give a

distorted picture of the variability.

Interquartile Range and Other Range Statistics

The interquartile range represents an attempt to circumvent the problem of the range’s

heavy dependence on extreme scores. An interquartile range is obtained by discarding the
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Table 2.6 Rated attractiveness of composite faces

Set 4 Set 32

Composite Composite

Picture of 4 Faces Picture of 32 Faces

1 1.20 21 3.13

2 1.82 22 3.17

3 1.93 23 3.19

4 2.04 24 3.19

5 2.30 25 3.20

6 2.33 26 3.20

7 2.34 27 3.22

8 2.47 28 3.23

9 2.51 29 3.25

10 2.55 30 3.26

11 2.64 31 3.27

12 2.76 32 3.29

13 2.77 33 3.29

14 2.90 34 3.30

15 2.91 35 3.31

16 3.20 36 3.31

17 3.22 37 3.34

18 3.39 38 3.34

19 3.59 39 3.36

20 4.02 40 3.38

Mean 5 2.64 Mean 5 3.26

range

interquartile

range



upper 25% and the lower 25% of the distribution and taking the range of what remains. The

point that cuts off the lowest 25% of the distribution is called the first quartile, and is usu-

ally denoted as Q1. Similarly the point that cuts off the upper 25% of the distribution is

called the third quartile and is denoted Q3. (The median is the second quartile, Q2.) The

difference between the first and third quartiles (Q3 – Q1) is the interquartile range. We can

calculate the interquartile range for the data on attractiveness of faces by omitting the low-

est five scores and the highest five scores and determining the range of the remainder. In

this case the interquartile range for Set 4 would be 0.58 and the interquartile range for Set

32 would be only .11. The interquartile range plays an important role in a useful graphical

method known as a boxplot. This method will be discussed in Section 2.10.

The interquartile range suffers from problems that are just the opposite of those found

with the range. Specifically, the interquartile range discards too much of the data. If we

want to know whether one set of photographs is judged more variable than another, it may

not make much sense to toss out those scores that are most extreme and thus vary the most

from the mean.

There is nothing sacred about eliminating the upper and lower 25% of the distribution

before calculating the range. Actually, we could eliminate any percentage we wanted, as

long as we could justify that number to ourselves and to others. What we really want to do

is eliminate those scores that are likely to be errors or attributable to unusual events with-

out eliminating the variability that we seek to study.

In an earlier section we discussed the use of trimmed samples to generate trimmed

means. Trimming can be a valuable approach to skewed distributions or distributions with

large outliers. But when we use trimmed samples to estimate variability, we use a variation

based on what is called a Winsorized sample. (We create a 10% Winsorized sample, for

example, by dropping the lowest 10% of the scores and replacing them by the smallest

score that remains, then dropping the highest 10% and replacing those by the highest score

which remains, and then computing the measure of variation on the modified data.)
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The Average Deviation

At first glance it would seem that if we want to measure how scores are dispersed around

the mean (i.e., deviate from the mean), the most logical thing to do would be to obtain all

the deviations (i.e., ) and average them. You might reasonably think that the more

widely the scores are dispersed, the greater the deviations and therefore the greater the av-

erage of the deviations. However, common sense has led you astray here. If you calculate

the deviations from the mean, some scores will be above the mean and have a positive de-

viation, whereas others will be below the mean and have negative deviations. In the end,

the positive and negative deviations will balance each other out and the sum of the devia-

tions will be zero. This will not get us very far.

The Mean Absolute Deviation

If you think about the difficulty in trying to get something useful out of the average of the

deviations, you might well be led to suggest that we could solve the whole problem by tak-

ing the absolute values of the deviations. (The absolute value of a number is the value of

that number with any minus signs removed. The absolute value is indicated by vertical bars

around the number, e.g., |23| 5 3.) The suggestion to use absolute values makes sense be-

cause we want to know how much scores deviate from the mean without regard to whether

they are above or below it. The measure suggested here is a perfectly legitimate one and

even has a name: the mean absolute deviation (m.a.d.). The sum of the absolute devia-

tions is divided by N (the number of scores) to yield an average (mean) deviation: m.a.d.

For all its simplicity and intuitive appeal, the mean absolute deviation has not played an

important role in statistical methods. Much more useful measures, the variance and the

standard deviation, are normally used instead.

The Variance

The measure that we will consider in this section, the sample variance (s2), represents a

different approach to the problem of the deviations themselves averaging to zero. (When

we are referring to the population variance, rather than the sample variance, we use 

[lowercase sigma squared] as the symbol.) In the case of the variance we take advantage of

the fact that the square of a negative number is positive. Thus, we sum the squared devia-

tions rather than the absolute deviations. Because we want an average, we next divide that

sum by some function of N, the number of scores. Although you might reasonably expect

that we would divide by N, we actually divide by (N 2 1). We use (N 2 1) as a divisor for

the sample variance because, as we will see shortly, it leaves us with a sample variance that

is a better estimate of the corresponding population variance. (The population variance is

calculated by dividing the sum of the squared deviations, for each value in the population,

by N rather than (N – 1). However, we only rarely calculate a population variance; we al-

most always estimate it from a sample variance.)

If it is important to specify more precisely the variable to which refers, we can sub-

script it with a letter representing the variable. Thus, if we denote the data in Set 4 as X, the

variance could be denoted as . You could refer to , but long subscripts are usually

awkward. In general, we label variables with simple letters like X and Y.

For our example, we can calculate the sample variances of Set 4 and Set 32 as

follows:10

s2
Set 4s2

X

s2

s2

Xi 2 X
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10 In these calculations and others throughout the book, my answers may differ slightly from those that you obtain
for the same data. If so, the difference is most likely caused by rounding. If you repeat my calculations and arrive
at a similar, though different, answer, that is sufficient.
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Set 4(X )

Set 32(Y )

From these calculations we see that the difference in variances reflects the differences we

see in the distributions.

Although the variance is an exceptionally important concept and one of the most com-

monly used statistics, it does not have the direct intuitive interpretation we would like. Be-

cause it is based on squared deviations, the result is in squared units. Thus, Set 4 has a

mean attractiveness rating of 2.64 and a variance of 0.4293 squared unit. But squared units

are awkward things to talk about and have little meaning with respect to the data. Fortu-

nately, the solution to this problem is simple: Take the square root of the variance.

The Standard Deviation

The standard deviation (s or s) is defined as the positive square root of the variance and,

for a sample, is symbolized as s (with a subscript identifying the variable if necessary) or,

occasionally, as SD.11 (The notation s is used in reference to a population standard devia-

tion). The following formula defines the sample standard deviation:

For our example,

For convenience, I will round these answers to 0.66 and 0.07, respectively.

If you look at the formula for the standard deviation, you will see that the standard

deviation, like the mean absolute deviation, is basically a measure of the average of the

sY = 3s2
Y = 10.0048 = 0.0689

sX = 3s2
X = 10.4293 = 0.6552

sX = Ba (X 2 X)2

N 2 1

=
0.0903

19
= 0.0048

=
(3.13 2 3.26)2 1 (3.17 2 3.26)2 1 Á 1 (3.38 2 3.26)2

20 2 1

s2
Y =

a (Y 2 Y )2

N 2 1

=
8.1569

19
= 0.4293

=
(1.20 2 2.64)2 1 (1.82 2 2.64)2 1 Á 1 (4.02 2 2.64)2

20 2 1

s2
X =

a (X 2 X )2

N 2 1
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11 The American Psychological Association prefers to abbreviate the standard deviation as “SD,” but everyone
else uses “s.”
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deviations of each score from the mean. Granted, these deviations have been squared,

summed, and so on, but at heart they are still deviations. And even though we have di-

vided by (N 2 1) instead of N, we still have obtained something very much like a mean

or an “average” of these deviations. Thus, we can say without too much distortion that

attractiveness ratings for Set 4 deviated, on the average, 0.66 unit from the mean,

whereas attractiveness ratings for Set 32 deviated, on the average, only 0.07 unit from

the mean. This way of thinking about the standard deviation as a sort of average devia-

tion goes a long way toward giving it meaning without doing serious injustice to the

concept.

These results tell us two interesting things about attractiveness. If you were a subject in

this experiment, the fact that computer averaging of many faces produces similar compos-

ites would be reflected in the fact that your ratings of Set 32 would not show much

variability—all those images are judged to be pretty much alike. Second, the fact that those

ratings have a higher mean than the ratings of faces in Set 4 reveals that averaging over

many faces produces composites that seem more attractive. Does this conform to your

everyday experience? I, for one, would have expected that faces judged attractive would be

those with distinctive features, but I would have been wrong. Go back and think again

about those faces you class as attractive. Are they really distinctive? If so, do you have an

additional hypothesis to explain the findings?

We can also look at the standard deviation in terms of how many scores fall no more

than a standard deviation above or below the mean. For a wide variety of reasonably

symmetric and mound-shaped distributions, we can say that approximately two-thirds

of the observations lie within one standard deviation of the mean (for a normal distribu-

tion, which will be discussed in Chapter 3, it is almost exactly two-thirds). Although

there certainly are exceptions, especially for badly skewed distributions, this rule is still

useful. If I told you that for elementary school teachers the average starting salary is

expected to be $39.259 with a standard deviation of $4,000, you probably would not be

far off to conclude that about two-thirds of graduates who take these jobs will earn

between $25,000 and $43,000. In addition, most (e.g., 95%) fall within 2 standard

deviations of the mean.

Computational Formulae for the Variance 
and the Standard Deviation

The previous expressions for the variance and the standard deviation, although perfectly

correct, are incredibly unwieldy for any reasonable amount of data. They are also prone to

rounding errors, because they usually involve squaring fractional deviations. They are ex-

cellent definitional formulae, but we will now consider a more practical set of calculational

formulae. These formulae are algebraically equivalent to the ones we have seen, so they

will give the same answers but with much less effort.

The definitional formula for the sample variance was given as

A more practical computational formula is

s2
X =

aX2 2
AaXB2

N

N 2 1

s2
X =

a (X 2 X)2

N 2 1
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Similarly, for the sample standard deviation

Recently people whose opinions I respect have suggested that I should remove such

formulae as these from the book because people rarely calculate variances by hand any-

more. Although that is true, and I only wave my hands at most formulae in my own

courses, many people still believe it is important to be able to do the calculation. More im-

portant, perhaps, is the fact that we will see these formulae again in different disguises, and

it helps to understand what is going on if you recognize them for what they are. However, 

I agree with those critics in the case of more complex formulae, and in those cases I have

restructured recent editions of the text around definitional formulae.

Applying the computational formula for the sample variance for Set 4, we obtain

Note that the answer we obtained here is exactly the same as the answer we obtained by the

definitional formula. Note also, as pointed out earlier, that is quite differ-

ent from I leave the calculation of the variance for Set 32

to you.

You might be somewhat reassured to learn that the level of mathematics required for

the previous calculations is about as much as you will need anywhere in this book—not

because I am watering down the material, but because an understanding of most applied

statistics does not require much in the way of advanced mathematics. (I told you that you

learned it all in high school.)

The Influence of Extreme Values on the Variance 
and Standard Deviation

The variance and standard deviation are very sensitive to extreme scores. To put this differ-

ently, extreme scores play a disproportionate role in determining the variance. Consider a set

of data that range from roughly 0 to 10, with a mean of 5. From the definitional formula for

the variance, you will see that a score of 5 (the mean) contributes nothing to the variance,

because the deviation score is 0. A score of 6 contributes 1/(N 2 1) to , since

A score of 10, however, contributes 25/(N 2 1) units to , since

(10 2 5)2 5 25. Thus, although 6 and 10 deviate from the mean by 1 and 5 units, respectively,

their relative contributions to the variance are 1 and 25. This is what we mean when we say

s2(X 2 X)2 = (6 2 5)2 = 1.

s2

(gX)2 = 52.892 = 2797.35.

gX2 = 148.0241

=

148.0241 2
52.892

20

19
= 0.4293

=

1.202 1 1.822 1 Á 1 4.022 2
52.892

20

19

s2
X =

aX2 2
(gX)2

N

N 2 1

= TaX2 2
1gX22

N

N 2 1

sX = Ba (X 2 X)2

N 2 1
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that large deviations are disproportionately represented. You might keep this in mind the next

time you use a measuring instrument that is “OK because it is unreliable only at the ex-

tremes.” It is just those extremes that may have the greatest effect on the interpretation of the

data. This is one of the major reasons why we don’t particularly like to have skewed data.

The Coefficient of Variation

One of the most common things we do in statistics is to compare the means of two or more

groups, or even two or more variables. Comparing the variability of those groups or vari-

ables, however, is also a legitimate and worthwhile activity. Suppose, for example, that we

have two competing tests for assessing long-term memory.

One of the tests typically produces data with a mean of 15 and a standard deviation of

3.5. The second, quite different, test produces data with a mean of 75 and a standard devia-

tion of 10.5. All other things being equal, which test is better for assessing long-term mem-

ory? We might be inclined to argue that the second test is better, in that we want a measure

on which there is enough variability that we are able to study differences among people,

and the second test has the larger standard deviation. However, keep in mind that the two

tests also differ substantially in their means, and this difference must be considered.

If you think for a moment about the fact that the standard deviation is based on devia-

tions from the mean, it seems logical that a value could more easily deviate substantially

from a large mean than from a small one. For example, if you rate teaching effectiveness on

a 7-point scale with a mean of 3, it would be impossible to have a deviation greater than 4.

On the other hand, on a 70-point scale with a mean of 30, deviations of 10 or 20 would be

common. Somehow we need to account for the greater opportunity for large deviations in

the second case when we compare the variability of our two measures. In other words,

when we look at the standard deviation, we must keep in mind the magnitude of the mean

as well.

The simplest way to compare standard deviations on measures that have quite different

means is simply to scale the standard deviation by the magnitude of the mean. That is what

we do with the coefficient of variation (CV).12 We will define that coefficient as simply

the standard deviation divided by the mean:

(We multiply by 100 to express the result as a percentage.) To return to our memory-task

example, for the first measure, CV 5 (3.5/15) 3 100 5 23.3. Here the standard deviation

is approximately 23% of the mean. For the second measure, CV 5 (10.5/75) 3 100 5 14.

In this case the coefficient of variation for the second measure is about half as large as for

the first. If I could be convinced that the larger coefficient of variation in the first measure

was not attributable simply to sloppy measurement, I would be inclined to choose the first

measure over the second.

To take a second example, Katz, Lautenschlager, Blackburn, and Harris (1990) asked

students to answer a set of multiple-choice questions from the Scholastic Aptitude Test13

(SAT). One group read the relevant passage and answered the questions. Another group an-

swered the questions without having read the passage on which they were based—sort of

CV =
Standard deviation

Mean
=

sX

X
3 100
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like taking a multiple-choice test on Mongolian history without having taken the course.

The data follow:

Read Did Not Read

Passage Passage

Mean 69.6 46.6

SD 10.6 6.8

CV 15.2 14.6

The ratio of the two standard deviations is 10.6/6.8 5 1.56, meaning that the Read

group had a standard deviation that was more than 50% larger than that of the Did Not

Read group. On the other hand, the coefficients of variation are virtually the same for the

two groups, suggesting that any difference in variability between the groups can be ex-

plained by the higher scores in the first group. (Incidentally, chance performance would

have produced a mean of 20 with a standard deviation of 4. Even without reading the pas-

sage, students score well above chance levels just by intelligent guessing.)

In using the coefficient of variation, it is important to keep in mind the nature of the

variable that you are measuring. If its scale is arbitrary, you might not want to put too much

faith in the coefficient. But perhaps you don’t want to put too much faith in the variance ei-

ther. This is a place where a little common sense is particularly useful.

The Mean and Variance as Estimators

I pointed out in Chapter 1 that we generally calculate measures such as the mean and

variance to use as estimates of the corresponding values in the populations. Characteris-

tics of samples are called statistics and are designated by Roman letters (e.g., ). Char-

acteristics of populations are called parameters and are designated by Greek letters.

Thus, the population mean is symbolized by µ (mu). In general, then, we use statistics as

estimates of parameters.

If the purpose of obtaining a statistic is to use it as an estimator of a parameter, then it

should come as no surprise that our choice of a statistic (and even how we define it) is based

partly on how well that statistic functions as an estimator of the parameter in question. Actu-

ally, the mean is usually preferred over other measures of central tendency because of its

performance as an estimator of µ. The variance ( ) is defined as it is, with (N – 1) in the

denominator, specifically because of the advantages that accrue when is used to estimate

the population variance ( ).

Four properties of estimators are of particular interest to statisticians and heavily influ-

ence the choice of the statistics we compute. These properties are those of sufficiency, un-

biasedness, efficiency, and resistance. They are discussed here simply to give you a feel for

why some measures of central tendency and variability are regarded as more important

than others. It is not critical that you have a thorough understanding of estimation and

related concepts, but you should have a general appreciation of the issues involved.

Sufficiency

A statistic is a sufficient statistic if it contains (makes use of) all the information in a sam-

ple. You might think this is pretty obvious because it certainly seems reasonable to base

your estimates on all the data. The mean does exactly that. The mode, however, uses only

the most common observations, ignoring all others, and the median uses only the middle

one, again ignoring the values of other observations. Similarly, the range, as a measure of

dispersion, uses only the two most extreme (and thus most unrepresentative) scores. Here

you see one of the reasons that we emphasize the mean as our measure of central tendency.

s2
s2
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X
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Unbiasedness

Suppose we have a population for which we somehow know the mean (µ), say, the heights

of all basketball players in the NBA. If we were to draw one sample from that population

and calculate the sample mean ( ), we would expect to be reasonably close to µ, partic-

ularly if N is large, because it is an estimator of µ. So if the average height in this population

is 7.09 ( 9), we would expect a sample of, say, 10 players to have an average height

of approximately 7.09 as well, although it probably would not be exactly equal to 7.09. (We

can write , where the symbol means “approximately equal.”) Now suppose we

draw another sample and obtain its mean ( ). (The subscript is used to differentiate the

means of successive samples. Thus, the mean of the 43rd sample, if we drew that many,

would be denoted by .) This mean would probably also be reasonably close to µ, but we

would not expect it to be exactly equal to µ or to . If we were to keep up this procedure

and draw sample means ad infinitum, we would find that the average of the sample means

would be precisely equal to µ. Thus, we say that the expected value (i.e., the long-range av-

erage of many, many samples) of the sample mean is equal to µ, the population mean that it

is estimating. An estimator whose expected value equals the parameter to be estimated is

called an unbiased estimator and that is a very important property for a statistic to possess.

Both the sample mean and the sample variance are unbiased estimators of their correspon-

ding parameters. (We use N – 1) as the denominator of the formula for the sample variance

precisely because we want to generate an unbiased estimate.) By and large, unbiased esti-

mators are like unbiased people—they are nicer to work with than biased ones.

Efficiency

Estimators are also characterized in terms of efficiency. Suppose that a population is sym-

metric: Thus, the values of the population mean and median are equal. Now suppose that

we want to estimate the mean of this population (or, alternatively, its median). If we drew

many samples and calculated their means, we would find that the means ( ) clustered rela-

tively closely around µ. The medians of the same samples, however, would cluster more

loosely around µ. This is so even though the median is also an unbiased estimator in this

situation because the expected value of the median in this case would also equal µ. The fact

that the sample means cluster more closely around µ than do the sample medians indicates

that the mean is more efficient as an estimator. (In fact, it is the most efficient estimator of µ.)

Because the mean is more likely to be closer to µ (i.e., a more accurate estimate) than the

median, it is a better statistic to use to estimate µ.

Although it should be obvious that efficiency is a relative term (a statistic is more or

less efficient than some other statistic), statements that such and such a statistic is “effi-

cient” should really be taken to mean that the statistic is more efficient than all other statis-

tics as an estimate of the parameter in question. Both the sample mean, as an estimate of µ,

and the sample variance, as an estimate of , are efficient estimators in that sense. The fact

that both the mean and the variance are unbiased and efficient is the major reason that they

play such an important role in statistics. These two statistics will form the basis for most of

the procedures discussed in the remainder of this book.

Resistance

The last property of an estimator to be considered concerns the degree to which the estima-

tor is influenced by the presence of outliers. Recall that the median is relatively uninflu-

enced by outliers, whereas the mean can drastically change with the inclusion of one or two

extreme scores. In a very real sense we can say that the median “resists” the influence of
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these outliers, whereas the mean does not. This property is called the resistance of the

estimator. In recent years, considerably more attention has been placed on developing re-

sistant estimators—such as the trimmed mean discussed earlier. These are starting to filter

down to the level of everyday data analysis, though they have a ways to go.

The Sample Variance as an Estimator 
of the Population Variance

The sample variance offers an excellent example of what was said in the discussion of unbi-

asedness. You may recall that I earlier sneaked in the divisor of N 2 1 instead of N for the

calculation of the variance and standard deviation. Now is the time to explain why. (You

may be perfectly willing to take the statement that we divide by N – 1 on faith, but I get a lot

of questions about it, so I guess you will just have to read the explanation—or skip it.)

There are a number of ways to explain why sample variances require N 2 1 as the de-

nominator. Perhaps the simplest is phrased in terms of what has been said about the sample

variance ( ) as an unbiased estimate of the population variance ( ). Assume for the mo-

ment that we have an infinite number of samples (each containing N observations) from

one population and that we know the population variance. Suppose further that we are fool-

ish enough to calculate sample variances as

(Note the denominator.) If we take the average of these sample variances, we find

where E[ ] is read as “the expected value of (whatever is in brackets).” Thus the average

value of is not It is a biased estimator.

Degrees of Freedom

The foregoing discussion is very much like saying that we divide by N 2 1 because it

works. But why does it work? To explain this, we must first consider degrees of freedom

(df ). Assume that you have in front of you the three numbers 6, 8, and 10. Their mean is 8.

You are now informed that you may change any of these numbers, as long as the mean is

kept constant at 8. How many numbers are you free to vary? If you change all three of them

in some haphazard fashion, the mean almost certainly will no longer equal 8. Only two of

the numbers can be freely changed if the mean is to remain constant. For example, if you

change the 6 to a 7 and the 10 to a 13, the remaining number is determined; it must be 4 if

the mean is to be 8. If you had 50 numbers and were given the same instructions, you

would be free to vary only 49 of them; the 50th would be determined.

Now let us go back to the formulae for the population and sample variances and see

why we lost one degree of freedom in calculating the sample variances.

In the case of , µ is known and does not have to be estimated from the data. Thus, no

df are lost and the denominator is N. In the case of , however, µ is not known and must be

estimated from the sample mean ( ). Once you have estimated µ from , you have fixed itXX

s2
s2

s2 =
a (X 2 X)2

N 2 1
s2 =

a (X 2 m)2

N

s2.g(X 2 X)2/N
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a (X 2 X)2
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N
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for purposes of estimating variability. Thus, you lose that degree of freedom that we dis-

cussed, and you have only N 2 1 df left (N 2 1 scores free to vary). We lose this one de-

gree of freedom whenever we estimate a mean. It follows that the denominator (the number

of scores on which our estimate is based) should reflect this restriction. It represents the

number of independent pieces of data.

2.9 Boxplots: Graphical Representations 
of Dispersions and Extreme Scores

Earlier you saw how stem-and-leaf displays represent data in several meaningful ways at

the same time. Such displays combine data into something very much like a histogram,

while retaining the individual values of the observations. In addition to the stem-and-leaf

display, John Tukey has developed other ways of looking at data, one of which gives

greater prominence to the dispersion of the data. This method is known as a boxplot, or,

sometimes, box-and-whisker plot.

The data and the accompanying stem-and-leaf display in Table 2.7 were taken from

normal- and low-birthweight infants participating in a study of infant development at the

University of Vermont and represent preliminary data on the length of hospitalization of

38 normal-birthweight infants. Data on three infants are missing for this particular vari-

able and are represented by an asterisk (*). (Asterisks are included to emphasize that we

should not just ignore missing data.) Because the data vary from 1 to 10, with two ex-

ceptions, all the leaves are zero. The zeros really just fill in space to produce a histogram-

like distribution. Examination of the data as plotted in the stem-and-leaf display reveals

that the distribution is positively skewed with a median stay of 3 days. Near the bottom

of the stem you will see the entry HI and the values 20 and 33. These are extreme values,

or outliers, and are set off in this way to highlight their existence. Whether they are large

enough to make us suspicious is one of the questions a boxplot is designed to address.

The last line of the stem-and-leaf display indicates the number of missing observations.

Tukey originally defined boxplots in terms of special measures that he devised. Most

people now draw boxplots using more traditional measures, and I am adopting that ap-

proach in this edition.
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Table 2.7 Data and stem-and-leaf display on length 

of hospitalization for full-term newborn infants (in days)

Data Stem-and-Leaf

2 1 7 1 000

1 33 2 2 000000000

2 3 4 3 00000000000

3 * 4 4 0000000

3 3 10 5 00

9 2 5 6 0

4 3 3 7 0

20 6 2 8

4 5 2 9 0

1 * * 10 0

3 3 4 HI 20, 33

2 3 4 Missing 5 3

3 2 3

2 4

boxplot

box-and-whisker

plot



We earlier defined the median location of a set of N scores as (N 1 1)/2. When the median

location is a whole number, as it will be when N is odd, then the median is simply the value that

occupies that location in an ordered arrangement of data. When the median location is a frac-

tional number (i.e., when N is even), the median is the average of the two values on each side of

that location. For the data in Table 2.8 the median location is (38 1 1)/2 5 19.5, and the median

is 3. To construct a boxplot, we are also going to take the first and third quartiles, defined ear-

lier. The easiest way to do this is to define the quartile location, which is defined as

If the median location is a fractional value, the fraction should be dropped from the nu-

merator when you compute the quartile location. The quartile location is to the quartiles what

the median location is to the median. It tells us where, in an ordered series, the quartile val-

ues14 are to be found. For the data on hospital stay, the quartile location is (19 1 1)/2 5 10.

Thus, the quartiles are going to be the tenth scores from the bottom and from the top. These

values are 2 and 4, respectively. For data sets without tied scores, or for large samples, the

quartiles will bracket the middle 50% of the scores.

To complete the concepts required for understanding boxplots, we need to consider three

more terms: the interquartile range, inner fences, and adjacent values. As we saw earlier, the

interquartile range is simply the range between the first and third quartiles. For our data, the

interquartile range 4 2 2 5 2. An inner fence is defined by Tukey as a point that falls 1.5

times the interquartile range below or above the appropriate quartile. Because the interquar-

tile range is 2 for our data, the inner fence is 2 3 1.5 5 3 points farther out than the quartiles.

Because our quartiles are the values 2 and 4, the inner fences will be at 2 2 3 5 21 and 

4 1 3 5 7. Adjacent values are those actual values in the data that are no more extreme (no

farther from the median) than the inner fences. Because the smallest value we have is 1, that

is the closest value to the lower inner fence and is the lower adjacent value. The upper inner

fence is 7, and because we have a 7 in our data, that will be the higher adjacent value. The

calculations for all the terms we have just defined are shown in Table 2.8.

Quartile location =
Median location 1 1

2
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Table 2.8 Calculation and boxplots for data from Table 2.7

Median location 5 (N11)/2 5 (3811)/2 5 19.5

Median 5 3

Quartile location 5 (median location† 1 1)/2 5 (19 1 1)/25 10

Q
1

5 10th lowest score 5 2

Q
3

5 10th highest score 5 4

Interquartile range 5 4 2 2 5 2

Interquartile range * 1.5 5 2*1.5 5 3

Lower inner fence 5 Q
1

2 1.5 (interquartile range) 5 2 2 3 5 21

Upper inner fence 5 Q
3

1 1.5 (interquartile range) 5 4 1 3 5 7

Lower adjacent value 5 smallest value ≥ lower fence 5 1

Upper adjacent value 5 largest value ≤ upper fence 5 7

† Drop any fractional values.

0 5 10

* * * *

15 20 25 30 35

quartile location

inner fence

Adjacent values

14 Tukey referred to the quartiles in this situation as “hinges,” but little is lost by thinking of them as the quartiles.



Inner fences and adjacent values can cause some confusion. Think of a herd of cows

scattered around a field. (I spent most of my life in Vermont, so cows seem like a natural

example.) The fence around the field represents the inner fence of the boxplot. The cows

closest to but still inside the fence are the adjacent values. Don’t worry about the cows that

have escaped outside the fence and are wandering around on the road. They are not in-

volved in the calculations at this point. (They will be the outliers.)

Now we are ready to draw the boxplot. First, we draw and label a scale that covers the

whole range of the obtained values. This has been done at the bottom of Table 2.8. We then

draw a rectangular box from Q
1

to Q
3
, with a vertical line representing the location of the

median. Next we draw lines (whiskers) from the quartiles out to the adjacent values.

Finally we plot the locations of all points that are more extreme than the adjacent values.

From Table 2.8 we can see several important things. First, the central portion of the dis-

tribution is reasonably symmetric. This is indicated by the fact that the median lies in the

center of the box and was apparent from the stem-and-leaf display. We can also see that the

distribution is positively skewed, because the whisker on the right is substantially longer

than the one on the left. This also was apparent from the stem-and-leaf display, although

not so clearly. Finally, we see that we have four outliers, where an outlier is defined here as

any value more extreme than the whiskers (and therefore more extreme than the adjacent

values). The stem-and-leaf display did not show the position of the outliers nearly so

graphically as does the boxplot.

Outliers deserve special attention. An outlier could represent an error in measurement,

in data recording, or in data entry, or it could represent a legitimate value that just happens

to be extreme. For example, our data represent length of hospitalization, and a full-term in-

fant might have been born with a physical defect that required extended hospitalization.

Because these are actual data, it was possible to go back to hospital records and look more

closely at the four extreme cases. On examination, it turned out that the two most extreme

scores were attributable to errors in data entry and were readily correctable. The other two

extreme scores were caused by physical problems of the infants. Here a decision was re-

quired by the project director as to whether the problems were sufficiently severe to cause

the infants to be dropped from the study (both were retained as subjects). The two corrected

values were 3 and 5 instead of 33 and 20, respectively, and a new boxplot for the corrected

data is shown in Figure 2.14. This boxplot is identical to the one shown in Table 2.8 except

for the spacing and the two largest values. (You should verify for yourself that the corrected

data set would indeed yield this boxplot.)

From what has been said, it should be evident that boxplots are extremely useful

tools for examining data with respect to dispersion. I find them particularly useful for

screening data for errors and for highlighting potential problems before subsequent

analyses are carried out. Boxplots are presented often in the remainder of this book as

visual guides to the data.

A word of warning: Different statistical computer programs may vary in the ways they

define the various elements in boxplots. (See Frigge, Hoaglin, and Iglewicz [1989] for an

extensive discussion of this issue.) You may find two different programs that produce

slightly different boxplots for the same set of data. They may even identify different
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outliers. However, boxplots are normally used as informal heuristic devices, and subtle dif-

ferences in definition are rarely, if ever, a problem. I mention the potential discrepancies

here simply to explain why analyses that you do on the data in this book may come up with

slightly different results if you use different computer programs.

The real usefulness of boxplots comes when we want to compare several groups. We

will use the example with which we started this chapter, where we have recorded the reac-

tion times of response to the question of whether a specific digit was presented in a previ-

ous slide, as a function of the number of stimuli on that slide. The boxplot in Figure 2.15,

produced by SPSS, shows the reaction times for those cases in which the stimulus was ac-

tually present, broken down by the number of stimuli in the original. The outliers are indi-

cated by their identification number, which here is the same as the number of the trial on

which the stimulus was presented. The most obvious conclusion from this figure is that as

the number of stimuli in the original increases, reaction times also increase, as does the dis-

persion. We can also see that the distributions are reasonably symmetric (the boxes are

roughly centered on the medians, and there are a few outliers, all of which are long reac-

tion times).

2.10 Obtaining Measures of Central Tendency 
and Dispersion Using SPSS

We can also use SPSS to calculate measures of central tendency and dispersion, as shown in

Exhibit 2.1, which is based on our data from the reaction time experiment. I used the

Analyze/Compare Means/Means menu command because I wanted to obtain the descriptive

statistics separately for each level of NStim (the number of stimuli presented). Notice that you

also have these statistics across the three groups. The command Graphs/Interactive/Boxplot

produced the boxplot shown below. Because you have already seen the boxplot broken down by

NStim in Figure 2.14, I only presented the combined data here. Note how well the extreme

values stand out.
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Report: RxTime

NStim N Mean Median Std. Deviation Variance

1 100 53.27 50.00 13.356 178.381

3 100 60.65 60.00 9.408 88.513

5 100 66.86 65.00 12.282 150.849

Total 300 60.26 59.50 13.011 169.277

Exhibit 2.1 SPSS analysis of reaction time data

2.11 Percentiles, Quartiles, and Deciles

A distribution has many properties besides its location and dispersion. We saw one of these

briefly when we considered boxplots, where we used quartiles, which are the values that

divide the distribution into fourths. Thus, the first quartile cuts off the lowest 25%, the sec-

ond quartile cuts off the lowest 50%, and the third quartile cuts off the lowest 75%. (Note

that the second quartile is also the median.) These quartiles were shown clearly on the

growth chart in Figure 2.11. If we want to examine finer gradations of the distribution, we

can look at deciles, which divide the distribution into tenths, with the first decile cutting

off the lowest 10%, the second decile cutting off the lowest 20%, and so on. Finally, most

of you have had experience with percentiles, which are values that divide the distribution

into hundredths. Thus, the 81st percentile is that point on the distribution below which 81%

of the scores lie.

Quartiles, deciles, and percentiles are the three most common examples of a general

class of statistics known by the generic name of quantiles, or, sometimes, fractiles. We

will not have much to say about quantiles in this book, but they are usually covered exten-

sively in more introductory texts (e.g., Howell, 2008). They also play an important role in

many of the techniques of exploratory data analysis advocated by Tukey.

2.12 The Effect of Linear Transformations on Data

Frequently, we want to transform data in some way. For instance, we may want to convert

feet into inches, inches into centimeters, degrees Fahrenheit into degrees Celsius, test

grades based on 79 questions to grades based on a 100-point scale, four- to five-digit in-

comes into one- to two-digit incomes, and so on. Fortunately, all of these transformations
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fall within a set called linear transformations, in which we multiply each X by some

constant (possibly 1) and add a constant (possibly 0):

where a and b are our constants. (Transformations that use exponents, logarithms, trigono-

metric functions, etc., are classed as nonlinear transformations.) An example of a linear

transformation is the formula for converting degrees Celsius to degrees Fahrenheit:

As long as we content ourselves with linear transformations, a set of simple rules de-

fines the mean and variance of the observations on the new scale in terms of their means

and variances on the old one:

1. Adding (or subtracting) a constant to (or from) a set of data adds (or subtracts) that same

constant to (or from) the mean:

For 

2. Multiplying (or dividing) a set of data by a constant multiplies (or divides) the mean by

the same constant:

For 

For 

3. Adding or subtracting a constant to (or from) a set of scores leaves the variance and

standard deviation unchanged:

For 

4. Multiplying (or dividing) a set of scores by a constant multiplies (or divides) the vari-

ance by the square of the constant and the standard deviation by the constant: 

For and 

For and 

The following example illustrates these rules. In each case, the constant used is 3.

Addition of a constant:

Old New

Data s Data s

4, 8, 12 8 16 4 7, 11, 15 11 16 4

Multiplication by a constant:

Old New

Data s Data s

4, 8, 12 8 16 4 12, 24, 36 24 144 12

Reflection as a Transformation

A very common and useful transformation concerns reversing the order of a scale. For exam-

ple, assume that we asked subjects to indicate on a 5-point scale the degree to which they agree

s2Xs2X

s2Xs2X

snew = sold>b.s2
new = s2

old>b2Xnew = Xold>b:

snew = bsold.s2
new = b2s2

oldXnew = bXold:

s2
new = s2

old.Xnew = Xold 6 a:

Xnew = Xold>b.Xnew = Xold>b:

Xnew = bXold.Xnew = bXold:

Xnew = Xold 6 a.Xnew = Xold 6 a:

F = 9>5(C) 1 32.

Xnew = bXold 1 a
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or disagree with each of several items. To prevent the subjects from simply checking the same

point on the scale all the way down the page without thinking, we phrase half of our questions

in the positive direction and half in the negative direction. Thus, given a 5-point scale where 5

represents “strongly agree” and 1 represents “strongly disagree,” a 4 on “I hate movies” would

be comparable to a 2 on “I love plays.” If we want the scores to be comparable, we need to

rescore the negative items (for example), converting a 5 to a 1, a 4 to a 2, and so on. This pro-

cedure is called reflection and is quite simply accomplished by a linear transformation. We

merely write The constant (6) is just the largest value on the scale plus 1. It

should be evident that when we reflect a scale, we also reflect its mean but have no effect on

its variance or standard deviation. This is true by Rule 3 in the preceding list.

Standardization

One common linear transformation often employed to rescale data involves subtracting the

mean from each observation. Such transformed observations are called deviation scores,

and the transformation itself is often referred to as centering because we are centering the

mean at 0. Centering is most often used in regression, which is discussed later in the book.

An even more common transformation involves creating deviation scores and then dividing

the deviation scores by the standard deviation. Such scores are called standard scores, and

the process is referred to as standardization. Basically, standardized scores are simply

transformed observations that are measured in standard deviation units. Thus, for example,

a standardized score of 0.75 is a score that is 0.75 standard deviation above the mean; a stan-

dardized score of 20.43 is a score that is 0.43 standard deviation below the mean. I will

have much more to say about standardized scores when we consider the normal distribution

in Chapter 3. I mention them here specifically to show that we can compute standardized

scores regardless of whether or not we have a normal distribution (defined in Chapter 3).

People often think of standardized scores as being normally distributed, but there is ab-

solutely no requirement that they be. Standardization is a simple linear transformation of the

raw data, and, as such, does not alter the shape of the distribution.

Nonlinear Transformations

Whereas linear transformations are usually used to convert the data to a more meaningful

format—such as expressing them on a scale from 0 to 100, putting them in standardized

form, and so on, nonlinear transformations are usually invoked to change the shape of a

distribution. As we saw, linear transformations do not change the underlying shape of a dis-

tribution. Nonlinear transformations, on the other hand, can make a skewed distribution

look more symmetric, or vice versa, and can reduce the effects of outliers.

Some nonlinear transformations are so common that we don’t normally think of them

as transformations. Everitt (in Hand, 1994) reported pre- and post-treatment weights for 

29 girls receiving cognitive-behavior therapy for anorexia. One logical measure would be

the person’s weight after the intervention (Y ). Another would be the gain in weight from

pre- to post-intervention, as measured by (Y – X). A third alternative would be to record the

weight gain as a function of the original score. This would be (Y – X))/Y. We might use this

measure because we assume that how much a person’s score increases is related to how un-

derweight she was to begin with. Figure 2.16 portrays the histograms for these three meas-

ures based on the same data.

From Figure 2.16 you can see that the three alternative measures, the second two of

which are nonlinear transformations of X and Y, appear to have quite different distributions.

In this case the use of gain scores as a percentage of pretest weight seem to be more nearly

normally distributed than the others. (We will come back to this issue when we come to

Xnew = 6 2 Xold.
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Exercise 3.42.) Later in this book you will see how to use other nonlinear transformations

(e.g., square root or logarithmic transformations) to make the shape of the distribution

more symmetrical.

Postintervention weight
Weight gain relative to

preintervention weight

Weight gain from pre-
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Figure 2.16 Alternative measures of the effect of a cognitive-behavior intervention on weight in anorexic girls.

Key Terms

Frequency distribution (2.1)

Histogram (2.2)

Real lower limit (2.2)

Real upper limit (2.2)

Midpoints (2.2)

Outlier (2.2)

Kernel density plot (2.3)

Stem-and-leaf display (2.4)

Exploratory data analysis (EDA) (2.4)

Leading digits (2.4)

Most significant digits (2.4)

Stem (2.4)

Trailing digits (2.4)

Less significant digits (2.4)

Leaves (2.4)

Symmetric (2.5)

Bimodal (2.5)

Unimodal (2.5)

Modality (2.5)

Negatively skewed (2.5)

Positively skewed (2.5)

Skewness (2.5)

Kurtosis (2.5)

Mesokurtic (2.5)

Platykurtic (2.5)

Leptokurtic (2.5)

Sigma ( ) (2.6)

Measures of central tendency (2.7)

Measures of location (2.7)

Mode (Mo) (2.7)

Median (Mdn) (2.7)

Median location (2.7)

Mean (2.7)

Trimmed mean (2.7)

Dispersion (2.8)

Range (2.8)

Interquartile range (2.8)

First quartile, Q1 (2.8)

Third quartile, Q3 (2.8)

Second quartile, Q2 (2.8)

Winsorized sample (2.8)

Mean absolute deviation (m.a.d.) (2.8)

Sample variance ( ) (2.8)

Population variance ( ) (2.8)

Standard deviation (s) (2.8)

Coefficient of variation (CV) (2.8)

Sufficient statistic (2.8)

Expected value (2.8)

Unbiased estimator (2.8)

Efficiency (2.8)

Resistance (2.8)

Degrees of freedom (df) (2.8)

Boxplots (2.9)

Box-and-whisker plots (2.9)

Quartile location (2.9)

Inner fence (2.9)

Adjacent values (2.9)

Whiskers (2.9)

Deciles (2.11)

Percentiles (2.11)

Quantiles (2.11)

Fractiles (2.11)

Linear transformations (2.12)

Reflection (2.12)

Deviation scores (2.12)

Centering (2.12)

Standard scores (2.12)

Standardization (2.12)

Nonlinear transformation (2.12)
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Exercises

Many of the following exercises can be solved using either computer software or pencil and

paper. The choice is up to you or your instructor. Any software package should be able to work

these problems. Some of the exercises refer to a large data set named ADD.dat that is available at

www.uvm.edu/~dhowell/methods7/DataFiles/Add.dat. These data come from an actual research

study (Howell & Huessy, 1985). The study is described in Appendix: Data Set on page 692.

2.1 Any of you who have listened to children tell stories will recognize that children differ from

adults in that they tend to recall stories as a sequence of actions rather than as an overall

plot. Their descriptions of a movie are filled with the phrase “and then. . . .” An experi-

menter with supreme patience asked 50 children to tell her about a given movie. Among

other variables, she counted the number of “and then. . .” statements, which is the depend-

ent variable. The data follow:

18 15 22 19 18 17 18 20 17 12 16 16 17 21 23 18 20 21 20 20 15 18 17 19 20

23 22 10 17 19 19 21 20 18 18 24 11 19 31 16 17 15 19 20 18 18 40 18 19 16

a. Plot an ungrouped frequency distribution for these data.

b. What is the general shape of the distribution?

2.2 Create a histogram for the data in Exercise 2.1 using a reasonable number of intervals.

2.3 What difficulty would you encounter in making a stem-and-leaf display of the data in

Exercise 2.1?

2.4 As part of the study described in Exercise 2.1, the experimenter obtained the same kind of

data for 50 adults. The data follow:

10 12 5 8 13 10 12 8 7 11 11 10 9 9 11 15 12 17 14 10 9 8 15 16 10

14 7 16 9 1 4 11 12 7 9 10 3 11 14 8 12 5 10 9 7 11 14 10 15 9

a. What can you tell just by looking at these numbers? Do children and adults seem to re-

call stories in the same way?

b. Plot an ungrouped frequency distribution for these data using the same scale on the axes

as you used for the children’s data in Exercise 2.1.

c. Overlay the frequency distribution from part (b) on the one from Exercise 2.1.

2.5 Use a back-to-back stem-and-leaf display (see Figure 2.6) to compare the data from Exer-

cises 2.1 and 2.4.

2.6 Create a positively skewed set of data and plot it.

2.7 Create a bimodal set of data that represents some actual phenomenon and plot it.

2.8 In my undergraduate research methods course, women generally do a bit better than men.

One year I had the grades shown in the following boxplots. What might you conclude from

these boxplots?

0.95

0.85

0.75

1

1 = Male, 2 = Female

2

0.65

P
er

ce
n

t

Sex



Exercises 57

2.9 In Exercise 2.8, what would be the first and third quartiles for males and females?

2.10 The following stem-and-leaf displays show the individual grades referred to in Exercise 2.8

separately for males and females. From these results, what would you conclude about any

differences between males and females? 

2.11 What would you predict to be the shape of the distribution of the number of movies attended

per month for the next 200 people you meet?

2.12 Draw a histogram for the data for GPA in Appendix: Data Set referred to at the beginning of

these exercises. (These data can also be obtained at www.uvm.edu/~dhowell/methods7/

DataFiles/Add.dat.)

2.13 Create a stem-and-leaf display for the ADDSC score in Appendix: Data Set

2.14 In a hypothetical experiment, researchers rated 10 Europeans and 10 North Americans on a

12-point scale of musicality. The data for the Europeans were [10 8 9 5 10 11 7 8 2 7]. 

Using X for this variable,

a. what are , , and ?

b. calculate 

c. write the summation notation from part (b) in its most complex form.

2.15 The data for the North Americans in Exercise 2.17 were [9 9 5 3 8 4 6 6 5 2]. Using Y for

this variable,

a. what are and 

b. calculate 

2.16 Using the data from Exercise 2.14,

a. calculate and .

b. calculate where N 5 the number of scores.

c. what do you call what you calculated in part (b)?

2.17 Using the data from Exercise 2.15,

a. calculate and .

b. calculate 

gY2 2
(©Y)2

N

N 2 1

gY2(gY)2

gX>N,

gX2(gX)2

gY.

Y10?Y1

gX.

X8X5X3

Stem-and-leaf of Percent Stem-and-leaf of Percent

Sex 5 1 (Male) N 5 29 Sex 5 2 (Female) N 5 78

Leaf Unit 5 0.010 Leaf Unit 5 0.010

3 6 677 2 6 77

3 6 3 6 8

3 7 6 7 000

5 7 33 10 7 2233

7 7 45 15 7 45555

7 7 15 7

10 7 999 22 7 8899999

12 8 01 34 8 011111111111

14 8 22 (8) 8 22222233

(4) 8 4455 36 8 445555555

11 8 6677 27 8 666777777

7 8 8 18 8 888889999

6 9 9 9 00001

6 9 23 4 9 333

4 9 4445 1 9 5
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c. calculate the square root of the answer for part (b).

d. what are the units of measurement for parts (b) and (c)?

2.18 Using the data from Exercises 2.14 and 2.15, record the two data sets side by side in

columns, name the columns X and Y, and treat the data as paired.

a. Calculate .

b. Calculate 

c. Calculate (You will come across these calculations again in Chapter 9.)

2.19 Use the data from Exercises 2.14 and 2.15 to show that

a.

b.

c. (where C represents any arbitrary constant)

d.

2.20 In Table 2.1 (p. 17), the reaction time data are broken down separately by the number of dig-

its in the comparison stimulus. Create three stem-and-leaf displays, one for each set of data,

and place them side-by-side. (Ignore the distinction between positive and negative in-

stances.) What kinds of differences do you see among the reaction times under the three

conditions?

2.21 Sternberg ran his original study (the one that is replicated in Table 2.1) to investigate whether

people process information simultaneously or sequentially. He reasoned that if they process in-

formation simultaneously, they would compare the test stimulus against all digits in the compar-

ison stimulus at the same time, and the time to decide whether a digit was part of the comparison

set would not depend on how many digits were in the comparison. If people process information

sequentially, the time to come to a decision would increase with the number of digits in the com-

parison. Which hypothesis do you think the figures you drew in Exercise 2.20 support?

2.22 In addition to comparing the three distributions of reaction times, as in Exercise 2.23,

how else could you use the data from Table 2.1 to investigate how people process

information?

2.23 One frequent assumption in statistical analyses is that observations are independent of one

another. (Knowing one response tells you nothing about the magnitude of another response.)

How would you characterize the reaction time data in Table 2.1, just based on what you

know about how they were collected? (A lack of independence would not invalidate any-

thing we have done with these data in this chapter.)

2.24 The following figure is adapted from a paper by Cohen, Kaplan, Cunnick, Manuck, and

Rabin (1992), which examined the immune response of nonhuman primates raised in stable

and unstable social groups. In each group, animals were classed as high or low in affilia-

tion, measured by the amount of time they spent in close physical proximity to other ani-

mals. Higher scores on the immunity measure represent greater immunity to disease. How

would you interpret these results?
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2.25 Rogers and Prentice-Dunn (1981) had subjects deliver shock to their fellow subjects as part

of a biofeedback study. They recorded the amount of shock that the subjects delivered to

white participants and black participants when the subjects had and had not been insulted

by the experimenter. Their results are shown in the accompanying figure. Interpret these

results.

2.26 The following data represent U.S. college enrollments by census categories as measured in

1982 and 1991. Plot the data in a form that represents the changing ethnic distribution of

college students in the United States. (The data entries are in thousands.) 

Ethnic Group 1982 1991

White 9,997 10,990

Black 1,101 1,335

Native American 88 114

Hispanic 519 867

Asian 351 637

Foreign 331 416

2.27 The following data represent the number of AIDS cases in the United States among people

aged 13–29 for the years 1981 to 1990. Plot these data to show the trend over time. (The

data are in thousands of cases and come from two different data sources.) 

Year Cases

1981–1982 196

1983 457

1984 960

1985 1685

1986 2815

1987 4385

1988 6383

1989 6780

1990 5483

(Before becoming complacent that the incidence of AIDS/HIV is now falling in the U.S.,

you need to know that in 2006 the United Nations estimated that 39.5 million people were

living with AIDS/HIV. Just a little editorial comment.)

2.28 More recent data on AIDS/HIV world-wide can be found at http://data.unaids.org/

pub/EpiReport/2006/2006_EpiUpdate_en.pdf. How does the change in U.S. incidence rates

compare to rates in the rest of the world?
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2.29 The following data represent the total number of households, the number of households

headed by women, and family size from 1960 to 1990. Present these data in such a way to

reveal any changes in U.S. demographics. What do the data suggest about how a social scien-

tist might look at the problems facing the United States? (Households are given in thousands.)

Households

Total Headed by Family

Year Households Females Size

1960 52,799 4,507 3.33

1970 63,401 5,591 3.14

1975 71,120 7,242 2.94

1980 80,776 8,705 2.76

1985 86,789 10,129 2.69

1987 89,479 10,445 2.66

1988 91,066 10,608 2.64

1989 92,830 10,890 2.62

1990 92,347 10,890 2.63

2.30 Make up a set of data for which the mean is greater than the median.

2.31 Make up a positively skewed set of data. Does the mean fall above or below the median?

2.32 Make up a unimodal set of data for which the mean and median are equal but are different

from the mode.

2.33 A group of 15 rats running a straight-alley maze required the following number of trials to

perform at a predetermined criterion level: 

Trials required to reach criterion: 18 19 20 21 22 23 24

Number of rats (frequency): 1 0 4 3 3 3 1

Calculate the mean and median of the required number of trials for this group.

2.34 Given the following set of data, demonstrate that subtracting a constant (e.g., 5) from every

score reduces all measures of central tendency by that constant: [8, 7, 12, 14, 3 7].

2.35 Given the following set of data, show that multiplying each score by a constant multiplies

all measures of central tendency by that constant: 8 3 5 5 6 2.

2.36 Create a sample of 10 numbers that has a mean of 8.6. How does this illustrate the point we

discussed about degrees of freedom?

2.37 The accompanying output applies to the data on ADDSC and GPA described in Appendix:

Data Set. How do these answers on measures of central tendency compare to what you

would predict from the answers to Exercises 2.12 and 2.13?

Descriptive Statistics

Descriptive Statistics for ADDSC and GPA

ADDSC GPA Valid N (listwise)

N 88 88 88

Minimum 26 1

Maximum 85 4

Mean 52.60 2.46

Std. Deviation 12.42 .86

Variance 154.311 .742
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2.38 In one or two sentences, describe what the following graphic has to say about the grade

point averages for the students in our sample.

Histogram for Grade Point Average

2.39 Use SPSS to superimpose a normal distribution on top of the histogram in the previous ex-

ercise. (Hint: This is easily done from the pull-down menus in the graphics procedure.

2.40 Calculate the range, variance, and standard deviation for the data in Exercise 2.1.

2.41 Calculate the range, variance, and standard deviation for the data in Exercise 2.4.

2.42 Compare the answers to Exercises 2.40 and 2.41. Is the standard deviation for children sub-

stantially greater than that for adults?

2.43 In Exercise 2.1, what percentage of the scores fall within plus or minus two standard devia-

tions from the mean?

2.44 In Exercise 2.4, what percentage of the scores fall within plus or minus two standard devia-

tions from the mean?

2.45 Given the following set of data, demonstrate that adding a constant to, or subtracting a con-

stant from, each score does not change the standard deviation. (What happens to the mean

when a constant is added or subtracted?) [5 4 2 3 4 9 5].

2.46 Given the data in Exercise 2.44, show that multiplying or dividing by a constant multiplies

or divides the standard deviation by that constant. How is this related to what happens to the

mean under similar conditions?

2.47 Using the results demonstrated in Exercises 2.45 and 2.46, transform the following set of

data to a new set that has a standard deviation of 1.00: [5 8 3 8 6 9 9 7].

2.48 Use your answers to Exercises 2.45 and 2.46 to modify your answer to Exercise 2.46 such

that the new set of data has a mean of 0 and a standard deviation of 1. (Note: The solution

of Exercises 2.47 and 2.48 will be elaborated further in Chapter 3.)

Grade Point Average

4.00
3.75

3.50
3.25

3.00
2.75

2.50
2.25

2.00
1.75

1.50
1.25

1.00
.75

14

12

10

8

6

4

2

0

Std. Dev = .86

Mean = 2.46

N = 88.00
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2.49 Create a boxplot for the data in Exercise 2.1.

2.50 Create a boxplot for the data in Exercise 2.4.

2.51 Create a boxplot for the variable ADDSC in Appendix Data Set.

2.52 Compute the coefficient of variation to compare the variability in usage of “and then . . .”

statements by children and adults in Exercises 2.1 and 2.4.

2.53 For the data in Appendix Data Set, the GPA has a mean of 2.456 and a standard deviation of

0.8614. Compute the coefficient of variation as defined in this chapter.

2.54 The data set named BadCancr.dat (at www.uvm.edu/~dhowell/methods7/DataFiles/

BadCancr.dat) has been deliberately corrupted by entering errors into a perfectly good data

set (named Cancer.dat). The purpose of this corruption was to give you experience in de-

tecting and correcting the kinds of errors that appear almost every time we attempt to use a

newly entered data set. Every error in here is one that I and almost everyone I know have

come across countless times. Some of them are so extreme that most statistical packages

will not run until they are corrected. Others are logical errors that will allow the program to

run, producing meaningless results. (No college student is likely to be 10 years old or re-

ceive a score of 15 on a 10-point quiz.) The variables in this set are described in the Appen-

dix: Computer Data Sets for the file Cancer.dat. That description tells where each variable

should be found and the range of its legitimate values. You can use any statistical package

available to read the data. Standard error messages will identify some of the problems, vi-

sual inspection will identify others, and computing descriptive statistics or plotting the data

will help identify the rest. In some cases, the appropriate correction will be obvious. In other

cases, you will just have to delete the offending values. When you have cleaned the data,

use your program to compute a final set of descriptive statistics on each of the variables.

This problem will take a fair amount of time. I have found that it is best to have students

work in pairs.

2.55 Compute the 10% trimmed mean for the data in Table 2.6—Set 32.

2.56 Compute the 10% Winsorized standard deviation for the data in Table 2.6—Set 32.

2.57 Draw a boxplot to illustrate the difference between reaction times to positive and negative

instances in reaction time for the data in Table 2.1. (These data can be found at www

.uvm.edu/~dhowell/methods7/DataFiles/Tab2–1.dat.)

2.58 Under what conditions will a transformation alter the shape of a distribution?

2.59 Do an Internet search using Google to find how to create a kernel density plot using SAS or

S-Plus.

Discussion Question

2.60 In the exercises in Chapter 1, we considered the study by a fourth-grade girl who examined

the average allowance of her classmates. You may recall that 7 boys reported an average al-

lowance of $3.18, and 11 girls reported an average allowance of $2.63. These data raise

some interesting statistical issues. Without in any way diminishing the value of what the

fourth-grade student did, let’s look at the data more closely. The article in the paper reported

that the highest allowance for a boy was $10, whereas the highest for a girl was $9. It also

reported that the girls’ two lowest allowances were $0.50 and $0.51, but the lowest reported

allowance for a boy was $3.00.



a. Create a set of data for boys and girls that would produce these results. (No, I did not

make an error in reporting the results that were given.)

b. What is the most appropriate measure of central tendency to report in this situation?

c. What does the available information suggest to you about the distribution of allowances

for the two genders? What would the means be if we trimmed extreme allowances from

each group?

Exercises 63
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CHAPTER 3

The Normal Distribution

Object ives

To develop the concept of the normal distribution and how we can judge the

normality of a sample. This chapter also shows how it can be used to draw

inferences about observations.

Contents

3.1 The Normal Distribution

3.2 The Standard Normal Distribution

3.3 Using the Tables of the Standard Normal Distribution

3.4 Setting Probable Limits on an Observation

3.5 Assessing Whether Data Are Normally Distributed

3.6 Measures Related to z
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FROM WHAT HAS BEEN SAID in the preceding chapters, it is apparent that we are going to be

very much concerned with distributions—distributions of data, hypothetical distributions of

populations, and sampling distributions. Of all the possible forms that distributions can take,

the class known as the normal distribution is by far the most important for our purposes.

Before elaborating on the normal distribution, however, it is worth a short digression to

explain just why we are so interested in distributions in general, not just the normal distri-

bution. The critical factor is that there is an important link between distributions and prob-

abilities. If we know something about the distribution of events (or of sample statistics),

we know something about the probability that one of those events (or statistics) is likely to

occur. To see the issue in its simplest form, take the lowly pie chart. (This is the only time

you will see a pie chart in this book, because I find it very difficult to compare little slices

of pie in different orientations to see which one is larger. There are much better ways to

present data. However, the pie chart serves a useful purpose here.)

The pie chart shown in Figure 3.1 is taken from a report by the Joint United Nations

Program on AIDS/HIV and was retrieved from http://data.unaids.org/pub/EpiReport/

2006/2006_EpiUpdate_en.pdf in September, 2007. It shows the source of AIDS/HIV

infection for people in Eastern Europe and Central Asia. One of the most remarkable things

about this chart is that it shows that in that region of the world the great majority of

AIDS/HIV cases result from intravenous drug use. (This is not the case in Latin America,

the United States, or South and South-East Asia, where the corresponding percentage is ap-

proximately 20%, but we will focus on the data at hand.)

From Figure 3.1 you can see that 67% of people with HIV contracted it from injected

drug use (IDU), 4% of the cases involved sexual contact between men (MSM), 5% of cases

were among commercial sex works (CSW), 6% of cases were among clients of commer-

cial sex workers (CSW-cl), and 17% of cases were unclassified or from other sources. You

can also see that the percentages of cases in each category are directly reflected in the per-

centage of the area of the pie that each wedge occupies. The area taken up by each segment

is directly proportional to the percentage of individuals in that segment. Moreover, if we

declare that the total area of the pie is 1.00 unit, then the area of each segment is equal to

the proportion of observations falling in that segment.

It is easy to go from speaking about areas to speaking about probabilities. The concept

of probability will be elaborated in Chapter 5, but even without a precise definition of prob-

ability we can make an important point about areas of a pie chart. For now, simply think of
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probability in its common everyday usage, referring to the likelihood that some event will

occur. From this perspective it is logical to conclude that, because 67% of those with

HIV/AIDS contracted it from injected drug use, then if we were to randomly draw the

name of one person from a list of people with HIV/AIDS, the probability is .67 that the in-

dividual would have contracted the disease from drug use. To put this in slightly different

terms, if 67% of the area of the pie is allocated to IDU, then the probability that a person

would fall in that segment is .67.

This pie chart also allows us to explore the addition of areas. It should be clear that if

5% are classed as CSW, 7% are classed as CSW-cl, and 4% are classed as MSM, then 

5 1 7 1 4 5 16% contracted the disease from sexual activity. (In that part of the world the

causes of HIV/AIDS are quite different from what we in the West have come to expect, and

prevention programs would need to be modified accordingly.) In other words, we can find

the percentage of individuals in one of several categories just by adding the percentages for

each category. The same thing holds in terms of areas, in the sense that we can find the per-

centage of sexually related infections by adding the areas devoted to CSW, CSW-cl, and

MSM. And finally, if we can find percentages by adding areas, we can also find probabili-

ties by adding areas. Thus the probability of contracting HIV/AIDS as a result of sexual

activity if you live in Eastern Europe or Central Asia is the probability of being in one

of the three segments associated with that source, which we can get by summing the areas

(or their associated probabilities).

There are other ways to present data besides pie charts. Two of the simplest are a

histogram (already discussed in Chapter 2) and its closely related cousin, the bar chart.

Figure 3.2 is a redrawing of Figure 3.1 in the form of a bar chart. Although this figure does

not contain any new information, it has two advantages over the pie chart. First, it is easier

to compare categories, because the only thing we need to look at is the height of the bar,

rather than trying to compare the lengths of two different arcs in different orientations. The

second advantage is that the bar chart is visually more like the common distributions we

will deal with, in that the various levels or categories are spread out along the horizontal

dimension, and the percentages (or frequencies) in each category are shown along the ver-

tical dimension. (However, in a bar chart the values on the X axis can form a nominal scale,

as they do here. This is not true in a histogram.) Here again, you can see that the various areas

of the distribution are related to probabilities. Further, you can see that we can meaningfully
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sum areas in exactly the same way that we did in the pie chart. When we move to more

common distributions, particularly the normal distribution, the principles of areas,

percentages, probabilities, and the addition of areas or probabilities carry over almost

without change.

3.1 The Normal Distribution

Now we’ll move closer to the normal distribution. I stated earlier that the normal distribu-

tion is one of the most important distributions we will encounter. There are several reasons

for this:

1. Many of the dependent variables with which we deal are commonly assumed to be nor-

mally distributed in the population. That is to say, we frequently assume that if we were

to obtain the whole population of observations, the resulting distribution would closely

resemble the normal distribution.

2. If we can assume that a variable is at least approximately normally distributed, then the

techniques that are discussed in this chapter allow us to make a number of inferences

(either exact or approximate) about values of that variable.

3. The theoretical distribution of the hypothetical set of sample means obtained by draw-

ing an infinite number of samples from a specified population can be shown to be ap-

proximately normal under a wide variety of conditions. Such a distribution is called the

sampling distribution of the mean and is discussed and used extensively throughout the

remainder of this book.

4. Most of the statistical procedures we will employ have, somewhere in their derivation,

an assumption that the population of observations (or of measurement errors) is nor-

mally distributed.

To introduce the normal distribution, we will look at one additional data set that is ap-

proximately normal (and would be even closer to normal if we had more observations). The

data we are going to look at were collected using the Achenbach Youth Self Report form

(Achenbach, 1991b), a frequently used measure of behavior problems that produces scores

on a number of different dimensions. We are going to focus on the dimension of Total

Behavior Problems, which represents the total number of behavior problems reported by

the child (weighted by the severity of the problem). (Examples of Behavior Problem cate-

gories are “Argues,” “Impulsive,” “Shows off,” and “Teases.”) Figure 3.3 is a histogram of

data from 289 junior high school students. A higher score represents more behavior prob-

lems. You can see that this distribution has a center very near 50 and is fairly symmetrically

distributed on each side of that value, with the scores ranging between about 25 and 75.

The standard deviation of this distribution is approximately 10. The distribution is not per-

fectly even—it has some bumps and valleys—but overall it is fairly smooth, rising in the

center and falling off at the ends. (The actual mean and standard deviation for this particu-

lar sample are 49.1 and 10.56, respectively.)

One thing that you might note from this distribution is that if you add the frequencies

of subjects falling in the intervals 52–54 and 54–56, you will find that 54 students obtained

scores between 52 and 56. Because there are 289 observations in this sample, 54/289 5

19% of the observations fell in this interval. This illustrates the comments made earlier on

the addition of areas.

We can take this distribution and superimpose a normal distribution on top of it. This is

frequently done to casually evaluate the normality of a sample. The smooth distribution

superimposed on the raw data in Figure 3.4 is a characteristic normal distribution. It is a
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symmetric, unimodal distribution, frequently referred to as “bell shaped,” and has limits of

6`. The abscissa, or horizontal axis, represents different possible values of X, while the

ordinate, or vertical axis, is referred to as the density and is related to (but not the same as)

the frequency or probability of occurrence of X. The concept of density is discussed in fur-

ther detail in the next chapter. (While superimposing a normal distribution, as we have just

done, helps in evaluating the shape of the distribution, there are better ways of judging

whether sample data are normally distributed. We will discuss Q-Q plots later in this chap-

ter, and you will see a relatively simple way of assessing normality.)

We often discuss the normal distribution by showing a generic kind of distribution with

X on the abscissa and density on the ordinate. Such a distribution is shown in Figure 3.5.

The normal distribution has a long history. It was originally investigated by DeMoivre

(1667–1754), who was interested in its use to describe the results of games of chance

(gambling). The distribution was defined precisely by Pierre-Simon Laplace (1749–1827)

and put in its more usual form by Carl Friedrich Gauss (1777–1855), both of whom were
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interested in the distribution of errors in astronomical observations. In fact, the normal

distribution is variously referred to as the Gaussian distribution and as the “normal law of

error.” Adolph Quetelet (1796–1874), a Belgian astronomer, was the first to apply the dis-

tribution to social and biological data. Apparently having nothing better to do with his time,

he collected chest measurements of Scottish soldiers and heights of French soldiers. He

found that both sets of measurements were approximately normally distributed. Quetelet

interpreted the data to indicate that the mean of this distribution was the ideal at which na-

ture was aiming, and observations to each side of the mean represented error (a deviation

from nature’s ideal). (For males like myself, it is somehow comforting to think of all

those bigger guys as nature’s mistakes.) Although we no longer think of the mean as

nature’s ideal, this is a useful way to conceptualize variability around the mean. In fact, we

still use the word error to refer to deviations from the mean. Francis Galton (1822–1911)

carried Quetelet’s ideas further and gave the normal distribution a central role in psycho-

logical theory, especially the theory of mental abilities. Some would insist that Galton was

too successful in this endeavor, and we tend to assume that measures are normally distrib-

uted even when they are not. I won’t argue the issue here.

Mathematically the normal distribution is defined as

where p and e are constants (p 5 3.1416 and e 5 2.7183), and m and s are the mean and

the standard deviation, respectively, of the distribution. If m and s are known, the ordinate,

f(X), for any value of X can be obtained simply by substituting the appropriate values for

m, s, and X and solving the equation. This is not nearly as difficult as it looks, but in prac-

tice you are unlikely ever to have to make the calculations. The cumulative form of this dis-

tribution is tabled, and we can simply read the information we need from the table.

Those of you who have had a course in calculus may recognize that the area under the

curve between any two values of X (say and ), and thus the probability that a ran-

domly drawn score will fall within that interval, can be found by integrating the function

over the range from to . Those of you who have not had such a course can take com-

fort from the fact that tables are readily available in which this work has already been done

for us or by use of which we can easily do the work ourselves. Such a table appears in

Appendix z (p. 720).

You might be excused at this point for wondering why anyone would want to table such

a distribution in the first place. Just because a distribution is common (or at least commonly

X2X1
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assumed) it doesn’t automatically suggest a reason for having an appendix that tells all

about it. The reason is quite simple. By using Appendix z, we can readily calculate the

probability that a score drawn at random from the population will have a value lying be-

tween any two specified points ( and ). Thus, by using the appropriate table we can

make probability statements in answer to a variety of questions. You will see examples of

such questions in the rest of this chapter. They will also appear in many other chapters

throughout the book.

3.2 The Standard Normal Distribution

A problem arises when we try to table the normal distribution, because the distribution de-

pends on the values of the mean and the standard deviation (m and ) of the distribution.

To do the job right, we would have to make up a different table for every possible combi-

nation of the values of m and s, which certainly is not practical. The solution to this prob-

lem is to work with what is called the standard normal distribution, which has a mean of 0

and a standard deviation of 1. Such a distribution is often designated as N(0,1), where N

refers to the fact that it is normal, 0 is the value of m, and 1 is the value of . (N(m, ) is

the more general expression.) Given the standard normal distribution in the appendix and a

set of rules for transforming any normal distribution to standard form and vice versa, we

can use Appendix z to find the areas under any normal distribution.

Consider the distribution shown in Figure 3.6, with a mean of 50 and a standard deviation

of 10 (variance of 100). It represents the distribution of an entire population of Total Behavior

Problem scores from the Achenbach Youth Self-Report form, of which the data in Figures 3.3

and 3.4 are a sample. If we knew something about the areas under the curve in Figure 3.6, we

could say something about the probability of various values of Behavior Problem scores and

could identify, for example, those scores that are so high that they are obtained by only 5% or

10% of the population. You might wonder why we would want to do this, but it is often impor-

tant in diagnosis to be able to separate extreme scores from more typical scores.

The only tables of the normal distribution that are readily available are those of the

standard normal distribution. Therefore, before we can answer questions about the proba-

bility that an individual will get a score above some particular value, we must first trans-

form the distribution in Figure 3.6 (or at least specific points along it) to a standard normal

distribution. That is, we want to be able to say that a score of from a normal distribution

with a mean of 50 and a variance of 100—often denoted N(50,100)—is comparable to a

Xi

s2s2

s

X2X1
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score of from a distribution with a mean of 0 and a variance, and standard deviation, of

1—denoted N(0,1). Then anything that is true of is also true of , and z and X are com-

parable variables. (Statisticians sometimes call z a pivotal statistic because its distribution

does not depend on the values of m and s2.)

From Exercise 2.34 we know that subtracting a constant from each score in a set of

scores reduces the mean of the set by that constant. Thus, if we subtract 50 (the mean) from

all the values for X, the new mean will be 50 – 50 5 0. [More generally, the distribution of

(X – m) has a mean of 0 and the (X – m) scores are called deviation scores because they

measure deviations from the mean.] The effect of this transformation is shown in the second

set of values for the abscissa in Figure 3.6. We are halfway there, since we now have the

mean down to 0, although the standard deviation (s) is still 10. We also know from Exercise

2.35 that if we multiply or divide all values of a variable by a constant (e.g., 10), we multi-

ply or divide the standard deviation by that constant. Thus, if we divide all deviation scores

by 10, the standard deviation will now be 10/10 5 1, which is just what we wanted. We will

call this transformed distribution z and define it, on the basis of what we have done, as

For our particular case, where m 5 50 and s 5 10,

The third set of values (labeled z) for the abscissa in Figure 3.6 shows the effect of this

transformation. Note that aside from a linear transformation of the numerical values, the

data have not been changed in any way. The distribution has the same shape and the obser-

vations continue to stand in the same relation to each other as they did before the transfor-

mation. It should not come as a great surprise that changing the unit of measurement does

not change the shape of the distribution or the relative standing of observations. Whether

we measure the quantity of alcohol that people consume per week in ounces or in milli-

liters really makes no difference in the relative standing of people. It just changes the nu-

merical values on the abscissa. (The town drunk is still the town drunk, even if now his

liquor is measured in milliliters.) It is important to realize exactly what converting X to z

has accomplished. A score that used to be 60 is now 1. That is, a score that used to be one

standard deviation (10 points) above the mean remains one standard deviation above the

mean, but now is given a new value of 1. A score of 45, which was 0.5 standard deviation

below the mean, now is given the value of 20.5, and so on. In other words, a z score repre-

sents the number of standard deviations that is above or below the mean—a positive z

score being above the mean and a negative z score being below the mean.

The equation for z is completely general. We can transform any distribution to a distri-

bution of z scores simply by applying this equation. Keep in mind, however, the point that

was just made. The shape of the distribution is unaffected by a linear transformation. That

means that if the distribution was not normal before it was transformed, it will not be nor-

mal afterward. Some people believe that they can “normalize” (in the sense of producing a

normal distribution) their data by transforming them to z. It just won’t work.

You can see what happens when you draw random samples from a population that is

normal by going to http://surfstat.anu.edu.au/surfstat-home/surfstat-main.html and clicking

on “Hotlist for Java Applets.” Just click on the histogram, and it will present another his-

togram that you can modify in various ways. By repeatedly clicking “start” without clear-

ing, you can add cases to the sample. It is useful to see how the distribution approaches a

normal distribution as the number of observations increases. (And how nonnormal a distri-

bution with a small sample size can look.)
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3.3 Using the Tables of the Standard 
Normal Distribution

As already mentioned, the standard normal distribution is extensively tabled. Such a table

can be found in Appendix z, part of which is reproduced in Table 3.1.1 To see how we can

make use of this table, consider the normal distribution represented in Figure 3.7. This

might represent the standardized distribution of the Behavior Problem scores as seen in

Figure 3.6. Suppose we want to know how much of the area under the curve is above one

Section 3.3 Using the Tables of the Standard Normal Distribution 73

1 If you prefer electronic tables, many small Java programs are available on the Internet. One of my favorite pro-
grams for calculating z probabilities is at http://psych.colorado.edu/~mcclella/java/zcalc.html. An online video
displaying properties of the normal distribution is available at http://huizen.dds.nl/~berrie/normal.html.

Table 3.1 The normal distribution (abbreviated version of Appendix z)

0 z

Larger
portion

Smaller
portion

Mean Larger Smaller Mean Larger Smaller

z to z Portion Portion z to z Portion Portion

0.00 0.0000 0.5000 0.5000 0.45 0.1736 0.6736 0.3264

0.01 0.0040 0.5040 0.4960 0.46 0.1772 0.6772 0.3228

0.02 0.0080 0.5080 0.4920 0.47 0.1808 0.6808 0.3192

0.03 0.0120 0.5120 0.4880 0.48 0.1844 0.6844 0.3156

0.04 0.0160 0.5160 0.4840 0.49 0.1879 0.6879 0.3121

0.05 0.0199 0.5199 0.4801 0.50 0.1915 0.6915 0.3085
. . . . . . . . . . . . . . . . . . . . . . . .

0.97 0.3340 0.8340 0.1660 1.42 0.4222 0.9222 0.0778

0.98 0.3365 0.8365 0.1635 1.43 0.4236 0.9236 0.0764

0.99 0.3389 0.8389 0.1611 1.44 0.4251 0.9251 0.0749

1.00 0.3413 0.8413 0.1587 1.45 0.4265 0.9265 0.0735

1.01 0.3438 0.8438 0.1562 1.46 0.4279 0.9279 0.0721

1.02 0.3461 0.8461 0.1539 1.47 0.4292 0.9292 0.0708

1.03 0.3485 0.8485 0.1515 1.48 0.4306 0.9306 0.0694

1.04 0.3508 0.8508 0.1492 1.49 0.4319 0.9319 0.0681

1.05 0.3531 0.8531 0.1469 1.50 0.4332 0.9332 0.0668
. . . . . . . . . . . . . . . . . . . . . . . .

1.95 0.4744 0.9744 0.0256 2.40 0.4918 0.9918 0.0082

1.96 0.4750 0.9750 0.0250 2.41 0.4920 0.9920 0.0080

1.97 0.4756 0.9756 0.0244 2.42 0.4922 0.9922 0.0078

1.98 0.4761 0.9761 0.0239 2.43 0.4925 0.9925 0.0075

1.99 0.4767 0.9767 0.0233 2.44 0.4927 0.9927 0.0073

2.00 0.4772 0.9772 0.0228 2.45 0.4929 0.9929 0.0071

2.01 0.4778 0.9778 0.0222 2.46 0.4931 0.9931 0.0069

2.02 0.4783 0.9783 0.0217 2.47 0.4932 0.9932 0.0068

2.03 0.4788 0.9788 0.0212 2.48 0.4934 0.9934 0.0066

2.04 0.4793 0.9793 0.0207 2.49 0.4936 0.9936 0.0064

2.05 0.4798 0.9798 0.0202 2.50 0.4938 0.9938 0.0062



standard deviation from the mean, if the total area under the curve is taken to be 1.00. (Re-

member that we care about areas because they translate directly to probabilities.) We al-

ready have seen that z scores represent standard deviations from the mean, and thus we

know that we want to find the area above z 5 1.

Only the positive half of the normal distribution is tabled. Because the distribution is

symmetric, any information given about a positive value of z applies equally to the correspon-

ding negative value of z. (The table in Appendix z also contains a column labeled “y.” This is

just the height [density] of the curve corresponding to that value of z. I have not included it

here to save space and because it is rarely used.) From Table 3.1 (or Appendix z) we find the

row corresponding to z 5 1.00. Reading across that row, we can see that the area from the

mean to z 5 1 is 0.3413, the area in the larger portion is 0.8413, and the area in the smaller
portion is 0.1587. If you visualize the distribution being divided into the segment below 

z 5 1 (the unshaded part of Figure 3.7) and the segment above z 5 1 (the shaded part), the

meanings of the terms larger portion and smaller portion become obvious. Thus, the answer

to our original question is 0.1587. Because we already have equated the terms area and prob-
ability, we now can say that if we sample a child at random from the population of children,

and if Behavior Problem scores are normally distributed, then the probability that the child

will score more than one standard deviation above the mean of the population (i.e., above 60)

is .1587. Because the distribution is symmetric, we also know that the probability that a child

will score more than one standard deviation below the mean of the population is also .1587.

Now suppose that we want the probability that the child will be more than one standard

deviation (10 points) from the mean in either direction. This is a simple matter of the sum-

mation of areas. Because we know that the normal distribution is symmetric, then the area

below z 5 21 will be the same as the area above z 5 11. This is why the table does not

contain negative values of z—they are not needed. We already know that the areas in which

we are interested are each 0.1587. Then the total area outside z 5 61 must be 0.1587 1

0.1587 5 0.3174. The converse is also true. If the area outside z 5 61 is 0.3174, then the

area between z 5 11 and z 5 21 is equal to 1 2 0.3174 5 0.6826. Thus, the probability

that a child will score between 40 and 60 is .6826.

To extend this procedure, consider the situation in which we want to know the proba-

bility that a score will be between 30 and 40. A little arithmetic will show that this is sim-

ply the probability of falling between 1.0 standard deviation below the mean and 2.0

standard deviations below the mean. This situation is diagrammed in Figure 3.8. (Hint: It is

always wise to draw simple diagrams such as Figure 3.8. They eliminate many errors and

make clear the area(s) for which you are looking.)
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From Appendix z we know that the area from the mean to z 5 22.0 is 0.4772 and from

the mean to z 5 21.0 is 0.3413. The difference is these two areas must represent the area

between z 5 22.0 and z 5 21.0. This area is 0.4772 2 0.3413 5 0.1359. Thus, the proba-

bility that Behavior Problem scores drawn at random from a normally distributed popula-

tion will be between 30 and 40 is .1359.

Discussing areas under the normal distribution as we have done in the last two para-

graphs is the traditional way of presenting the normal distribution. However, you might le-

gitimately ask why I would ever want to know the probability that someone would have a

Total Behavior Problem score between 50 and 60. The simple answer is that you probably

don’t care. But, suppose that you took your child in for an evaluation because you were

worried about his behavior. And suppose that your child had a score of 75. A little arith-

metic will show that z 5 (75 – 50)/10 5 2.5, and from Appendix z we can see that only

0.62% of normal children score that high. If I were you, I’d start worrying. Seventy five

really is a high score.

3.4 Setting Probable Limits on an Observation

For a final example, consider the situation in which we want to identify limits within

which we have some specified degree of confidence that a child sampled at random will

fall. In other words we want to make a statement of the form, “If I draw a child at ran-

dom from this population, 95% of the time her score will lie between and

.” From Figure 3.9 you can see the limits we want—the limits that include 95%

of the scores in the population.

If we are looking for the limits within which 95% of the scores fall, we also are look-

ing for the limits beyond which the remaining 5% of the scores fall. To rule out this remain-

ing 5%, we want to find that value of z that cuts off 2.5% at each end, or “tail,” of the

distribution. (We do not need to use symmetric limits, but we typically do because they

usually make the most sense and produce the shortest interval.) From Appendix z we see

that these values are z 5 61.96. Thus, we can say that 95% of the time a child’s score sam-

pled at random will fall between 1.96 standard deviations above the mean and 1.96 stan-

dard deviations below the mean.

Because we generally want to express our answers in terms of raw Behavior Problem

scores, rather than z scores, we must do a little more work. To obtain the raw score limits, we

simply work the formula for z backward, solving for X instead of z. Thus, if we want to state

Section 3.4 Setting Probable Limits on an Observation 75

–3.0
z

f
(X

)

0.40

0.30

0.20

0.10

0
3.0–2.0 –1.0 0 1.0 2.0

Figure 3.8 Area between 1.0 and 2.0 standard deviations below the mean



76 Chapter 3 The Normal Distribution

the limits encompassing 95% of the population, we want to find those scores that are 1.96

standard deviations above and below the mean of the population. This can be written as

where the values of X corresponding to and represent the limits

we seek. For our example the limits will be

Limits 5 50 6 (1.96)(10) 5 50 6 19.6 5 30.4 and 69.6.

So the probability is .95 that a child’s score (X) chosen at random would be between

30.4 and 69.6. We may not be very interested in low scores, because they don’t represent

problems. But anyone with a score of 69.6 or higher is a problem to someone. Only 2.5%

of children score at least that high.

What we have just discussed is closely related to, but not quite the same as, what we

will later consider under the heading of confidence limits. The major difference is that here

we knew the population mean and were trying to estimate where a single observation (X)

would fall. When we discuss confidence limits, we will have a sample mean (or some other

statistic) and will want to set limits that have a probability of .95 of bracketing the popula-

tion mean (or some other relevant parameter). You do not need to know anything at all

about confidence limits at this point. I simply mention the issue to forestall any confusion

in the future.

3.5 Assessing Whether Data Are 
Normally Distributed

There will be many occasions in this book where we will assume that data are normally

distributed, but it is difficult to look at a distribution of sample data and assess the reason-

ableness of such an assumption. Statistics texts are filled with examples of distributions

(m 2 1.96s)(m 1 1.96s)

X = m 6 1.96s

X 2 m = 61.96s
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that look normal but aren’t, and these are often followed by statements of how distorted the

results of some procedure are because the data were nonnormal. As I said earlier, we can

superimpose a true normal distribution on top of a histogram and have some idea of how

well we are doing, but that is often a misleading approach. A far better approach is to use

what are called Q-Q plots (quantile-quantile plots).

Q-Q Plots

The idea behind quantile-quantile (Q-Q) plots is basically quite simple. Suppose that we

have a normal distribution with mean 5 0 and standard deviation 5 1. (The mean and stan-

dard deviation could be any values, but 0 and 1 just make the discussion simpler.) With that

distribution we can easily calculate what value would cut off, for example, the lowest 1%

of the distribution. From Appendix z this would be a value of 22.33. We would also know

that a cutoff of 22.054 cuts off the lowest 2%. We could make this calculation for every

value of 0.00 , p , 1.00, and we could name the results the expected quantiles of a nor-

mal distribution. Now suppose that we had a set of data with n 5 100 observations, and as-

sume that we transform it to an N(0,1) distribution. (Again, we don’t need to use that mean

and standard deviation, but it is easier for me.) The lowest value would cut off the lowest

1/100 5 .01 or 1% of the distribution and, if the distribution were perfectly normally dis-

tributed, it should be 22.33. Similarly the second lowest value would cut off 2% of the dis-

tribution and should be 22.054. We will call these the obtained quantiles because they

were calculated directly from the data. For a perfectly normal distribution the two sets of

quantiles should agree exactly.

But suppose that our sample data were not normally distributed. Then we might find

that the score cutting off the lowest 1% of our sample (when standardized) was 22.8 in-

stead of 22.33. The same could happen for other quantiles. Here the expected quantiles

from a normal distribution and the obtained quantiles from our sample would not agree.

But how do we measure agreement? The easiest way is to plot the two sets of quantiles

against each other, putting the expected quantiles on the Y axis and the obtained quantiles

on the X axis. If the distribution is normal the plot should form a straight line running at a

45 degree angle. These plots are illustrated in Figure 3.10 for a set of data drawn from a

normal distribution and a set drawn from a decidedly nonnormal distribution.

In Figure 3.10 you can see that for normal data the Q-Q plot shows that most of the

points fall nicely on a straight line. They depart from the line a bit at each end, but that

commonly happens unless you have very large sample sizes. For the nonnormal data, how-

ever, the plotted points depart drastically from a straight line. At the lower end where we

would expect quantiles of around 21, the lowest obtained quantile was actually about 22.

In other words the distribution was truncated on the left. At the upper right of the Q-Q plot

where we obtained quantiles of around 2.0, the expected value was at least 3.0. In other

words the obtained data didn’t depart enough from the mean at the lower end and departed

too much from the mean at the upper end.

We have been looking at Achenbach’s Total Behavior Problem scores and I have sug-

gested that they are very normally distributed. Figure 3.11 presents a Q-Q plot for those

scores. From this plot it is apparent that Behavior Problem scores are normally distributed,

which is, in part, a function of the fact that Achenbach worked very hard to develop that

scale and give it desirable properties.

The Axes in a Q-Q plot

In presenting the logic behind a Q-Q plot I spoke as if the variables in question were standard-

ized, although I did mention that it was not a requirement that they be so. I did that because it
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Figure 3.10 Histograms and Q-Q plots for normal and nonnormal data
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was easier to send you to tables of the normal distribution if that was the case. However,

you will often come across Q-Q plots where one or both axes are in different units. That is

not a problem. The important consideration is the distribution of points within the plot and

not the scale of either axis. In fact, different statistical packages not only use different scal-

ing, but they also differ on which variable is plotted on which axis. If you see a plot that

looks like a mirror image (vertically) of one of my plots, that simply means that they have

plotted the observed values on the X axis instead of the expected ones.

The Kolmogorov-Smirnov Test

The best known statistical test for normality is the Kolmogorov-Smirnov test, which is

available within SPSS under the nonparametric tests. While you should know that the test

exists, most people do not recommend its use. In the first place most small samples will

pass the test even when they are decidedly nonnormal. On the other hand, when you have

very large samples the test is very likely to reject the hypothesis of normality even though

minor deviations from normality will not be a problem. D’Agostino and Stephens (1986)

put it even more strongly when they wrote “The Kolmogorov-Smirnov test is only a histor-

ical curiosity. It should never be used.” I mention the test here only because you will come

across references to it and should know its weaknesses.

3.6 Measures Related to z

We already have seen that the z formula given earlier can be used to convert a distribution

with any mean and variance to a distribution with a mean of 0 and a standard deviation (and

variance) of 1. We frequently refer to such transformed scores as standard scores. There

also are other transformational scoring systems with particular properties, some of which

people use every day without realizing what they are.

A good example of such a scoring system is the common IQ. The raw scores from an

IQ test are routinely transformed to a distribution with a mean of 100 and a standard devia-

tion of 15 (or 16 in the case of the Binet). Knowing this, you can readily convert an indi-

vidual’s IQ (e.g., 120) to his or her position in terms of standard deviations above or below

the mean (i.e., you can calculate the z score). Because IQ scores are more or less normally

distributed, you can then convert z into a percentage measure by use of Appendix z. (In this

example, a score of 120 has approximately 91% of the scores below it. This is known as

the 91st percentile.)

Another common example is a nationally administered examination, such as the SAT.

The raw scores are transformed by the producer of the test and reported as coming from

a distribution with a mean of 500 and a standard deviation of 100 (at least that was the

case when the tests were first developed). Such a scoring system is easy to devise. We

start by converting raw scores to z scores (using the obtained raw score mean and stan-

dard deviation). We then convert the z scores to the particular scoring system we have in

mind. Thus

New score 5 New SD * (z) 1 New mean,

where z represents the z score corresponding to the individual’s raw score. For the SAT,

New score 5 100(z) 1 500. Scoring systems such as the one used on Achenbach’s Youth

Self-Report checklist, which have a mean set at 50 and a standard deviation set at 10, are

called T scores (the T is always capitalized). These tests are useful in psychological meas-

urement because they have a common frame of reference. For example, people become

used to seeing a cutoff score of 63 as identifying the highest 10% of the subjects.
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Exercises

3.1 Assume that the following data represent a population with m 5 4 and s 5 1.63: X 5

[1 2 2 3 3 3 4 4 4 4 5 5 5 6 6 7]

a. Plot the distribution as given.

b. Convert the distribution in part (a) to a distribution of X 2 m.

c. Go the next step and convert the distribution in part (b) to a distribution of z.

3.2 Using the distribution in Exercise 3.1, calculate z scores for X 5 2.5, 6.2, and 9. Interpret

these results.

3.3 Suppose we want to study the errors found in the performance of a simple task. We ask a large

number of judges to report the number of people seen entering a major department store in

one morning. Some judges will miss some people, and some will count others twice, so we

don’t expect everyone to agree. Suppose we find that the mean number of shoppers reported is

975 with a standard deviation of 15. Assume that the distribution of counts is normal.

a. What percentage of the counts will lie between 960 and 990?

b. What percentage of the counts will lie below 975?

c. What percentage of the counts will lie below 990?

3.4 Using the example from Exercise 3.3:

a. What two values of X (the count) would encompass the middle 50% of the results?

b. 75% of the counts would be less than .

c. 95% of the counts would be between and .

3.5 The person in charge of the project in Exercise 3.3 counted only 950 shoppers entering the

store. Is this a reasonable answer if he was counting conscientiously? Why or why not?

3.6 A set of reading scores for fourth-grade children has a mean of 25 and a standard deviation

of 5. A set of scores for ninth-grade children has a mean of 30 and a standard deviation

of 10. Assume that the distributions are normal.

a. Draw a rough sketch of these data, putting both groups in the same figure.

b. What percentage of the fourth graders score better than the average ninth grader?

c. What percentage of the ninth graders score worse than the average fourth grader? (We

will come back to the idea behind these calculations when we study power in Chapter 8.)

3.7 Under what conditions would the answers to parts (b) and (c) of Exercise 3.6 be equal?

3.8 A certain diagnostic test is indicative of problems only if a child scores in the lowest 10%

of those taking the test (the 10th percentile). If the mean score is 150 with a standard devia-

tion of 30, what would be the diagnostically meaningful cutoff?

3.9 A dean must distribute salary raises to her faculty for the next year. She has decided that the

mean raise is to be $2000, the standard deviation of raises is to be $400, and the distribution

is to be normal.
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a. The most productive 10% of the faculty will have a raise equal to or greater than

$ .

b. The 5% of the faculty who have done nothing useful in years will receive no more than

$ each.

3.10 We have sent out everyone in a large introductory course to check whether people use seat

belts. Each student has been told to look at 100 cars and count the number of people wear-

ing seat belts. The number found by any given student is considered that student’s score.

The mean score for the class is 44, with a standard deviation of 7.

a. Diagram this distribution, assuming that the counts are normally distributed.

b. A student who has done very little work all year has reported finding 62 seat belt users

out of 100. Do we have reason to suspect that the student just made up a number rather

than actually counting?

3.11 A number of years ago a friend of mine produced a diagnostic test of language problems.

A score on her scale is obtained simply by counting the number of language constructions

(e.g., plural, negative, passive) that the child produces correctly in response to specific

prompts from the person administering the test. The test had a mean of 48 and a standard

deviation of 7. Parents had trouble understanding the meaning of a score on this scale, and

my friend wanted to convert the scores to a mean of 80 and a standard deviation of 10 (to

make them more like the kinds of grades parents are used to). How could she have gone

about her task?

3.12 Unfortunately, the whole world is not built on the principle of a normal distribution. In the

preceding example the real distribution is badly skewed because most children do not have

language problems and therefore produce all or most constructions correctly.

a. Diagram how the distribution might look.

b. How would you go about finding the cutoff for the bottom 10% if the distribution is not

normal?

3.13 In October 1981 the mean and the standard deviation on the Graduate Record Exam (GRE)

for all people taking the exam were 489 and 126, respectively. What percentage of students

would you expect to have a score of 600 or less? (This is called the percentile rank of 600.)

3.14 In Exercise 3.13 what score would be equal to or greater than 75% of the scores on the

exam? (This score is the 75th percentile.)

3.15 For all seniors and non-enrolled college graduates taking the GRE in October 1981, the

mean and the standard deviation were 507 and 118, respectively. How does this change the

answers to Exercises 3.13 and 3.14?

3.16 What does the answer to Exercise 3.15 suggest about the importance of reference groups?

3.17 What is the 75th percentile for GPA in Appendix Data Set? (This is the point below which

75% of the observations are expected to fall.)

3.18 Assuming that the Behavior Problem scores discussed in this chapter come from a popula-

tion with a mean of 50 and a standard deviation of 10, what would be a diagnostically mean-

ingful cutoff if you wanted to identify those children who score in the highest 2% of the

population?

3.19 In Section 3.6, I said that T scores are designed to have a mean of 50 and a standard devia-

tion of 10 and that the Achenbach Youth Self-Report measure produces T scores. The data

in Figure 3.3 do not have a mean and standard deviation of exactly 50 and 10. Why do you

suppose that this is so?

3.20 Use a standard computer program to generate 5 samples of normally distributed variables

with 20 observations per variable. (For SPSS the syntax for the first sample would be

COMPUTE norm1 5 RV.NORMAL(0,1).)
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a. Then create a Q-Q plot for each variable and notice the differences from one plot to the

next. That will give you some idea of how closely even normally distributed data will

conform to the 45 degree line. How would you characterize the differences?

b. Repeat this exercise using n 5 50.

3.21 In Chapter 2, Figure 2.15, I plotted three histograms corresponding to three different de-

pendent variables in Everitt’s example of therapy for anorexia. Those data are available at

www.uvm.edu/~dhowell/methods7/datafiles/fig2–15.dat. (The variable names are in the

first line of the file.) Prepare Q-Q plots for corresponding to each of the plots in Figure 2.15.

Do the conclusions you would draw from that figure agree with the conclusions that you

would draw from the Q-Q plots? (Note: None of these three distributions would fail the

Kolmogorov-Smirnov test for normality, though no test of normality is very good with small

sample sizes.)

Discussion Questions

3.22 If you go back to the reaction time data presented as a frequency distribution in Table 2.2

and Figure 2.1, you will see that they are not normally distributed. For these data the mean

is 60.26 and the standard deviation is 13.01. By simple counting, you can calculate exactly

what percentage of the sample lies above or below 61.0, 1.5, 2.0, 2.5, and 3.0 standard de-

viations from the mean. You can also calculate, from tables of the normal distribution, what

percentage of scores would lie above or below those cutoffs if the distribution were per-

fectly normal. Calculate these values and plot them against each other. (You have just cre-

ated a partial Q-Q plot.) Using either this plot or a complete Q-Q plot describe what it tells

you about how the data depart from a normal distribution. How would your answers change

if the sample had been very much larger or very much smaller?

3.23 The data plotted below represent the distribution of salaries paid to new full-time assistant

professors in U.S. doctoral departments of psychology in 1999–2000. The data are available

on the Web site as Ex3–23.dat. Although the data are obviously skewed to the right, what

would you expect to happen if you treated these data as if they were normally distributed?

What explanation could you hypothesize to account for the extreme values?

300

200

100

0

Salary

35000.0 45000.0 55000.0 65000.0 75000.0 85000.0 95000.0 105000.0

F
re

q
u

en
cy

Cases weighted by FREQ

Std. Dev = 5820.93
Mean = 45209.7
N = 589.00

Salaries of Assistant Professors

(1–3 years of service)
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3.24 The data file named sat.dat on the Web site contains data on SAT scores for all 50 states as

well as the amount of money spent on education, and the percentage of students taking the

SAT in that state. (The data are described in Appendix Data set.) Draw a histogram of the

Combined SAT scores. Is this distribution normal? The variable adjcomb is the combined

score adjusted for the percentage of students in that state who took the exam. What can you

tell about this variable? How does its distribution differ from that for the unadjusted scores?
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CHAPTER 4

Sampling Distributions

and Hypothesis Testing

Object ives

To lay the groundwork for the procedures discussed in this book by examining

the general theory of hypothesis testing and describing specific concepts as

they apply to all hypothesis tests.
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IN CHAPTER 2 we examined a number of different statistics and saw how they might be used

to describe a set of data or to represent the frequency of the occurrence of some event. Al-

though the description of the data is important and fundamental to any analysis, it is not

sufficient to answer many of the most interesting problems we encounter. In a typical ex-

periment, we might treat one group of people in a special way and wish to see whether their

scores differ from the scores of people in general. Or we might offer a treatment to one

group but not to a control group and wish to compare the means of the two groups on some

variable. Descriptive statistics will not tell us, for example, whether the difference between

a sample mean and a hypothetical population mean, or the difference between two obtained

sample means, is small enough to be explained by chance alone or whether it represents a

true difference that might be attributable to the effect of our experimental treatment(s).

Statisticians frequently use phrases such as “variability due to chance” or “sampling

error” and assume that you know what they mean. Perhaps you do; however, if you do not,

you are headed for confusion in the remainder of this book unless we spend a minute clari-

fying the meaning of these terms. We will begin with a simple example.

In Chapter 3 we considered the distribution of Total Behavior Problem scores from

Achenbach’s Youth Self-Report form. Total Behavior Problem scores are normally distrib-

uted in the population (i.e., the complete population of such scores is approximately nor-

mally distributed) with a population mean (m) of 50 and a population standard deviation (s)

of 10. We know that different children show different levels of problem behaviors and

therefore have different scores. We also know that if we took a sample of children, their

sample mean would probably not equal exactly 50. One sample of children might have a

mean of 49, while a second sample might have a mean of 52.3. The actual sample means

would depend on the particular children who happened to be included in the sample. This

expected variability from sample to sample is what is meant when we speak of “variability

due to chance.” The phrase refers to the fact that statistics (in this case, means) obtained

from samples naturally vary from one sample to another.

Along the same lines, the term sampling error often is used in this context as a syn-

onym for variability due to chance. It indicates that the numerical value of a sample statis-

tic probably will be in error (i.e., will deviate from the parameter it is estimating) as a result

of the particular observations that happened to be included in the sample. In this context,

“error” does not imply carelessness or mistakes. In the case of behavior problems, one ran-

dom sample might just happen to include an unusually obnoxious child, whereas another

sample might happen to include an unusual number of relatively well-behaved children.

4.1 Two Simple Examples Involving Course
Evaluations and Rude Motorists

One example that we will investigate when we discuss correlation and regression looks at

the relationship between how students evaluate a course and the grade they expect to

receive in that course. Many faculty feel strongly about this topic, because even the best

instructors turn to the semiannual course evaluation forms with some trepidation—perhaps

the same amount of trepidation with which many students open their grade report form.

Some faculty think that a course is good or bad independently of how well a student feels

he or she will do in terms of a grade. Others feel that a student who seldom came to class

and who will do poorly as a result will also unfairly rate the course as poor. Finally, there

are those who argue that students who do well and experience success take something away

from the course other than just a grade and that those students will generally rate the course

highly. But the relationship between course ratings and student performance is an empiri-

cal question and, as such, can be answered by looking at relevant data. Suppose that in a
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random sample of fifty courses we find a general trend for students in a course in which

they expect to do well to rate the course highly, and for students to rate courses in which

they expect to do poorly as low in overall quality. How do we tell whether this trend in our

small data set is representative of a trend among students in general or just an odd result

that would disappear if we ran the study over? (For your own interest, make your predic-

tion of what kind of results we will find. We will return to this issue later.)

A second example comes from a study by Doob and Gross (1968), who investigated

the influence of perceived social status. They found that if an old, beat-up (low-status) 

car failed to start when a traffic light turned green, 84% of the time the driver of the sec-

ond car in line honked the horn. However, when the stopped car was an expensive, high-

status car, only 50% of the time did the following driver honk. These results could be

explained in one of two ways:

1. The difference between 84% in one sample and 50% in a second sample is attributable

to sampling error (random variability among samples); therefore, we cannot conclude

that perceived social status influences horn-honking behavior.

2. The difference between 84% and 50% is large and reliable. The difference is not attrib-

utable to sampling error; therefore we conclude that people are less likely to honk at

drivers of high-status cars.

Although the statistical calculations required to answer this question are different from

those used to answer the one about course evaluations (because the first deals with rela-

tionships and the second deals with proportions), the underlying logic is fundamentally the

same.

These examples of course evaluations and horn honking are two kinds of questions that

fall under the heading of hypothesis testing. This chapter is intended to present the theory

of hypothesis testing in as general a way as possible, without going into the specific tech-

niques or properties of any particular test. I will focus largely on the situation involving dif-

ferences instead of the situation involving relationships, but the logic is basically the same.

(You will see additional material on examining relationships in Chapter 9.) I am very delib-

erately glossing over details of computation, because my purpose is to explore the concepts

of hypothesis testing without involving anything but the simplest technical details.

We need to be explicit about what the problem is here. The reason for having hypothe-

sis testing in the first place is that data are ambiguous. Suppose that we want to decide

whether larger classes receive lower student ratings. We all know that some large classes

are terrific, and others are really dreadful. Similarly, there are both good and bad small

classes. So if we collect data on large classes, for example, the mean of several large

classes will depend to some extent on which large courses just happen to be included in our

sample. If we reran our data collection with a new random sample of large classes, that

mean would almost certainly be different. A similar situation applies for small classes.

When we find a difference between the means of samples of large and small classes, we

know that the difference would come out slightly differently if we collected new data. So a

difference between the means is ambiguous. Is it greater than zero because large classes

are worse than small ones, or because of the particular samples we happened to pick? Well,

if the difference is quite large, it probably reflects differences between small and large

classes. If it is quite small, it probably reflects just random noise. But how large is “large”

and how small is “small?” That is the problem we are beginning to explore, and that is the

subject of this chapter.

If we are going to look at either of the two examples laid out above, or at a third one to

follow, we need to find some way of deciding whether we are looking at a small chance

fluctuation between the horn-honking rates for low- and high-status cars or a difference

that is sufficiently large for us to believe that people are much less likely to honk at those
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they consider higher in status. If the differences are small enough to attribute to chance

variability, we may well not worry about them further. On the other hand, it we can rule

out chance as the source of the difference, we probably need to look further. This decision

about chance is what we mean by hypothesis testing.

4.2 Sampling Distributions

In addition to course evaluations and horn honking, we will add a third example, which is

one to which we can all relate. It involves those annoying people who spend what seems to

us an unreasonable amount of time vacating the parking space we are waiting for. Ruback

and Juieng (1997) ran a simple study in which they divided drivers into two groups of 100

participants each—those who had someone waiting for their space and those who did not.

They then recorded the amount of time that it took the driver to leave the parking space.

For those drivers who had no one waiting, it took an average of 32.15 seconds to leave the

space. For those who did have someone waiting, it took an average of 39.03 seconds. For

each of these groups the standard deviation of waiting times was 14.6 seconds. Notice that

a driver took 6.88 seconds longer to leave a space when someone was waiting for it. (If you

think about it, 6.88 seconds is a long time if you are the person doing the waiting.)

There are two possible explanations here. First of all it is entirely possible that having

someone waiting doesn’t make any difference in how long it takes to leave a space, and that

normally drivers who have no one waiting for them take, on average, the same length of

time as drivers who have someone waiting. In that case, the difference that we found is just

a result of the particular samples we happened to obtain. What we are saying here is that if

we had whole populations of drivers in each of the two conditions, the populations means

(m
nowait

and m
wait

) would be identical and any difference we find in our samples is sampling

error. The alternative explanation is that the population means really are different and that

people actually do take longer to leave a space when there is someone waiting for it. If the

sample means had come out to be 32.15 and 32.18, you and I would probably side with the

first explanation—or at least not be willing to reject it. If the means had come out to be

32.15 and 59.03, we would probably be likely to side with the second explanation—having

someone waiting actually makes a difference. But the difference we found is actually

somewhere in between, and we need to decide which explanation is more reasonable.

We want to answer the question “Is the obtained difference too great to be attributable

to chance?” To do this we have to use what are called sampling distributions, which tell

us specifically what degree of sample-to-sample variability we can expect by chance as a

function of sampling error.

The most basic concept underlying all statistical tests is the sampling distribution of a

statistic. It is fair to say that if we did not have sampling distributions, we would not have

any statistical tests. Roughly speaking, sampling distributions tell us what values we

might (or might not) expect to obtain for a particular statistic under a set of predefined

conditions (e.g., what the sample differences between our two samples might be expected

to be if the true means of the populations from which those samples came are equal.) In

addition, the standard deviation of that distribution of differences between sample means

(known as the “standard error” of the distribution) reflects the variability that we would

expect to find in the values of that statistic (differences between means) over repeated tri-

als. Sampling distributions provide the opportunity to evaluate the likelihood (given the

value of a sample statistic) that such predefined conditions actually exist.

Basically, the sampling distribution of a statistic can be thought of as the distribution of

values obtained for that statistic over repeated sampling (i.e., running the experiment, or

drawing samples, an unlimited number of times). Sampling distributions are almost always
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derived mathematically, but it is easier to understand what they represent if we consider

how they could, in theory, be derived empirically with a simple sampling experiment.

We will take as an illustration the sampling distribution of the differences between

means, because it relates directly to our example of waiting times in parking lots. The sam-

pling distribution of differences between means is the distribution of differences between

means of an infinite number of random samples drawn under certain specified conditions

(e.g., under the condition that the true means of our populations are equal). Suppose we

have two populations with known means and standard deviations (Here we will suppose

that the two population means are 35 and the population standard deviation is 15, though

what the values are is not critical to the logic of our argument. In the general case we rarely

know the population standard deviation, but for our example suppose that we do.) Further

suppose that we draw a very large number (theoretically an infinite number) of pairs of ran-

dom samples from these populations, each sample consisting of 100 scores. For each sam-

ple we will calculate its sample mean and then the difference between the two means in

that draw. When we finish drawing all the pairs of samples, we will plot the distribution of

these differences. Such a distribution would be a sampling distribution of the difference be-

tween means. I wrote a 9 line program in R to do the sampling I have described, drawing

10,000 pairs of samples of n 5 100 from a population with a mean of 35 and a standard

deviation of 15 and computing the difference between means for each pair. A histogram of

this distribution is shown on the left of Figure 4.1 with a Q-Q plot on the right. I don’t think

that there is much doubt that this distribution is normally distributed. The center of this dis-

tribution is at 0.0, because we expect that, on average, differences between sample means

will be 0.0. (The individual means themselves will be roughly 35.) We can see from this

figure that differences between sample means of approximately 23 to 13, for example,

are quite likely to occur when we sample from identical populations. We also can see that

it is extremely unlikely that we would draw samples from these populations that differ by

10 or more. The fact that we know the kinds of values to expect for the difference of means

of samples drawn from these populations is going to allow us to turn the question around

and ask whether an obtained sample mean difference can be taken as evidence in favor of

the hypothesis that we actually are sampling from identical populations—or populations

with the same mean.
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Ruback and Juieng (1997) found a difference of 6.88 seconds in leaving times between

the two conditions. It is quite clear from Figure 4.1 that this is very unlikely to have oc-

curred if the true population means were equal. In fact, my little sampling study only found

6 cases out of 10,000 when the mean difference was more extreme than 6.88, for a proba-

bility of .0006. We are certainly justified in concluding that people wait longer to leave

their space, for whatever reason, when someone is waiting for it.

4.3 Theory of Hypothesis Testing

Preamble

One of the major ongoing discussions in statistics in the behavioral sciences relates to hy-

pothesis testing. The logic and theory of hypothesis testing has been debated for at least 

75 years, but recently that debate has intensified considerably. The exchanges on this topic

have not always been constructive (referring to your opponent’s position as “bone-headedly

misguided,” “a perversion of the scientific method,” or “ridiculous” usually does not win

them to your cause), but some real and positive changes have come as a result. The changes

are sufficiently important that much of this chapter, and major parts of the rest of the book,

have been rewritten to accommodate them.

The arguments about the role of hypothesis testing concern several issues. First, and

most fundamental, some people question whether hypothesis testing is a sensible proce-

dure in the first place. I think that it is, and whether it is or isn’t, the logic involved is re-

lated to so much of what we do, and is so central to what you will see in the experimental

literature, that you have to understand it whether you approve of it or not. Second, what

logic will we use for hypothesis testing? The dominant logic has been an amalgam of posi-

tions put forth by R. A. Fisher, and by Neyman and Pearson, dating from the 1920s and

1930s. (This amalgam is one to which both Fisher and Neyman and Pearson would express

deep reservations, but it has grown to be employed by many, particularly in the behavioral

sciences.) We will discuss that approach first, but follow it by more recent conceptualiza-

tions that lead to roughly the same point, but do so in what many feel is a more logical and

rational process. Third, and perhaps most importantly, what do we need to consider in ad-
dition to traditional hypothesis testing? Running a statistical test and declaring a difference

to be statistically significant at “p , .5” is no longer sufficient. A hypothesis test can only

suggest whether a relationship is reliable or it is not, or that a difference between two

groups is likely to be due to chance, or that it probably is not. In addition to running a hy-

pothesis test, we need to tell our readers something about the difference itself, about confi-

dence limits on that difference, and about the power of our test. This will involve a change

in emphasis from earlier editions, and will affect how I describe results in the rest of the

book. I think the basic conclusion is that simple hypothesis testing, no matter how you do

it, is important, but it is not enough. If the debate has done nothing else, getting us to that

point has been very important. You can see that we have a lot to cover, but once you under-

stand the positions and the proposals, you will have a better grasp of the issues than most

people in your field.

In the mid-1990s the American Psychological Association put together a task force to

look at the general issue of hypothesis tests, and its report is available (Wilkinson, 1999; see

also http://www.apa.org/journals/amp/amp548594.html). Further discussion of this issue

was included in an excellent paper by Nickerson (2000). These two documents do a very ef-

fective job of summarizing current thinking in the field. These recommendations have influ-

enced the coverage of material in this book, and you will see more frequent references to

confidence limits and effect size measures than you would have seen in previous editions.
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The Traditional Approach to Hypothesis Testing

For the next several pages we will consider the traditional treatment of hypothesis testing.

This is the treatment that you will find in almost any statistics text and is something that

you need to fully understand. The concepts here are central to what we mean by hypothesis

testing, no matter who is speaking about it.

We have just been discussing sampling distributions, which lie at the heart of the treat-

ment of research data. We do not go around obtaining sampling distributions, either mathe-

matically or empirically, simply because they are interesting to look at. We have important

reasons for doing so. The usual reason is that we want to test some hypothesis. Let’s go

back to the sampling distribution of differences in mean times that it takes people to leave

a parking space. We want to test the hypothesis that the obtained difference between sam-

ple means could reasonably have arisen had we drawn our samples from populations with

the same mean. This is another way of saying that we want to know whether the mean de-

parture time when someone is waiting is different from the mean departure time when there

is no one waiting. One way we can test such a hypothesis is to have some idea of the prob-

ability of obtaining a difference in sample means as extreme as 6.88 seconds, for example,

if we actually sampled observations from populations with the same mean. The answer to

this question is precisely what a sampling distribution is designed to provide.

Suppose we obtained (constructed) the sampling distribution plotted in Figure 4.1.

Suppose, for example, that our sample mean difference was only 2.88 instead of 6.88 and

that we determined from our sampling distribution that the probability of a difference in

means as great as 2.88 was .092. (How we determine this probability is not important

here.). Our reasoning could then go as follows: “If we did in fact sample from populations

with the same mean, the probability of obtaining a sample mean difference as high as 2.88

seconds is .092—that is not a terribly high probability, but it certainly isn’t a low probabil-

ity event. Because a sample mean difference at least as great as 2.88 is frequently obtained

from populations with equal means, we have no reason to doubt that our two samples came

from such populations.”

In fact our sample mean difference was 6.88 seconds and we calculated from the sam-

pling distribution that the probability of a sample mean difference as large as 6.88, when

the population means are equal, was only .0006. Our argument could then go like this: If
we did obtain our samples from populations with equal means, the probability of obtaining

a sample mean difference as large as 6.88 is only .0006—an unlikely event. Because a sam-

ple mean difference that large is unlikely to be obtained from such populations, we can rea-

sonably conclude that these samples probably came from populations with different means.

People take longer to leave when there is someone waiting for their parking space.

It is important to realize the steps in this example, because the logic is typical of most

tests of hypotheses. The actual test consisted of several stages:

1. We wanted to test the hypothesis, often called the research hypothesis, that people

backing out of a parking space take longer when someone is waiting.

2. We obtained random samples of behaviors under the two conditions.

3. We set up the hypothesis (called the null hypothesis, ) that the samples were in fact

drawn from populations with the same means. This hypothesis states that leaving times

do not depend on whether someone is waiting.

4. We then obtained the sampling distribution of the differences between means under the

assumption that (the null hypothesis) is true (i.e., we obtained the sampling distribu-

tion of the differences between means when the population means are equal).

5. Given the sampling distribution, we calculated the probability of a mean difference at
least as large as the one we actually obtained between the means of our two samples.

H0

H0
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6. On the basis of that probability, we made a decision: either to reject or fail to reject .

Because states the means of the populations are equal, rejection of represents a

belief that they are unequal, although the actual value of the difference in population

means remains unspecified.

The preceding discussion is slightly oversimplified, but we can deal with those

specifics when the time comes. The logic of the approach is representative of the logic of

most, if not all, statistical tests.

1. Begin with a research hypothesis.

2. Set up the null hypothesis.

3. Construct the sampling distribution of the particular statistic on the assumption that 

is true.

4. Collect some data.

5. Compare the sample statistic to that distribution.

6. Reject or retain , depending on the probability, under , of a sample statistic as ex-

treme as the one we have obtained.

The First Stumbling Block

I probably slipped something past you there, and you need to at least notice. This is one of

the very important issues that motivates the fight over hypothesis testing, and it is some-

thing that you need to understand even if you can’t do much about it. What I imagine that

you would like to know is “What is the probability that the null hypothesis (drivers don’t

take longer when people are waiting) is true given the data we obtained?” But that is not

what I gave you, and it is not what I am going to give you in the future. I gave you the an-

swer to a different question, which is “What is the probability that I would have obtained

these data given that the null hypothesis is true?” I don’t know how to give you an answer

to the question you would like to answer—not because I am a terrible statistician, but be-

cause the answer is much too difficult in most situations and is often impossible. However,

the answer that I did give you is still useful—and is used all the time. When the police

ticket a driver for drunken driving because he can’t drive in a straight line and can’t speak

coherently, they are saying that if he were sober he would not behave this way. Because he

behaves this way we will conclude that he is not sober. This logic remains central to most

approaches to hypothesis testing.

4.4 The Null Hypothesis

As we have seen, the concept of the null hypothesis plays a crucial role in the testing of

hypotheses. People frequently are puzzled by the fact that we set up a hypothesis that is di-

rectly counter to what we hope to show. For example, if we hope to demonstrate the re-

search hypothesis that college students do not come from a population with a mean

self-confidence score of 100, we immediately set up the null hypothesis that they do. Or if

we hope to demonstrate the validity of a research hypothesis that the means (m
1

and m
2
) of

the populations from which two samples are drawn are different, we state the null hypothe-

sis that the population means are the same (or, equivalently, m
1

2 m
2
5 0). (The term “null

hypothesis” is most easily seen in this second example, in which it refers to the hypothesis

that the difference between the two population means is zero, or null—some people call

this the “nil null” but that complicates the issue too much.) We use the null hypothesis for

H0H0

H0

H0H0
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several reasons. The philosophical argument, put forth by Fisher when he first introduced

the concept, is that we can never prove something to be true, but we can prove something

to be false. Observing 3000 people with two arms does not prove the statement “Everyone

has two arms.” However, finding one person with one arm does disprove the original state-

ment beyond any shadow of a doubt. While one might argue with Fisher’s basic position—

and many people have—the null hypothesis retains its dominant place in statistics.

A second and more practical reason for employing the null hypothesis is that it pro-

vides us with the starting point for any statistical test. Consider the case in which you want

to show that the mean self-confidence score of college students is greater than 100. Sup-

pose further that you were granted the privilege of proving the truth of some hypothesis.

What hypothesis are you going to test? Should you test the hypothesis that m 5 101, or

maybe the hypothesis that m 5 112, or how about m 5 113? The point is that in almost all

research in the behavioral sciences we do not have a specific alternative (research)

hypothesis in mind, and without one we cannot construct the sampling distribution we

need. (This was one of the arguments raised against the original Neyman/Pearson ap-

proach, because they often spoke as if there were a specific alternative hypothesis to be

tested, rather than just the diffuse negation of the null.) However, if we start off by assum-

ing H
0
:m 5 100, we can immediately set about obtaining the sampling distribution for 

m 5 100 and then, if our data are convincing, reject that hypothesis and conclude that the

mean score of college students is greater than 100, which is what we wanted to show in the

first place.

Statistical Conclusions

When the data differ markedly from what we would expect if the null hypothesis were true,

we simply reject the null hypothesis and there is no particular disagreement about what our

conclusions mean—we conclude that the null hypothesis is false. (This is not to suggest

that we still don’t need to tell our readers more about what we have found.) The interpreta-

tion is murkier and more problematic, however, when the data do not lead us to reject the

null hypothesis. How are we to interpret a nonrejection? Shall we say that we have

“proved” the null hypothesis to be true? Or shall we claim that we can “accept” the null, or

that we shall “retain” it, or that we shall “withhold judgment”?

The problem of how to interpret a nonrejected null hypothesis has plagued students in sta-

tistics courses for over 75 years, and it will probably continue to do so (but see Section 4.10).

The idea that if something is not false then it must be true is too deeply ingrained in com-

mon sense to be dismissed lightly.

The one thing on which all statisticians agree is that we can never claim to have

“proved” the null hypothesis. As was pointed out, the fact that the next 3000 people we

meet all have two arms certainly does not prove the null hypothesis that all people have two

arms. In fact we know that many perfectly normal people have fewer than two arms. Fail-

ure to reject the null hypothesis often means that we have not collected enough data.

The issue is easier to understand if we use a concrete example. Wagner, Compas, and

Howell (1988) conducted a study to evaluate the effectiveness of a program for teaching

high school students to deal with stress. If this study found that students who participate in

such a program had significantly fewer stress-related problems than did students in a con-

trol group who did not have the program, then we could, without much debate, conclude

that the program was effective. However, if the groups did not differ at some predetermined

level of statistical significance, what could we conclude?

We know we cannot conclude from a nonsignificant difference that we have proved that

the mean of a population of scores of treatment subjects is the same as the mean of a popu-

lation of scores of control subjects. The two treatments may in fact lead to subtle
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differences that we were not able to identify conclusively with our relatively small sample

of observations.

Fisher’s position was that a nonsignificant result is an inconclusive result. For Fisher,

the choice was between rejecting a null hypothesis and suspending judgment. He would

have argued that a failure to find a significant difference between conditions could result

from the fact that the students who participated in the program handled stress only slightly
better than did control subjects, or that they handled it only slightly less well, or that there

was no difference between the groups. For Fisher, a failure to reject merely means that

our data are insufficient to allow us to choose among these three alternatives; therefore, we

must suspend judgment. You will see this position return shortly when we discuss a pro-

posal by Jones and Tukey (2000).

A slightly different approach was taken by Neyman and Pearson (1933), who took a

much more pragmatic view of the results of an experiment. In our example, Neyman and

Pearson would be concerned with the problem faced by the school board, who must decide

whether to continue spending money on this stress-management program that we are pro-

viding for them. The school board would probably not be impressed if we told them that

our study was inconclusive and then asked them to give us money to continue operating the

program until we had sufficient data to state confidently whether or not the program was

beneficial (or harmful). In the Neyman–Pearson position, one either rejects or accepts the

null hypothesis. But when we say that we “accept” a null hypothesis, however, we do not

mean that we take it to be proven as true. We simply mean that we will act as if it is true, at

least until we have more adequate data. Whereas given a nonsignificant result, the ideal

school board from Fisher’s point of view would continue to support the program until we

finally were able to make up our minds, but the school board with a Neyman–Pearson per-

spective would conclude that the available evidence is not sufficient to defend continuing

to fund the program, and they would cut off our funding.

This discussion of the Neyman–Pearson position has been much oversimplified, but it

contains the central issue of their point of view. The debate between Fisher on the one

hand and Neyman and Pearson on the other was a lively (and rarely civil) one, and pres-

ent practice contains elements of both viewpoints. Most statisticians prefer to use phrases

such as “retain the null hypothesis” and “fail to reject the null hypothesis” because these

make clear the tentative nature of a nonrejection. These phrases have a certain Fisherian

ring to them. On the other hand, the important emphasis on Type II errors (failing to reject

a false null hypothesis), which we will discuss in Section 4.7, is clearly an essential fea-

ture of the Neyman–Pearson school. If you are going to choose between two alternatives

(accept or reject), then you have to be concerned with the probability of falsely accepting

as well as that of falsely rejecting the null hypothesis. Since Fisher would never accept a

null hypothesis in the first place, he did not need to worry much about the probability of

accepting a false one.1 We will return to this whole question in Section 4.10, where we

will consider an alternative approach, after we have developed several other points. First,

however, we need to consider some basic information about hypothesis testing so as to

have a vocabulary and an example with which to go further into hypothesis testing. This

information is central to any discussion of hypothesis testing under any of the models that

have been proposed.

H0
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4.5 Test Statistics and Their Sampling Distributions

We have been discussing the sampling distribution of the mean, but the discussion would

have been essentially the same had we dealt instead with the median, the variance, the

range, the correlation coefficient (as in our course evaluation example), proportions (as in

our horn-honking example), or any other statistic you care to consider. (Technically the

shapes of these distributions would be different, but I am deliberately ignoring such issues

in this chapter.) The statistics just mentioned usually are referred to as sample statistics

because they describe characteristics of samples. There is a whole different class of statis-

tics called test statistics, which are associated with specific statistical procedures and

which have their own sampling distributions. Test statistics are statistics such as t, F, and

, which you may have run across in the past. (If you are not familiar with them, don’t

worry—we will consider them separately in later chapters.) This is not the place to go into

a detailed explanation of any test statistics. I put this chapter where it is because I didn’t

want readers to think that they were supposed to worry about technical issues. This chapter

is the place, however, to point out that the sampling distributions for test statistics are ob-

tained and used in essentially the same way as the sampling distribution of the mean.

As an illustration, consider the sampling distribution of the statistic t, which will be dis-

cussed in Chapter 7. For those who have never heard of the t test, it is sufficient to say that

the t test is often used, among other things, to determine whether two samples were drawn

from populations with the same means. Let m
1

and m
2

represent the means of the popula-

tions from which the two samples were drawn. The null hypothesis is the hypothesis that

the two population means are equal, in other words, H
0
:m

1
5 m

2
(or m

1
2 m

2
5 0). If we

were extremely patient, we could empirically obtain the sampling distribution of t when 

is true by drawing an infinite number of pairs of samples, all from two identical popula-

tions, calculating t for each pair of samples (by methods to be discussed later), and plotting

the resulting values of t. In that case must be true because we forced it to be true by

drawing the samples from identical populations. The resulting distribution is the sampling

distribution of t when is true. If we later had two samples that produced a particular

value of t, we would test the null hypothesis by comparing our sample t to the sampling

distribution of t. We would reject the null hypothesis if our obtained t did not look like 

the kinds of t values that the sampling distribution told us to expect when the null hypothe-

sis is true.

I could rewrite the preceding paragraph, substituting , or F, or any other test statistic

in place of t, with only minor changes dealing with how the statistic is calculated. Thus,

you can see that all sampling distributions can be obtained in basically the same way 

(calculate and plot an infinite number of statistics by sampling from identical populations).

4.6 Making Decisions About the Null Hypothesis

In Section 4.2 we actually tested a null hypothesis when we considered the data on the

time to leave a parking space. You should recall that we first drew pairs of samples from a

population with a mean of 35 and a standard deviation of 15. (Don’t worry about how we

knew those were the parameters of the population—I made them up.) Then we calculated

the differences between pairs of means in each of 10,000 replications and plotted those.

Then we discovered that under those conditions a difference as large as the one that

Ruback and Juieng found would happen only about 6 times out of 10,000 trials. That is

such an unlikely finding that we concluded that our two means did not come from popula-

tions with the same mean.

x2
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At this point we have to become involved in the decision-making aspects of hypothesis

testing. We must decide whether an event with a probability of .0006 is sufficiently unlikely

to cause us to reject . Here we will fall back on arbitrary conventions that have been es-

tablished over the years. The rationale for these conventions will become clearer as we go

along, but for the time being keep in mind that they are merely conventions. One convention

calls for rejecting if the probability under is less than or equal to .05 (p .05),

while another convention—one that is more conservative with respect to the probability

of rejecting —calls for rejecting whenever the probability under is less than or

equal to .01. These values of .05 and .01 are often referred to as the rejection level, or the

significance level, of the test. (When we say that a difference is statistically significant at

the .05 level, we mean that a difference that large would occur less than 5% of the time if

the null were true.) Whenever the probability obtained under is less than or equal to

our predetermined significance level, we will reject . Another way of stating this is to

say that any outcome whose probability under is less than or equal to the significance

level falls in the rejection region, since such an outcome leads us to reject .

For the purpose of setting a standard level of rejection for this book, we will use the 

.05 level of statistical significance, keeping in mind that some people would consider this

level to be too lenient.2 For our particular example we have obtained a probability value of 

p 5 .0006, which obviously is less than .05. Because we have specified that we will reject

if the probability of the data under is less than .05, we must conclude that we have

reason to decide that the scores for the two conditions were drawn from populations with

the same mean.

4.7 Type I and Type II Errors

Whenever we reach a decision with a statistical test, there is always a chance that our deci-

sion is the wrong one. While this is true of almost all decisions, statistical or otherwise, the

statistician has one point in her favor that other decision makers normally lack. She not

only makes a decision by some rational process, but she can also specify the conditional

probabilities of a decision’s being in error. In everyday life we make decisions with only

subjective feelings about what is probably the right choice. The statistician, however, can

state quite precisely the probability that she would make an erroneously rejection of if

it were true. This ability to specify the probability of erroneously rejecting a true H
0

follows directly from the logic of hypothesis testing.

Consider the parking lot example, this time ignoring the difference in means that

Ruback and Juieng found. The situation is diagrammed in Figure 4.2, in which the distri-

bution is the distribution of differences in sample means when the null hypothesis is true,

and the shaded portion represents the upper 5% of the distribution. The actual score that

cuts off the highest 5% is called the critical value. Critical values are those values of 
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do print out exact probability levels, and those values, when interpreted judiciously, can be useful. The difficulty
comes in defining what is meant by “interpreted judiciously.”
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X (the variable) that describe the boundary or boundaries of the rejection region(s). For this

particular example the critical value is 4.94.

If we have a decision rule that says to reject whenever an outcome falls in the high-

est 5% of the distribution, we will reject whenever an individual’s score falls in the

shaded area; that is, whenever a score as low as his has a probability of .05 or less of com-

ing from the population of healthy scores. Yet by the very nature of our procedure, 5% of

the differences in means when a waiting car has no effect on the time to leave will them-

selves fall in the shaded portion. Thus if we actually have a situation where the null hy-

pothesis of no mean difference is true, we stand a 5% chance of any sample mean

difference being in the shaded tail of the distribution, causing us erroneously to reject the

null hypothesis. This kind of error (rejecting when in fact it is true) is called a Type I

error, and its conditional probability (the probability of rejecting the null hypothesis given

that it is true) is designated as a (alpha), the size of the rejection region. (Alpha was iden-

tified in Figure 4.2.) In the future, whenever we represent a probability by a, we will be re-

ferring to the probability of a Type I error.

Keep in mind the “conditional” nature of the probability of a Type I error. I know that

sounds like jargon, but what it means is that you should be sure you understand that when

we speak of a Type I error we mean the probability of rejecting given that it is true. We

are not saying that we will reject on 5% of the hypotheses we test. We would hope to

run experiments on important and meaningful variables and, therefore, to reject often.

But when we speak of a Type I error, we are speaking only about rejecting in those situ-

ations in which the null hypothesis happens to be true.

You might feel that a 5% chance of making an error is too great a risk to take and sug-

gest that we make our criterion much more stringent, by rejecting, for example, only the

lowest 1% of the distribution. This procedure is perfectly legitimate, but realize that the

more stringent you make your criterion, the more likely you are to make another kind of

error—failing to reject when it is in fact false and is true. This type of error is called

a Type II error, and its probability is symbolized by b (beta).

The major difficulty in terms of Type II errors stems from the fact that if is false, we

almost never know what the true distribution (the distribution under ) would look like

for the population from which our data came. We know only the distribution of scores un-

der . Put in the present context, we know the distribution of differences in means when

having someone waiting for a parking space makes no difference in response time, but we

don’t know what the difference would be if waiting did make a difference. This situation is

illustrated in Figure 4.3, in which the distribution labeled represents the distribution of

mean differences when the null hypothesis is true, the distribution labeled representsH1
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our hypothetical distribution of differences when the null hypothesis is false, and the alter-

native hypothesis ( ) is true. Remember that the distribution for is only hypothetical.

We really do not know the location of that distribution, other than that it is higher (greater

differences) than the distribution of . (I have arbitrarily drawn that distribution so that

its mean is 2 units above the mean under H
0
.)

The darkly shaded portion in the top half of Figure 4.3 represents the rejection region.

Any observation falling in that area (i.e., to the right of about 3.5) would lead to rejection

of the null hypothesis. If the null hypothesis is true, we know that our observation will fall

in this area 5% of the time. Thus, we will make a Type I error 5% of the time.

The cross hatched portion in the bottom half of Figure 4.3 represents the probability

(b) of a Type II error. This is the situation in which having someone waiting makes a dif-

ference in leaving time, but whose value is not sufficiently high to cause us to reject .

In the particular situation illustrated in Figure 4.3, we can in fact calculate b by using

the normal distribution to calculate the probability of obtaining a score less than 3.5 (the

critical value) if m 5 35 and s 5 15 for each condition. The actual calculation is not im-

portant for your understanding of b; because this chapter was designed specifically to

avoid calculation, I will simply state that this probability (i.e., the area labeled b) is .76.

Thus for this example, 76% of the occasions when waiting times (in the population) differ

by 3.5 seconds (i.e., is actually true), we will make a Type II error by failing to reject

when it is false.

From Figure 4.3 you can see that if we were to reduce the level of a (the probability of

a Type I error) from .05 to .01 by moving the rejection region to the right, it would reduce

the probability of Type I errors but would increase the probability of Type II errors. Setting

a at .01 would mean that b 5 .92. Obviously there is room for debate over what level of

significance to use. The decision rests primarily on your opinion concerning the relative

importance of Type I and Type II errors for the kind of study you are conducting. If it were
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important to avoid Type I errors (such as falsely claiming that the average driver is rude),

then you would set a stringent (i.e., small) level of a. If, on the other hand, you want to

avoid Type II errors (patting everyone on the head for being polite when actually they are

not), you might set a fairly high level of a. (Setting a 5 .20 in this example would reduce

b to .46.) Unfortunately, in practice most people choose an arbitrary level of a, such as .05

or .01, and simply ignore b. In many cases this may be all you can do. (In fact you will

probably use the alpha level that your instructor recommends.) In other cases, however,

there is much more you can do, as you will see in Chapter 8.

I should stress again that Figure 4.3 is purely hypothetical. I was able to draw the fig-

ure only because I arbitrarily decided that the population means differed by 2 units, and the

standard deviation of each population was 15. The answers would be different if I had cho-

sen to draw it with a difference of 2.5 and/or a standard deviation of 10. In most everyday

situations we do not know the mean and the variance of that distribution and can make only

educated guesses, thus providing only crude estimates of b. In practice we can select a

value of m under that represents the minimum difference we would like to be able to de-

tect, since larger differences will have even smaller bs.

From this discussion of Type I and Type II errors we can summarize the decision-

making process with a simple table. Table 4.1 presents the four possible outcomes of an

experiment. The items in this table should be self-explanatory, but there is one concept—

power—that we have not yet discussed. The power of a test is the probability of rejecting

when it is actually false. Because the probability of failing to reject a false is b, then

power must equal 1 2 b. Those who want to know more about power and its calculation

will find power covered in Chapter 8.

4.8 One- and Two-Tailed Tests

The preceding discussion brings us to a consideration of one- and two-tailed tests. In our

parking lot example we were concerned if people took longer when there was someone

waiting, and we decided to reject only if a those drivers took longer. In fact, I chose that

approach simply to make the example clearer. However, suppose our drivers left 16.88 sec-

onds sooner when someone was waiting. Although this is an extremely unlikely event to

observe if the null hypothesis is true, it would not fall in the rejection region, which con-

sisted solely of long times. As a result we find ourselves in the position of not rejecting 

in the face of a piece of data that is very unlikely, but not in the direction expected.

The question then arises as to how we can protect ourselves against this type of situa-

tion (if protection is thought necessary). One answer is to specify before we run the experi-

ment that we are going to reject a given percentage (say 5%) of the extreme outcomes, both

those that are extremely high and those that are extremely low. But if we reject the lowest

5% and the highest 5%, then we would in fact reject a total of 10% of the time when itH0

H0

H0

H0H0

H1
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Table 4.1 Possible outcomes of the decision-making process

True State of the World

Decision H
0
True H

0
False

Reject H
0

Type I error p 5 a Correct decision p 5 1 – b 5 Power

Don’t reject H
0

Correct decision p 5 1 – a Type II error p 5 b

power



is actually true, that is, a 5 .10. We are rarely willing to work with a as high as .10 and

prefer to see it set no higher than .05. The way to accomplish this is to reject the lowest

2.5% and the highest 2.5%, making a total of 5%.

The situation in which we reject for only the lowest (or only the highest) mean dif-

ferences is referred to as a one-tailed, or directional, test. We make a prediction of the

direction in which the individual will differ from the mean and our rejection region is lo-

cated in only one tail of the distribution. When we reject extremes in both tails, we have

what is called a two-tailed, or nondirectional, test. It is important to keep in mind that

while we gain something with a two-tailed test (the ability to reject the null hypothesis for

extreme scores in either direction), we also lose something. A score that would fall in the

5% rejection region of a one-tailed test may not fall in the rejection region of the corre-

sponding two-tailed test, because now we reject only 2.5% in each tail.

In the parking example I chose a one-tailed test because it simplified the example. But

that is not a rational way of making such a choice. In many situations we do not know

which tail of the distribution is important (or both are), and we need to guard against ex-

tremes in either tail. The situation might arise when we are considering a campaign to per-

suade children not to start smoking. We might find that the campaign leads to a decrease in

the incidence of smoking. Or, we might find that campaigns run by adults to persuade chil-

dren not to smoke simply make smoking more attractive and exciting, leading to an in-

crease in the number of children smoking. In either case we would want to reject .

In general, two-tailed tests are far more common than one-tailed tests for several rea-

sons. First, the investigator may have no idea what the data will look like and therefore has

to be prepared for any eventuality. Although this situation is rare, it does occur in some ex-

ploratory work.

Another common reason for preferring two-tailed tests is that the investigators are

reasonably sure the data will come out one way but want to cover themselves in the

event that they are wrong. This type of situation arises more often than you might think.

(Carefully formed hypotheses have an annoying habit of being phrased in the wrong di-

rection, for reasons that seem so obvious after the event.) The smoking example is a

case in point, where there is some evidence that poorly contrived antismoking cam-

paigns actually do more harm than good. A frequent question that arises when the data

may come out the other way around is, “Why not plan to run a one-tailed test and then,

if the data come out the other way, just change the test to a two-tailed test?” This kind

of approach just won’t work. If you start an experiment with the extreme 5% of the left-

hand tail as your rejection region and then turn around and reject any outcome that hap-

pens to fall in the extreme 2.5% of the right-hand tail, you are working at the 7.5%

level. In that situation you will reject 5% of the outcomes in one direction (assuming

that the data fall in the desired tail), and you are willing also to reject 2.5% of the out-

comes in the other direction (when the data are in the unexpected direction). There is no

denying that 5% 1 2.5% 5 7.5%. To put it another way, would you be willing to flip a

coin for an ice cream cone if I have chosen “heads” but also reserve the right to switch

to “tails” after I see how the coin lands? Or would you think it fair of me to shout, “Two

out of three!” when the coin toss comes up in your favor? You would object to both of

these strategies, and you should. For the same reason, the choice between a one-tailed

test and a two-tailed one is made before the data are collected. It is also one of the rea-

sons that two-tailed tests are usually chosen.

Although the preceding discussion argues in favor of two-tailed tests, as will the dis-

cussion in Section 4.10, and although in this book we generally confine ourselves to such

procedures, there are no hard-and-fast rules. The final decision depends on what you al-

ready know about the relative severity of different kinds of errors. It is important to keep in

H0
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mind that with respect to a given tail of a distribution, the difference between a one-tailed

test and a two-tailed test is that the latter just uses a different cutoff. A two-tailed test at 

a 5 .05 is more liberal than a one-tailed test at a 5 .01.3

If you have a sound grasp of the logic of testing hypotheses by use of sampling distri-

butions, the remainder of this course will be relatively simple. For any new statistic you en-

counter, you will need to ask only two basic questions:

1. How and with which assumptions is the statistic calculated?

2. What does the statistic’s sampling distribution look like under ?

If you know the answers to these two questions, your test is accomplished by calculat-

ing the test statistic for the data at hand and comparing the statistic to the sampling distri-

bution. Because the relevant sampling distributions are tabled in the appendices, all you

really need to know is which test is appropriate for a particular situation and how to calcu-

late its test statistic. (Of course there is way more to statistics than just hypothesis testing,

so perhaps I’m doing a bit of overselling here. There is a great deal to understanding the

field of statistics beyond how to calculate, and evaluate, a specific statistical test. Calcula-

tion is the easy part, especially with modern computer software.)

4.9 What Does It Mean to Reject 
the Null Hypothesis?

One of the common problems that even well-trained researchers have with the null hypoth-

esis is the confusion over what rejection really means. I earlier mentioned the fact that we

calculate the probability that we would obtain these particular data given that the null is

true. We are not calculating the null being true given the data. Suppose that we test a null

hypothesis about the difference between two population means and reject it at p 5 .045.

There is a temptation to say that such a result means that the probability of the null being

true is .045. But that is not what this probability means. What we have shown is that if the
null hypothesis were true, the probability of obtaining a difference between means as great

as the difference we found is only .045. That is quite different from saying that the proba-

bility that the null is true is .045. What we are doing here is confusing the probability of

the hypothesis given the data, and the probability of the data given the hypothesis. These

are called conditional probabilities, and will be discussed in Chapter 5. The probability 

H0
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3 One of the reviewers of an earlier edition of this book made the case for two-tailed tests even more strongly: “It
is my (minority) belief that what an investigator expects to be true has absolutely no bearing whatsoever on the
issue of one- versus two-tailed tests. Nature couldn’t care less what psychologists’ theories predict, and will often
show patterns/trends in the opposite direction. Since our goal is to know the truth (not to prove we are astute at
predicting), our tests must always allow for testing both directions. I say always do two-tailed tests, and if you are
worried about b, jack the sample size up a bit to offset the loss in power” (D. Bradley, personal communication,
1983). I am personally inclined toward this point of view. Nature is notoriously fickle, or else we are notoriously
inept at prediction. On the other hand, a second reviewer (J. Rodgers, personal communication, 1986) takes
exception to this position. While acknowledging that Bradley’s point is well considered, Rodgers, engaging in a
bit of hyperbole, argues, “To generate a theory about how the world works that implies an expected direction of
an effect, but then to hedge one’s bet by putting some (up to 1/2) of the rejection region in the tail other than that
predicted by the theory, strikes me as both scientifically dumb and slightly unethical. . . . Theory generation and
theory testing are much closer to the proper goal of science than truth searching, and running one-tailed tests is
quite consistent with those goals.” Neither Bradley nor I would accept the judgment of being “scientifically dumb
and slightly unethical,” but I presented the two positions in juxtaposition because doing so gives you a flavor of
the debate. Obviously there is room for disagreement on this issue.
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of .045 that we have here is the probability of the data given that H
0

is true [written p(D | H
0
)]—

the vertical line is read “given.” It is not the probability that H
0

is true given the data [writ-

ten p(H
0

| D]. The best discussion of this issue that I have read is in an excellent paper by

Nickerson (2000). Let me illustrate my major point with an example.

Suppose that I create a computer-generated example where I know for a fact that the

data for one sample came from a population with a mean of 54.28, and the data for a sec-

ond sample came from a population with a mean of 54.25. (It is very easy to use a program

like SPSS to generate such samples.) Here I know for a fact that the null hypothesis is false.

In other words, the probability that the null hypothesis is true is 0.00—i.e., (p(H
0
) 5 0.00).

However, if I have two small samples I might happen to get a result such as 54.26 and

54.36, and a difference of at least that magnitude would have a very high probability of oc-

curring even in the situation where the null hypothesis is true and both means were, say,

54.28. Thus the probability of the data given a true null hypothesis might be .75, for exam-

ple, and yet we know that the probability that the null is really true is exactly 0.00. [Using

probability terminology, we can write p(H
0
) 5 0.00 and p(D | H

0
) 5 .75]. Alternatively, as-

sume that I created a situation where I know that the null is true. For example, I set up pop-

ulations where both means are 54.00. It is easy to imagine getting samples with means of

53 and 54.5. If the null is really true, the probability of getting means this different may be

.33, for example. Thus the probability that the null is true is fixed, by me, at 1.00, yet the

probability of the data when the null is true is .33. [Using probability terminology again,

we can write p(H
0
) 5 1.00 and p(D | H

0
) 5 .33] Notice that in both of these cases there is a

serious discrepancy between the probability of the null being true and the probability of

the data given the null. You will see several instances like this throughout the book when-

ever I sample data from known populations. Never confuse the probability value associated

with a test of statistical significance with the probability that the null hypothesis is true.

They are very different things.

4.10 An Alternative View of Hypothesis Testing

What I have presented so far about hypothesis testing is the traditional approach. It is found

in virtually every statistics text, and you need to be very familiar with it. However, there

has recently been an interest in different ways of looking at hypothesis testing, and a new

approach proposed by Jones and Tukey (2000) avoids some of the problems of the tradi-

tional approach.

We will begin with an example comparing two population means that is developed

further in Chapter 7. Adams, Wright, and Lohr (1996) showed a group of homophobic

heterosexual males and a group of nonhomophobic heterosexual males a videotape of

sexually explicit erotic homosexual images, and recorded the resulting level of sexual

arousal in the participants. They were interested in seeing whether there was a difference

in sexual arousal between the two categories of viewers. (Notice that I didn’t say which

group they expected to come out with the higher mean, just that there would be a

difference.)

The traditional hypothesis testing approach would to set up the null hypothesis that 

mh 5 mn, where mh is the population mean for homophobic males, and mn is the population

mean for nonhomophobic males. The traditional alternative (two-tailed) hypothesis is that

m
h

mv. Many people have pointed out that the null hypothesis in such a situation is

never going to be true. It is not reasonable to believe that if we had a population of all

homophobic males their mean would be exactly equal to the mean of the population of all

nonhomophobic males to an unlimited number of decimal places. Whatever the means are,

±

102 Chapter 4 Sampling Distributions and Hypothesis Testing



they will certainly differ by at least some trivial amount.4 So we know before we begin that

the null hypothesis is false, and we might ask ourselves why we are testing the null in the

first place. (Many people have asked that question.)

Jones and Tukey (2000) and Harris (2005) have argued that we really have three pos-

sible hypotheses or conclusions we could draw—Jones and Tukey speak primarily in

terms of “conclusions.” One is that mh , mn, another is that mh . mn, and the third is that 

mh 5 mn. This third hypothesis is the traditional null hypothesis, and we have just said that

it is never going to be exactly true. These three hypotheses lead to three courses of action.

If we test the first (mh , mn) and reject it, we conclude that homophobic males are more

aroused than nonhomophobic males. If we test the second (mh . mn) and reject it, we con-

clude that homophobic males are less aroused than nonhomophobic males. If we cannot

reject either of those hypotheses, we conclude that we have insufficient evidence to make

a choice—the population means are almost certainly different, but we don’t know which

is the larger.

The difference between this approach and the traditional one may seem minor, but it

is important. In the first place, when Lyle Jones and John Tukey tell us something, we

should definitely listen. These are not two guys who just got out of graduate school; they

are two very highly respected statisticians. (If there were a Nobel Prize in statistics, John

Tukey would have won it.) In the second place, this approach acknowledges that the null

is never strictly true, but that sometimes the data do not allow us to draw conclusions

about which mean is larger. So instead of relying on fuzzy phrases like “fail to reject the

null hypothesis” or “retain the null hypothesis,” we simply do away with the whole idea

of a null hypothesis and just conclude that “we can’t decide whether mh is greater than mn,

or is less than mn.” In the third place, this looks as if we are running two one-tailed tests,

but with an important difference. In a traditional one-tailed test, we must specify in ad-
vance which tail we are testing. If the result falls in the extreme of that tail, we reject the

null and declare that mh , mn, for example. If the result does not fall in that tail we must

not reject the null, no matter how extreme it is in the other tail. But that is not what Jones

and Tukey are suggesting. They do not require you to specify the direction of the differ-

ence before you begin.

Jones and Tukey are suggesting that we do not specify a tail in advance, but that we

collect our data and determine whether the result is extreme in either tail. If it is extreme in

the lower tail, we conclude that mh , mn. If it is extreme in the upper tail, we conclude that

mh . mn. And if neither of those conditions apply, we declare that the data are insufficient

to make a choice. (Notice that I didn’t once use the word “reject” in the last few sentences.

I said “conclude.” The difference is subtle, but I think that it is important.)

But Jones and Tukey go a bit further and alter the significance level. First of all, we

know that the probability that the null is true is .00. (In other words, p(mh 5 mn) 5 0) The

difference may be small, but there is nonetheless a difference. We cannot make an error by
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homophobia it is reasonable to expect that whatever the difference between the two groups, it is probably not go-
ing to be trivial. Similarly with the parking example. The world is filled with normal people who probably just get
in their car and leave regardless of whether or not someone is waiting. But there are also the extremely polite
people who hurry to get out of the way, and some jerky people who deliberately take extra time. I don’t know
which of the latter groups is larger, but I’m sure that there is nothing like a 50:50 split. The difference is going to
be noticeable whichever way it comes out. I can’t think of a good example, that isn’t really trivial, where the null
hypothesis would be very close to true.



not rejecting the null because saying that we don’t have enough evidence is not the same as

incorrectly rejecting a hypothesis. As Jones and Tukey wrote:

With this formulation, a conclusion is in error only when it is “a reversal,” when it as-

serts one direction while the (unknown) truth is in the other direction. Asserting that

the direction is not yet established may constitute a wasted opportunity, but it is not an

error. We want to control the rate of error, the reversal rate, while minimizing wasted

opportunity, that is, while minimizing indefinite results. (p. 412)

So one of two things is true—either mh . mn or mh , mn. If mh . mn is actually true,

meaning that homophobic males are more aroused by homosexual videos, then the only

error we can make is to erroneously conclude the reverse—that mh , mn. And the probabil-

ity of that error is, at most, .025 if we were to use the traditional two-tailed test with 2.5%

of the area in each tail. If, on the other hand, mh , mn, the only error we can make is to con-

clude that mh . mn, the probability of which is also at most .025. Thus if we use the tradi-

tional cutoffs of a two-tailed test, the probability of a Type I error is at most .025. We don’t

have to add areas or probabilities here because only one of those errors is possible. Jones

and Tukey go on to suggest that we could use the cutoffs corresponding to 5% in each tail

(the traditional two-tailed test at s 5 .10) and still have only a 5% chance of making a

Type I error. While this is true, I think that you will find that many traditionally-trained col-

leagues, including journal reviewers, will start getting a bit “squirrelly” at this point, and

you might not want to push your luck.

I wouldn’t be surprised if at this point students are throwing up their hands with one of

two objections. First would be the claim that we are just “splitting hairs.” My answer to that

is “No, we’re not.” These issues have been hotly debated in the literature, with some people

arguing that we abandon hypothesis testing altogether (Hunter, 1997). The Jones-Tukey for-

mulations make sense of hypothesis testing and increase statistical power if you follow all

of their suggestions. (I believe that they would prefer the phrase “drawing conclusions” to

“hypothesis testing.”) Second, students could very well be asking why I spent many pages

laying out the traditional approach and then another page or two saying why it is all wrong.

I tried to answer that at the beginning—the traditional approach is so ingrained in what 

we do that you cannot possibly get by without understanding it. It will lie behind most of the

studies you read, and your colleagues will expect that you understand it. The fact that there

is an alternative, and better, approach does not release you from the need to understand 

the traditional approach. And unless you change a levels, as Jones and Tukey recommend,

you will be doing almost the same things but coming to more sensible conclusions. My

strong recommendation is that you consistently use two-tailed tests, probably at a 5 .05,

but keep in mind that the probability that you will come to an incorrect conclusion about the

direction of the difference is really only .025 if you stick with a 5 .05.

4.11 Effect Size

Earlier in the chapter I mentioned that there was a movement afoot to go beyond simple

significance testing to report some measure of the size of an effect, often referred to as the

effect size. In fact, some professional journals are already insisting on it. I will expand on

this topic in some detail as we go along, but it is worth noting here that I have already

sneaked a measure of effect size past you, and I’ll bet that nobody noticed. When writing

about waiting for parking spaces to open up, I pointed out that Ruback and Juieng (1997)

found a difference of 6.88 seconds, which is not trivial when you are the one doing the

waiting. I could have gone a step further and pointed out that, since the standard deviation

of waiting times was 14.6 seconds, we are seeing a difference of nearly half a standard
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deviation. Expressing the difference between waiting times in terms of the actual number

of seconds or as being “nearly half a standard deviation” provides a measure of how large

the effect was—and is a very reputable measure. There is much more to be said about ef-

fect sizes, but at least this gives you some idea of what we are talking about. I will expand

on this idea repeatedly in the following chapters.

I should say one more thing on this topic. One of the difficulties in understanding the

debates over hypothesis testing is that for years statisticians have been very sloppy in se-

lecting their terminology. Thus, for example, in rejecting the null hypothesis it is very com-

mon for someone to report that they have found a “significant difference.” Most readers

could be excused for taking this to mean that the study has found an “important difference,”

but that is not at all what is meant. When statisticians and researchers say “significant,” that

is shorthand for “statistically significant.” It merely means that the difference, even if triv-

ial, is not likely to be due to chance. The recent emphasis on effect sizes is intended to go

beyond statements about chance, and tell the reader something, though perhaps not much,

about “importance.” I will try in this book to insert the word “statistically” before “signifi-

cant,” when that is what I mean, but I can’t promise to always remember.

4.12 A Final Worked Example

A number of years ago the mean on the verbal section of the Graduate Record Exam (GRE)

was 489 with a standard deviation of 126. These statistics were based on all students taking

the exam in that year, the vast majority of whom were native speakers of English. Suppose

we have an application from an individual with a Chinese name who scored particularly

low (e.g., 220). If this individual were a native speaker of English, that score would be suf-

ficiently low for us to question his suitability for graduate school unless the rest of the doc-

umentation is considerably better. If, however, this student were not a native speaker of

English, we would probably disregard the low score entirely, on the grounds that it is a poor

reflection of his abilities.

I will stick with the traditional approach to hypothesis testing in what follows, though

you should be able to see the difference between this and the Jones and Tukey approach. We

have two possible choices here, namely that the individual is or is not a native speaker of

English. If he is a native speaker, we know the mean and the standard deviation of the popu-

lation from which his score was sampled: 489 and 126, respectively. If he is not a native

speaker, we have no idea what the mean and the standard deviation are for the population

from which his score was sampled. To help us to draw a reasonable conclusion about this

person’s status, we will set up the null hypothesis that this individual is a native speaker, or,

more precisely, he was drawn from a population with a mean of 489; We will

identify with the hypothesis that the individual is not a native speaker ( ). (Note

that Jones and Tukey would [simultaneously] test H
1
: m , 489 and H

2
: m . 489, and would

associate the null hypothesis with the conclusion that we don’t have sufficient data to make

a decision.)

For the traditional approach we now need to choose between a one-tailed and a two-tailed

test. In this particular case we will choose a one-tailed test on the grounds that the GRE is

given in English, and it is difficult to imagine that a population of nonnative speakers would

have a mean higher than the mean of native speakers of English on a test that is given in

English. (Note: This does not mean that non-English speakers may not, singly or as a popula-

tion, outscore English speakers on a fairly administered test. It just means that they are

unlikely to do so, especially as a group, when both groups take the test in English.) Because

we have chosen a one-tailed test, we have set up the alternative hypothesis as H
1
:m , 489.

m ± 489H1

H0:m = 489.
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Before we can apply our statistical procedures to the data at hand, we must make one

additional decision. We have to decide on a level of significance for our test. In this case I

have chosen to run the test at the 5% level, instead of at the 1% level, because I am using 

a 5 .05 as a standard for this book and also because I am more worried about a Type II

error than I am about a Type I error. If I make a Type I error and erroneously conclude that

the student is not a native speaker when in fact he is, it is very likely that the rest of his cre-

dentials will exclude him from further consideration anyway. If I make a Type II error and

do not identify him as a nonnative speaker, I am doing him a real injustice.

Next we need to calculate the probability of a student receiving a score at least as low
as 220 when is true. We first calculate the z score corresponding to a raw

score of 220. From Chapter 3 we know how to make such a calculation.

The student’s score is 2.13 standard deviations below the mean of all test takers. We

then go to tables of z to calculate the probability that we would obtain a z value less than or

equal to 22.13. From Appendix z we find that this probability is .017. Because this proba-

bility is less than the 5% significance level we chose to work with, we will reject the null

hypothesis on the grounds that it is too unlikely that we would obtain a score as low as 220

if we had sampled an observation from a population of native speakers of English who had

taken the GRE. Instead we will conclude that we have an observation from an individual

who is not a native speaker of English.

It is important to note that in rejecting the null hypothesis, we could have made a Type I

error. We know that if we do sample speakers of English, 1.7% of them will score this low.

It is possible that our applicant was a native speaker who just did poorly. All we are saying

is that such an event is sufficiently unlikely that we will place our bets with the alternative

hypothesis.

4.13 Back to Course Evaluations 
and Rude Motorists

We started this chapter with a discussion of the relationship between how students evalu-

ate a course and the grade they expect to receive in that course. Our second example

looked at the probability of motorists honking their horns at low- and high-status cars that

did not move when a traffic light changed to green. As you will see in Chapter 9, the first

example uses a correlation coefficient to represent the degree of relationship. The second

example simply compares two proportions. Both examples can be dealt with using the

techniques discussed in this chapter. In the first case, if there were no relationship between

the grades and ratings, we would expect that the true correlation in the population of stu-

dents is 0.00. We simply set up the null hypothesis that the population correlation is 0.00

and then ask about the probability that a sample of observations would produce a correla-

tion as large as the one we obtained. In the second case, we set up the null hypothesis that

there is no difference between the proportion of motorists in the population who honk at

low- and high-status cars. Then we calculate the probability of obtaining a difference in

sample proportions as large as the one we obtained (in our case .34) if the null hypothesis

is true. This is very similar to what we did with the parking example except that this in-

volves proportions instead of means. I do not expect you to be able to run these tests now,

but you should have a general sense of the way we will set up the problem when we do

learn to run them.

z =
X 2 m

s
=

(220 2 489)

126
=

2269

126
= 22.13.

H0:m = 489
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Exercises

4.1 Suppose I told you that last night’s NHL hockey game resulted in a score of 26–13. You

would probably decide that I had misread the paper and was discussing something other

than a hockey score. In effect, you have just tested and rejected a null hypothesis.

a. What was the null hypothesis?

b. Outline the hypothesis-testing procedure that you have just applied.

4.2 For the past year I have spent about $4.00 a day for lunch, give or take a quarter or so.

a. Draw a rough sketch of this distribution of daily expenditures.

b. If, without looking at the bill, I paid for my lunch with a $5 bill and received $.75 in

change, should I worry that I was overcharged?

c. Explain the logic involved in your answer to part (b).

4.3 What would be a Type I error in Exercise 4.2?

4.4 What would be a Type II error in Exercise 4.2?

4.5 Using the example in Exercise 4.2, describe what we mean by the rejection region and the

critical value.

4.6 Why might I want to adopt a one-tailed test in Exercise 4.2, and which tail should I choose?

What would happen if I chose the wrong tail?

4.7 A recently admitted class of graduate students at a large state university has a mean Gradu-

ate Record Exam verbal score of 650 with a standard deviation of 50. (The scores are rea-

sonably normally distributed.) One student, whose mother just happens to be on the board

of trustees, was admitted with a GRE score of 490. Should the local newspaper editor, who

loves scandals, write a scathing editorial about favoritism?

4.8 Why is such a small standard deviation reasonable in Exercise 4.7?

4.9 Why might (or might not) the GRE scores be normally distributed for the restricted sample

(admitted students) in Exercise 4.7?

4.10 Imagine that you have just invented a statistical test called the Mode Test to test whether the

mode of a population is some value (e.g., 100). The statistic (M) is calculated as 

Describe how you could obtain the sampling distribution of M. (Note: This is a purely ficti-

tious statistic as far as I am aware.)

4.11 In Exercise 4.10 what would we call M in the terminology of this chapter?

M =
Sample mode

Sample range
.

Key Terms

Sampling error (Introduction)

Hypothesis testing (4.1)

Sampling distributions (4.2)

Standard error (4.2)

Sampling distribution of the differences

between means (4.2)

Research hypothesis (4.3)

Null hypothesis (H
0
) (4.3)

Alternative hypothesis (H
1
) (4.4)

Sample statistics (4.5)

Test statistics (4.5)

Decision-making (4.6)

Rejection level (significance level) (4.6)

Rejection region (4.6)

Critical value (4.7)

Type I error (4.7)

a (alpha) (4.7)

Type II error (4.7)

b (beta) (4.7)

Power (4.7)

One-tailed test (directional test) (4.8)

Two-tailed test (nondirectional test) (4.8)

Conditional probabilities (4.9)

Effect size (4.11)
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4.12 Describe a situation in daily life in which we routinely test hypotheses without realizing it.

4.13 In Exercise 4.7 what would be the alternative hypothesis ( )?

4.14 Define “sampling error.”

4.15 What is the difference between a “distribution” and a “sampling distribution”?

4.16 How would decreasing a affect the probabilities given in Table 4.1?

4.17 Give two examples of research hypotheses and state the corresponding null hypotheses.

4.18 For the distribution in Figure 4.3, I said that the probability of a Type II error (b) is .74.

Show how this probability was obtained.

4.19 Rerun the calculations in Exercise 4.18 for a 5 .01.

4.20 In the example in Section 4.11 how would the test have differed if we had chosen to run a

two-tailed test?

4.21 Describe the steps you would go through to flesh out the example given in this chapter about

the course evaluations. In other words, how might you go about determining whether there

truly is a relationship between grades and course evaluations?

4.22 Describe the steps you would go through to test the hypothesis that motorists are ruder to

fellow drivers who drive low-status cars than to those who drive high-status cars.

Discussion Questions

4.23 In Chapter 1 we discussed a study of allowances for fourth-grade children. We considered

that study again in the exercises for Chapter 2, where you generated data that might have

been found in such a study.

a. Consider how you would go about testing the research hypothesis that boys receive

more allowance than girls. What would be the null hypothesis?

b. Would you use a one- or a two-tailed test?

c. What results might lead you to reject the null hypothesis and what might lead you to

retain it?

d. What single thing might you do to make this study more convincing?

4.24 Simon and Bruce (1991), in demonstrating a different approach to statistics called “Resam-

pling statistics”,5 tested the null hypothesis that the mean price of liquor (in 1961) for the

16 “monopoly” states, where the state owned the liquor stores, was different from the mean

price in the 26 “private” states, where liquor stores were privately owned. (The means were

$4.35 and $4.84, respectively, giving you some hint at the effects of inflation.) For technical

reasons several states don’t conform to this scheme and could not be analyzed.

a. What is the null hypothesis that we are really testing?

b. What label would you apply to $4.35 and $4.84?

c. If these are the only states that qualify for our consideration, why are we testing a null

hypothesis in the first place?

d. Can you think of a situation where it does make sense to test a null hypothesis here?

4.25 Discuss the different ways that the traditional approach to hypothesis testing and the Jones

and Tukey approach would address the question(s) inherent in the example of waiting times

for a parking space.

4.26 What effect might the suggestion to experimenters that they report effect sizes have on the

conclusions we draw from future research studies in Psychology?

H1

5 The home page containing information on this approach is available at http://www.resample.com/. I will discuss
resampling statistics at some length in Chapter 18.
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4.27 There has been a suggestion in the literature that women are more likely to seek help for de-

pression than men. A graduate student took a sample of 100 cases from area psychologists

and found that 61 of them were women. You can model what the data would look like over

repeated samplings when the probability of a case being a woman by creating 1000 samples

of 100 cases each when p(woman) 5 .50. This is easily done using SPSS by first creating a

file with 1000 rows. (This is a nuisance to do, and you can best do it by downloading the

file http://www.uvm.edu/~dhowell/methods7/DataFiles/Ex4–7.dat which already has a file

set up with 1000 rows, though that is all that is in the file.) Then use the Transform/

Compute menu to create numberwomen 5 RV.BINOM(100,.5). For each trial the entry for

numberwomen is the number of people in that sample of 100 who were women.

a. Does it seem likely that 61 women (out of 100 clients) would arise if p 5 .50?

b. How would you test the hypothesis that 75% of depressed cases are women?
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CHAPTER 5

Basic Concepts 

of Probability

Object ives

To develop the concept of probability, present some basic rules for manipulating

probabilities, outline the basic ideas behind Bayes’ theorem, and introduce the

binomial distribution and its role in hypothesis testing.

Contents

5.1 Probability

5.2 Basic Terminology and Rules

5.3 Discrete versus Continuous Variables

5.4 Probability Distributions for Discrete Variables

5.5 Probability Distributions for Continuous Variables

5.6 Permutations and Combinations

5.7 Bayes’ Theorem

5.8 The Binomial Distribution

5.9 Using the Binomial Distribution to Test Hypotheses

5.10 The Multinomial Distribution

111



IN CHAPTER 3 we began to make use of the concept of probability. For example, we saw that

about 19% of children have Behavior Problem scores between 52 and 56 and thus con-

cluded that if we chose a child at random, the probability that he or she would score be-

tween 52 and 56 is .19. When we begin concentrating on inferential statistics in Chapter 6,

we will rely heavily on statements of probability. There we will be making statements of

the form, “If this hypothesis were correct, the probability is only .015 that we would have

obtained a result as extreme as the one we actually obtained.” If we are to rely on state-

ments of probability, it is important to understand what we mean by probability and to

understand a few basic rules for computing and manipulating probabilities. That is the pur-

pose of this chapter.

The material covered in this chapter has been selected for two reasons. First, it is di-

rectly applicable to an understanding of the material presented in the remainder of the

book. Second, it is intended to allow you to make simple calculations of probabilities that

are likely to be useful to you. Material that does not satisfy either of these qualifications

has been deliberately omitted. For example, we will not consider such things as the proba-

bility of drawing the queen of hearts, given that 14 cards, including the four of hearts, have

already been drawn. Nor will we consider the probability that your desk light will burn out

in the next 25 hours of use, given that it has already lasted 250 hours. The student who is

interested in those topics is encouraged to take a course in probability theory, in which such

material can be covered in depth.

5.1 Probability

The concept of probability can be viewed in several different ways. There is not even gen-

eral agreement as to what we mean by the word probability. The oldest and perhaps the

most common definition of a probability is what is called the analytic view. One of the ex-

amples that is often drawn into discussions of probability is that of one of my favorite can-

dies, M&M’s. M&M’s are a good example because everyone is familiar with them, they

are easy to use in class demonstrations because they don’t get your hand all sticky, and you

can eat them when you’re done. The Mars Candy Company is so fond of having them used

as an example that they keep lists of the percentage of colors in each bag—though they

seem to keep moving the lists around, making it a challenge to find them on occasions.1 At

present the data on the milk chocolate version is shown in Table 5.1.

Suppose that you have a bag of M&M’s in front of you and you reach in and pull one

out. Just to simplify what follows, assume that there are 100 M&M’s in the bag, though
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1 Those instructors who have used several editions of this book will be pleased to see that the caramel example is
gone. I liked it, but other people got bored with it.

Table 5.1 Distribution of colors in an average bag of M&M’s

Color Percentage

Brown 13

Red 13

Yellow 14

Green 16

Orange 20

Blue 24

Total 100

analytic view



that is not a requirement. What is the probability that you will pull out a blue M&M? You

can all probably answer this question without knowing anything more about probability.

Because 24% of the M&M’s are blue, and because you are sampling randomly, the proba-

bility of drawing a blue M&M is .24. This example illustrates one definition of probability:

If an event can occur in A ways and can fail to occur in B ways, and if all possible ways

are equally likely (e.g., each M&M in the bag has an equal chance of being drawn),

then the probability of its occurrence is A/(A 1 B), and the probability of its failing to

occur is B/(A 1 B).

Because there are 24 ways of drawing a blue M&M (one for each of the 24 blue 

M&M’s in a bag of 100 M&M’s) and 76 ways of drawing a different color, A 5 24, B 5 76,

and p(A) 5 24/(24 1 76) 5 .24.

An alternative view of probability is the frequentist view. Suppose that we keep draw-

ing M&M’s from the bag, noting the color on each draw. In conducting this sampling study

we sample with replacement, meaning that each M&M is replaced before the next one is

drawn. If we made a very large number of draws, we would find that (very nearly) 24% of

the draws would result in a blue M&M. Thus we might define probability as the limit2 of

the relative frequency of occurrence of the desired event that we approach as the number

of draws increases.

Yet a third concept of probability is advocated by a number of theorists. That is the

concept of subjective probability. By this definition probability represents an individ-

ual’s subjective belief in the likelihood of the occurrence of an event. For example, the

statement, “I think that tomorrow will be a good day,” is a subjective statement of degree

of belief, which probably has very little to do with the long-range relative frequency of

the occurrence of good days, and in fact may have no mathematical basis whatsoever. This

is not to say that such a view of probability has no legitimate claim for our attention. Sub-

jective probabilities play an extremely important role in human decision-making and gov-

ern all aspects of our behavior. Just think of the number of decisions you make based on

subjective beliefs in the likelihood of certain outcomes. You order pasta for dinner be-

cause it is probably better than the mystery meat special; you plan to go skiing tomorrow

because the weather forecaster says that there is an 80% chance of snow overnight; you

bet your money on a horse because you think that the odds of its winning are better than

the 6:1 odds the bookies are offering. We will shortly discuss what is called Bayes’ theo-

rem, which is essential to the use of subjective probabilities. Statistical decisions as we

will make them here generally will be stated with respect to frequentist or analytical

approaches, although even so the interpretation of those probabilities has a strong subjec-

tive component.

Although the particular definition that you or I prefer may be important to each of us,

any of the definitions will lead to essentially the same result in terms of hypothesis testing,

the discussion of which runs through the rest of the book. (It should be said that those who

favor subjective probabilities often disagree with the general hypothesis-testing orienta-

tion.) In actual fact most people use the different approaches interchangeably. When we

say that the probability of losing at Russian roulette is 1/6, we are referring to the fact that

one of the gun’s six cylinders has a bullet in it. When we buy a particular car because

Consumer Reports says it has a good repair record, we are responding to the fact that a high

proportion of these cars have been relatively trouble-free. When we say that the probability
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2 The word limit refers to the fact that as we sample more and more M&M’s, the proportion of blue will get
closer and closer to some value. After 100 draws, the proportion might be .23; after 1000 draws it might be .242;
after 10,000 draws it might be .2398, and so on. Notice that the answer is coming closer and closer to 
p 5 .2400000 . . . . The value that is being approached is called the limit.
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of the Colorado Rockies winning the pennant is high, we are stating our subjective belief

in the likelihood of that event (or perhaps engaging in wishful thinking). But when we re-

ject some hypothesis because there is a very low probability that the actual data would have

been obtained if the hypothesis had been true, it may not be important which view of prob-

ability we hold.

5.2 Basic Terminology and Rules

The basic bit of data for a probability theorist is called an event. The word event is a term that

statisticians use to cover just about anything. An event can be the occurrence of a king when

we deal from a deck of cards, a score of 36 on a scale of likability, a classification of “female”

for the next person appointed to the Supreme Court, or the mean of a sample. Whenever you

speak of the probability of something, the “something” is called an event. When we are deal-

ing with a process as simple as flipping a coin, the event is the outcome of that flip—either

heads or tails. When we draw M&M’s out of a bag, the possible events are the 6 possible col-

ors. When we speak of a grade in a course, the possible events are the letters A, B, C, D, and F.

Two events are said to be independent events when the occurrence or nonoccurrence

of one has no effect on the occurrence or nonoccurrence of the other. The voting behaviors

of two randomly chosen subjects normally would be assumed to be independent, especially

with a secret ballot, because how one person votes could not be expected to influence how

the other will vote. However, the voting behaviors of two members of the same family

probably would not be independent events, because those people share many of the same

beliefs and attitudes. This would be true even if those two people were careful not to let the

other see their ballot.

Two events are said to be mutually exclusive if the occurrence of one event precludes

the occurrence of the other. For example, the standard college classes of First Year, Sopho-

more, Junior, and Senior are mutually exclusive because one person cannot be a member

of more than one class. A set of events is said to be exhaustive if it includes all possible

outcomes. Thus the four college classes in the previous example are exhaustive with re-

spect to full-time undergraduates, who have to fall in one or another of those categories—

if only to please the registrar’s office. At the same time, they are not exhaustive with respect

to total university enrollments, which include graduate students, medical students, nonma-

triculated students, hangers-on, and so forth.

As you already know, or could deduce from our definitions of probability, probabilities

range between 0.00 and 1.00. If some event has a probability of 1.00, then it must occur.

(Very few things have a probability of 1.00, including the probability that I will be able to

keep typing until I reach the end of this paragraph.) If some event has a probability of 0.00,

it is certain not to occur. The closer the probability comes to either extreme, the more likely

or unlikely is the occurrence of the event.

Basic Laws of Probability

Two important theorems are central to any discussion of probability. (If my use of the word

theorems makes you nervous, substitute the word rules.) They are often referred to as the

additive and multiplicative rules.

The Additive Rule

To illustrate the additive rule, we will use our M&M’s example and consider all six 

colors. From Table 5.1 we know from the analytic definition of probability that
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p(blue) 5 24/100 5 .24, p(green) 5 16/100 5 .16, and so on. But what is the probability

that I will draw a blue or green M&M instead of an M&M of some other color? Here we

need the additive law of probability.

Given a set of mutually exclusive events, the probability of the occurrence of one event

or another is equal to the sum of their separate probabilities.

Thus, p(blue or green) 5 p(blue) 1 p(green) 5 .24 1 .16 5 .40. Notice that we have im-

posed the restriction that the events must be mutually exclusive, meaning that the occurrence

of one event precludes the occurrence of the other. If an M&M is blue, it can’t be green. This

requirement is important. About one-half of the population of this country are female, and

about one-half of the population have traditionally feminine names. But the probability that

a person chosen at random will be female or will have a feminine name is obviously not.

50 1 .50 5 1.00. Here the two events are not mutually exclusive. However, the probability

that a girl born in Vermont in 1987 was named Ashley or Sarah, the two most common girls’

names in that year, equals p(Ashley) 1 p(Sarah) 5 .010 1 .009 5 .019. Here the names are

mutually exclusive because you can’t have both Ashley and Sarah as your first name (unless

your parents got carried away and combined the two with a hyphen).

The Multiplicative Rule

Let’s continue with the M&M’s where p(blue) 5 .24, p(green) 5 .16, and p(other) 5 .60.

Suppose I draw two M&M’s, replacing the first before drawing the second. What is the

probability that I will draw a blue M&M on the first trial and a blue one on the second?

Here we need to invoke the multiplicative law of probability.

The probability of the joint occurrence of two or more independent events is the prod-

uct of their individual probabilities.

Thus p(blue, blue) 5 p(blue) 3 p(blue) 5 .24 3 .24 5 .0576. Similarly, the probability of

a blue M&M followed by a green one is p(blue, green) 5 p(blue) 3 p(green) 5

.24 3 .16 5 .0384. Notice that we have restricted ourselves to independent events, mean-

ing the occurrence of one event can have no effect on the occurrence or nonoccurrence of

the other. Because gender and name are not independent, it would be wrong to state that

p(female with feminine name) 5 .50 3 .50 5 .25. However it most likely would be correct

to state that p(female, born in January) 5 .50 3 1/12 5 .50 3 .083 5 .042, because I know

of no data to suggest that gender is dependent on birth month. (If month and gender were

related, my calculation would be wrong.)

In Chapter 6 we will use the multiplicative law to answer questions about the independ-

ence of two variables. An example from that chapter will help illustrate a specific use of this

law. In a study to be discussed in Chapter Six, Geller, Witmer, and Orebaugh (1976) wanted

to test the hypothesis that what someone did with a supermarket flier depended on whether

the flier contained a request not to litter. Geller et al. distributed fliers with and without this

message and at the end of the day searched the store to find where the fliers had been left.

Testing their hypothesis involves, in part, calculating the probability that a flier would con-

tain a message about littering and would be found in a trash can. We need to calculate what

this probability would be if the two events (contains message about littering and flier in

trash) are independent, as would be the case if the message had no effect. If we assume that

these two events are independent, the multiplicative law tells us that p(message, trash) 5

p(message) 3 p(trash). In their study 49% of the fliers contained a message, so the proba-

bility that a flier chosen at random would contain the message is .49. Similarly, 6.8% of the

fliers were later found in the trash, giving p(trash) 5 .068. Therefore, if the two events are

independent, p(message, trash) 5 .49 3 .068 5 .033. (In fact, 4.5% of the fliers with
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messages were found in the trash, which is a bit higher than we would expect if the ultimate

disposal of the fliers were independent of the message. If this difference is reliable, what

does this suggest to you about the effectiveness of the message?)

Finally we can take a simple example that illustrates both the additive and the multi-

plicative laws. What is the probability that over two trials (sampling with replacement) I

will draw one blue M&M and one green one, ignoring the order in which they are drawn?

First we use the multiplicative rule to calculate

Because these two outcomes satisfy our requirement (and because they are the only ones

that do), we now need to know the probability that one or the other of these outcomes will

occur. Here we apply the additive rule:

Thus the probability of obtaining one M&M of each of those colors over two draws is

approximately .08—that is, it will occur a little less than one-tenth of the time.

Students sometimes get confused over the additive and multiplicative laws because

they almost sound the same when you hear them quickly. One useful idea is to realize the

difference between the situations in which the rules apply. In those situations in which you

use the additive rule, you know that you are going to have one outcome. An M&M that you

draw may be blue or green, but there is only going to be one of them. In the multiplicative

case, we are speaking about at least two outcomes (e.g., the probability that we will get one

blue M&M and one green one). For single outcomes we add probabilities; for multiple

independent outcomes we multiply them.

Sampling with Replacement

Why do I keep referring to “sampling with replacement?” The answer goes back to the is-

sue of independence. Consider the example with blue and green M&M’s. We had 24 blue

M&M’s and 16 green ones in the bag of 100 M&M’s. On the first trial the probability of a

blue M&M is .24/100 5 .24. If I put that M&M back before I draw again, there will still

be an .24/.76 split, and the probability of a blue M&M on the next draw will still be

24/100 5 .24. But if I did not replace the M&M, the probability of a blue M&M on Trial

2 would depend on the result of Trial 1. If I had drawn a blue one on Trial 1, there would

be 23 blue ones and 76 of other colors remaining, and p(blue) 5 23/99 5 .2323. If I had

drawn a green one on Trial 1, for Trial 2 p(blue) 5 24/99 5 .2424. So when I sample with

replacement, p(blue) stays the same from trial to trial, whereas when I sample without

replacement the probability keeps changing. To take an extreme example, if I sample

without replacement, what is the probability of exactly 25 blue M&M’s out of 60 draws?

The answer, of course, is .00, because there are only 24 blue M&M’s to begin with and it

is impossible to draw 25 of them. Sampling with replacement, however, would produce a

possible result, though the probability would only be .0011.

Joint and Conditional Probabilities

Two types of probabilities play an important role in discussions of probability: joint proba-

bilities and conditional probabilities.

A joint probability is defined simply as the probability of the co-occurrence of two or

more events. For example, in Geller’s study of supermarket fliers, the probability that a flier

would both contain a message about littering and be found in the trash is a joint probability,

p(blue, green) 1 p(green, blue) = .0384 1 .0384 = .0768

p(green, blue) = .16 3 .24 = .0384

p(blue, green) = .24 3 .16 = .0384
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as is the probability that a flier would both contain a message about littering and be found

stuffed down behind the Raisin Bran. Given two events, their joint probability is denoted as

p(A, B), just as we have used p(blue, green) or p(message, trash). If those two events are in-

dependent, then the probability of their joint occurrence can be found by using the multi-

plicative law, as we have just seen. If they are not independent, the probability of their joint

occurrence is more complicated to compute and will differ from what it would be if the

events were independent. We won’t compute that probability here.

A conditional probability is the probability that one event will occur given that some

other event has occurred. The probability that a person will contract AIDS given that he or

she is an intravenous drug user is a conditional probability. The probability that an adver-

tising flier will be thrown in the trash given that it contains a message about littering is an-

other example. A third example is a phrase that occurs repeatedly throughout this book: “If

the null hypothesis is true, the probability of obtaining a result such as this is. . . .” Here I

have substituted the word if for given, but the meaning is the same.

With two events, A and B, the conditional probability of A given B is denoted by use of

a vertical bar, as p(A | B), for example, p(AIDS | drug user) or p(trash | message).

We often assume, with some justification, that parenthood breeds responsibility. Peo-

ple who have spent years acting in careless and irrational ways somehow seem to turn into

different people once they become parents, changing many of their old behavior patterns.

(Just wait a few years.) Suppose that a radio station sampled 100 people, 20 of whom had

children. They found that 30 of the people sampled used seat belts, and that 15 of those

people had children. The results are shown in Table 5.2.

The information in Table 5.2 allows us to calculate the simple, joint, and conditional

probabilities. The simple probability that a person sampled at random will use a seat belt is

30/100 5 .30. The joint probability that a person will have children and will wear a seat belt

is 15/100 5 .15. The conditional probability of a person using a seat belt given that he or she

has children is 15/20 5 .75. Do not confuse joint and conditional probabilities. As you can

see, they are quite different. You might wonder why I didn’t calculate the joint probability

here by multiplying the appropriate simple probabilities. The use of the multiplicative law re-

quires that parenthood and seat belt use be independent. In this example they are not, because

the data show that whether people use seat belts depends very much on whether or not they

have children. (If I had assumed independence, I would have predicted the joint probability

to be .30 3 .20 5 .06, which is less than half the size of the actual obtained value.)

To take another example, the probability that you have been drinking alcoholic beverages

and that you have an accident is a joint probability. This probability is not very high, because

relatively few people are drinking at any one time and relatively few people have accidents.

However, the probability that you have an accident given that you have been drinking, or, in

reverse, the probability that you have been drinking given that you have an accident, are both

much higher. At night the conditional probability of p(drinking | accident) approaches .50,

since nearly half of all automobile accidents at night in the United States involve alcohol. I

don’t know the conditional probability of p(accident | drinking), but I do know that it is much

higher than the unconditional probability of an accident, that is, p(accident).
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Table 5.2 The relationship between parenthood and seat belt use

Wear Seat Do Not Wear 

Parenthood belt Seat belt Total

Children 15 5 20

No children 15 65 80

Total 30 70 100
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5.3 Discrete versus Continuous Variables

In Chapter 1, a distinction was made between discrete and continuous variables. As mathe-

maticians view things, a discrete variable is one that can take on a countable number of dif-

ferent values, whereas a continuous variable is one that can take on an infinite number of

different values. For example, the number of people attending a specific movie theater

tonight is a discrete variable because we literally can count the number of people entering

the theater, and there is no such thing as a fractional person. However, the distance between

two people in a study of personal space is a continuous variable because the distance could

be 2, or 2.8, or 2.8173754814 feet. Although the distinction given here is technically cor-

rect, common usage is somewhat different.

In practice when we speak of a discrete variable, we usually mean a variable that takes

on one of a relatively small number of possible values (e.g., a five-point scale of socioeco-

nomic status). A variable that can take on one of many possible values is generally treated

as a continuous variable if the values represent at least an ordinal scale. Thus we usually

treat an IQ score as a continuous variable, even though we recognize that IQ scores come

in whole units and we will not find someone with an IQ of 105.317. In Chapter 3, I referred

to the Achenbach Total Behavior Problem score as normally distributed, even though I

know that it can only take on positive values that are integers, whereas a normal distribu-

tion can take on all values between . I treat it as normal because it is close enough to

normal that my results will be reasonably accurate.

The distinction between discrete and continuous variables is reintroduced here because

the distributions of the two kinds of variables are treated somewhat differently in probabil-

ity theory. With discrete variables we can speak of the probability of a specific outcome.

With continuous variables, on the other hand, we need to speak of the probability of ob-

taining a value that falls within a specific interval.

5.4 Probability Distributions for Discrete Variables

An interesting example of a discrete probability distribution is seen in Figure 5.1. The data

plotted in this figure come from a study by Campbell, Converse, and Rodgers (1976), in

which they asked 2164 respondents to rate on a 1–5 scale the importance they attach to var-

ious aspects of their lives (1 5 extremely important, 5 5 not at all important). Figure 5.1
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presents the distribution of responses for several of these aspects. The possible values of X
(the rating) are presented on the abscissa (X-axis), and the relative frequency (or probabil-

ity) of people choosing that response is plotted on the ordinate (Y-axis). From the figure

you can see that the distributions of responses to questions concerning health, friends, and

savings are quite different. The probability that a person chosen at random will consider

his or her health to be extremely important is .70, whereas the probability that the same

person will consider a large bank account to be extremely important is only .16. (So much

for the stereotypic American Dream.) Campbell et al. collected their data in the mid-1970s.

Would you expect to find similar results today? How may they differ?

5.5 Probability Distributions for Continuous Variables

When we move from discrete to continuous probability distributions, things become more

complicated. We dealt with a continuous distribution when we considered the normal dis-

tribution in Chapter 3. You may recall that in that chapter we labeled the ordinate of the

distribution “density.” We also spoke in terms of intervals rather than in terms of specific

outcomes. Now we need to elaborate somewhat on those points.

Figure 5.2 shows the approximate distribution of the age at which children first learn to

walk (based on data from Hindley et al., 1966). The mean is approximately 14 months, the

standard deviation is approximately three months, and the distribution is positively skewed.

You will notice that in this figure the ordinate is labeled “density,” whereas in Figure 5.1 it

was labeled “relative frequency.” Density is not synonymous with probability, and it is

probably best thought of as merely the height of the curve at different values of X. At the

same time, the fact that the curve is higher near 14 months than it is near 12 months tells us

that children are more likely to walk at around 14 months than at about one year. The rea-

son for changing the label on the ordinate is that we now are dealing with a continuous dis-

tribution rather than a discrete one. If you think about it for a moment, you will realize that

although the highest point of the curve is at 14 months, the probability that a child picked

at random will first walk at exactly 14 months (i.e., 14.00000000 months) is infinitely

small—statisticians would argue that it is in fact 0. Similarly, the probability of first walking

at 14.00000001 months also is infinitely small. This suggests that it does not make any sense

to speak of the probability of any specific outcome. On the other hand, we know that many

children start walking at approximately 14 months, and it does make considerable sense 

to speak of the probability of obtaining a score that falls within some specified interval. 
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For example, we might be interested in the probability that an infant will start walking at

14 months plus or minus one-half month. Such an interval is shown in Figure 5.3. If we ar-

bitrarily define the total area under the curve to be 1.00, then the shaded area in Figure 5.3

between points a and b will be equal to the probability that an infant chosen at random will

begin walking at this time. Those of you who have had calculus will probably recognize

that if we knew the form of the equation that describes this distribution (i.e., if we knew

the equation for the curve), we would simply need to integrate the function over the inter-

val from a to b. For those of you who have not had calculus, it is sufficient to know that the

distributions with which we will work are adequately approximated by other distributions

that have already been tabled. In this book we will never integrate functions, but we will

often refer to tables of distributions. You have already had experience with this procedure

with regard to the normal distribution in Chapter 3.

We have just considered the area of Figure 5.3 between a and b, which is centered on

the mean. However, the same things could be said for any interval. In Figure 5.3 you can

also see the area that corresponds to the period that is one-half month on either side of

18 months (denoted as the shaded area between c and d). Although there is not enough

information in this example for us to calculate actual probabilities, it should be clear by in-

spection of Figure 5.3 that the one-month interval around 14 months has a higher probabil-

ity (greater shaded area) than the one-month interval around 18 months.

A good way to get a feel for areas under a curve is to take a piece of transparent graph

paper and lay it on top of the figure (or use a regular sheet of graph paper and hold the two up

to a light). If you count the number of squares that fall within a specified interval and divide

by the total number of squares under the whole curve, you will approximate the probability

that a randomly drawn score will fall within that interval. It should be obvious that the smaller

the size of the individual squares on the graph paper, the more accurate the approximation.

5.6 Permutations and Combinations

We will set continuous distributions aside until they are needed again in Chapter 7 and

beyond. For now, we will concentrate on two discrete distributions (the binomial and the

multinomial) that can be used to develop the chi-square test in Chapter 6. First we must

consider the concepts of permutations and combinations, which are required for a discus-

sion of those distributions.
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The special branch of mathematics dealing with the number of ways in which objects

can be put together (e.g., the number of different ways of forming a three-person commit-

tee with five people available) is known as combinatorics. Although not many instances in

this book require a knowledge of combinatorics, there are enough of them to make it nec-

essary to briefly define the concepts of permutations and combinations and to give formu-

lae for their calculation.

Permutations

We will start with a simple example that is easily expanded into a more useful and relevant

one. Assume that four people have entered a lottery for ice-cream cones. The names are

placed in a hat and drawn. The person whose name is drawn first wins a double-scoop

cone, the second wins a single-scoop cone, the third wins just the cone, and the fourth wins

nothing. Assume that the people are named Aaron, Barbara, Cathy, and David, abbreviated

A, B, C, and D. The following orders in which the names are drawn are all possible.

A B C D B A C D C A B D D A B C

A B D C B A D C C A D B D A C B

A C B D B C A D C B A D D B A C

A C D B B C D A C B D A D B C A

A D B C B D A C C D A B D C A B

A D C B B D C A C D B A D C B A

Each of these 24 orders presents a unique arrangement (called a permutation) of the

four names taken four at a time. If we represent the number of permutations (arrangements)

of N things taken r at a time as , then

where the symbol N! is read N factorial and represents the product of all integers from N
to 1. [In other words, By definition, 0! 5 1].

For our example of drawing four names for four entrants,

which agrees with the number of listed permutations.

Now, few people would get very excited about winning a cone without any ice cream

in it, so let’s eliminate that prize. Then out of the four people, only two will win on any

drawing. The order in which those two winners are drawn is still important, however, be-

cause the first person whose name is drawn wins a larger cone. In this case, we have four

names but are drawing only two out of the hat (since the other two are both losers). Thus,

we want to know the number of permutations of four names taken two at a time, ( ). We

can easily write down these permutations and count them:

A B B A C A D A

A C B C C B D B

A D B D C D D C

Or we can calculate the number of permutations directly:

P 4
2 =

4!

(4–2)!
=

4 # 3 # 2 # 1
2

= 12.

P 4
2

P 4
4 =

4!

(4 2 4)!
=

4!

0!
=

4 # 3 # 2 # 1
1

= 24

N! = N(N 2 1)(N 2 2)(N 2 3) Á (1).

P N
r =

N!

(N 2 r)!

PN
r
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Here there are 12 possible orderings of winners, and the ordering makes an important

difference—it determines not only who wins, but also which winner receives the larger cone.

Now we will take a more useful example involving permutations. Suppose we are de-

signing an experiment studying physical attractiveness judged from slides. We are con-

cerned that the order of presentation of the slides is important. Given that we have six

slides to present, in how many different ways can these be arranged? This again is a

question of permutations, because the ordering of the slides is important. More specifi-

cally, we want to know the permutations of six slides taken six at a time. Or, suppose that

we have six slides, but any given subject is going to see only three. Now how many

orders can be used? This is a question about the permutations of six slides taken three 

at a time.

For the first problem, in which subjects are presented with all six slides, we have

so there are 720 different ways of arranging six slides. If we want to present all possible

arrangements to each participant, we are going to need 720 trials, or some multiple of that.

That is a lot of trials. For the second problem, where we have six slides but show only three

to any one subject, we have

If we want to present all possible arrangements to each subject, we need 120 trials, a

result that may still be sufficiently large to lead us to modify our design. This is one reason

we often use random orderings rather than try to present all possible orderings.

Combinations

To return to the ice-cream lottery, suppose we now decide that we will award only single-

dip cones to the two winners. We will still draw the names of two winners out of a hat, but
we will no longer care which of the two names was drawn first—the result AB is for all

practical purposes the same as the result BA because in each case Aaron and Barbara win a

cone. When the order in which names are drawn is no longer important, we are no longer

interested in permutations. Instead, we are now interested in what are called combinations.

We want to know the number of possible combinations of winning names, but not the or-

der in which they were drawn.

We can enumerate these combinations as

A B B C

A C B D

A D C D

There are six of them. In other words, out of four people, we could compile six different

sets of winners. (If you look back to the previous enumeration of permutations of winners,

you will see that we have just combined outcomes containing the same names.)

Normally, we do not want to enumerate all possible combinations just to find out how

many of them there are. To calculate the number of combinations of N things taken r at a

time , we will define

CN
r =

N!

r!(N 2 r)!
.

CN
r

P 6
3 =

6!

(6 2 3)!
=

6!

3!
=

6 # 5 # 4 # 3 # 2 # 1
6

= 120.

P 6
6 =

6!

(6 2 6)!
=

6!

0!
=

6 # 5 # 4 # 3 # 2 # 1
1

= 720
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For our example,

Let’s return to the example involving slides to be presented to subjects. When we were

dealing with permutations, we worried about the way in which each set of slides was

arranged; that is, we worried about all possible orderings. Suppose we no longer care about

the order of the slides within sets, but we need to know how many different sets of slides

we could form if we had six slides but took only three at a time. This is a question of com-

binations.

For six slides taken three at a time, we have

If we wanted every subject to get a different set of three slides but did not care about the

order within a set, we would need 20 subjects.

Later in the book we will discuss procedures, called permutation tests, in which we

imagine that the data we have are all the data we could collect, but we want to imagine

what the sample means would likely be if the N scores fell into our two different experi-

mental groups (of n
1

and n
2

scores) purely at random. To solve that problem we could cal-

culate the number of different ways the observations could be assigned to groups, which is

just the number of combinations of N things taken n
1

and n
2

at a time. (Please don’t ask

why it’s called a permutation test if we are dealing with combinations—I haven’t figured

that out yet.) Knowing the number of different ways that data could have occurred at ran-

dom, we will calculate the percentage of those outcomes that would have produced differ-

ences in means at least as extreme as the difference we found. That would be the

probability of the data given H
0
:true, often written p(D|H

0
). I mention this here only to give

you an illustration of when we would want to know how to calculate permutations and

combinations.

5.7 Bayes’ Theorem

We have one more basic element of probability theory to cover before we go on to use

those basics in particular applications. This section was new to the last edition, not because

Bayes’ theorem is new (it was developed by Thomas Bayes and first read before the Royal

Society in London in 1764—3 years after Bayes’ death), but because it is becoming impor-

tant that people in the behavioral sciences know what the theorem is about, even if they for-

get the details of how to use it. (You can always look up the details.)

Bayes’ theorem is a theorem that tells us how to accumulate information to revise esti-

mates of probabilities. By “accumulate information” I mean a process in which you con-

tinually revise a probability estimate as more information comes in. Suppose that I tell you

that Fred was murdered and ask you for your personal (subjective) probability that Willard

committed the crime. You think he is certainly capable of it and not a very nice person, so

you say p 5 .15. Then I say that Willard was seen near the crime that night, and you raise

your probability to .20. Then I say that Willard owns the right type of gun, and you might

raise your probability to p 5 .25. Then I say that a fairly reliable witness says Willard was

at a baseball game with him at the time, and you drop your probability to p 5 .10. And 

so on. This is a process of accumulating information to come up with a probability that

some event occurred. For those interested in Bayesian statistics, probabilities are usually

C 6
3 =

6!

3!(6 2 3)!
=

6
2 # 5 # 4

2 # 3 # 2 # 1
3 # 2 # 1 # 3 # 2 # 1 = 20.

C 4
2 =

4!

2!(4 2 2)!
=

4 # 3 # 2 # 1
2 # 1 # 2 # 1 = 6.
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subjective or personal probabilities, meaning that they are a statement of person belief,

rather than having a frequentist or analytic basis as defined at the beginning of the chapter.

Bayes’ theorem will work perfectly well with any kind of probability, but it is most often

seen with subjective probabilities.

Let’s take a simple example that I have modified from Stefan Waner’s website at

http://people.hofstra.edu/Stefan_Waner/tutorialsf3/unit6_6.html. (That site has some other

examples that may be helpful if you want them.) Psychologists have become quite inter-

ested in sports medicine, and this example is actually something that is relevant. In addi-

tion it fits perfectly with the work on decision making.

Let’s assume that an unnamed bicyclist has just failed a test for banned steroids after

finishing his race. (Waner used rugby instead of racing, but we all know that rugby guys

are good guys and follow the rules, while we are beginning to have our doubts about cy-

clists.) Our cyclist argues that he is perfectly innocent and would never use performance

enhancing drugs. Our task is to determine a reasonable probability about the guilt or inno-

cence of our cyclist. We do have a few facts that we can work with. First of all, the drug

company that markets the test tells us that 95% of steroid users test positive. In other

words, if you use drugs the probability of a positive result is .95. That sounds impressive.

Drug companies like to look good, so they don’t bother to point out that 10% of nonusers

also test positive, but we coaxed it out of them. We also know one other thing, which is that

past experience has shown that 10% of this racing team uses steroids (and the other 90%

do not). We can put this information together Table 5.3.

One of the important pieces of information that we have is called the prior probability,

which is the probability that the person is a drug user before we acquire any further informa-

tion. This is shown in the table as p(user) 5 .10. What we want to determine is the posterior

probability, which is our new probability after we have been given data (in this case the data

that he failed the test).

Bayes’ theorem tells us that we can derive the posterior probability from the informa-

tion we have above. Specifically:

where U stands for the hypothesis that he did use steroids, represents that hypothesis

that he did not use steroids, and P stands for the new data (that he failed the test). From the

information in the above table we can calculate

=
(.95)(.10)

(.95)(.10) 1 (.15)(.90)
=

.095

(.095 1 .135)
= .413

p(U|P) =
p(P|U)*p(U)

p(P|U)*p(U) 1 p(P|NU) *p(NU)

NU

p(U|P) =
p(P|U) *p(U)

p(P|U)*p(U) 1 p(P|NU) *p(NU)
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Table 5.3 Probabilities associated with steroid use

Source of

Knowns p information

p(cyclist is user) p(U) .10 10% of team is

p(cyclist not a user) p(NU) .90 90% of team is not

p(positive | user) p(P|U) .95 From drug company

p(positive | non-user) p(P|NU) .10 Also from drug company

p(user | positive test) p(U|P) ? Our goal

prior probability

posterior

probability



Before we had the results of the drug test our subjective probability of his guilt was .10

because only 10% of the team used steroids. After the positive drug test our subjective

probability increased, but perhaps not as much as you would have expected. The posterior

probability is now .413.

As I said above, one of the powerful things about Bayes’ theorem is that you can work

with it iteratively. In other words you can now collect another piece of data (perhaps that

he has a needle in his possession), take .413 as your new prior probability and include

probabilities associated with the needle, and calculate a new posterior probability. In other

words we can accumulate data and keep refining our estimate.

A second feature of Bayes’ theorem is that it is useful even if some of our probabilities

are just intelligent guesses. For example, if the drug company had refused to tell us how

many nonusers tested positive and we took .20 as a tentative estimate, our resulting poste-

rior probability would be .345, which isn’t that far off from .413. In other words, weak evi-

dence is still better than no evidence.

A Second Example

There has been a lot of work in human decision making that has been based on applications

of Bayes’ theorem. Much of it focuses on comparing what people should do or say in a sit-

uation, with what they actually do or say, for the purpose of characterizing how people re-

ally make decisions. A famous problem was posed to decision makers by Tversky and

Kahneman (1980). This problem involved deciding which cab company was involved in an

accident. We are told that there was an accident involving one of the two cab companies

(Green Cab and Blue Cab) in the city, but we are not told which one it was. We know that

85% of the cabs in that city are Green, and 15% are Blue. The prior probabilities then,

based on the percentage of Green and Blue cabs, are .85 and .15. If that were all you knew

and were then told that someone was just run over by a cab, your best estimate would be

that the probability of it being a Green cab is .85. Then a witness comes along who thinks

that it was a Blue cab. You might think that was conclusive, but identifying colors at night

is not a foolproof task, and the insurance company tested our informant and found that he

was able to identify colors at night with only 80% accuracy. Thus if you show him a Blue

cab, the probability that he will correctly say Blue is .80, and the probability that he will

incorrectly say Green is .20. (Similarly if the cab is Green.) So our conditional probability

that the cab was a Blue cab, given that he said it was Blue is .80, and the conditional prob-

ability that it was Green given that he said it was Blue is .20. This information is sufficient

to allow you to calculate the posterior probability that the cab was a Blue cab given that the

witness said it was blue.

In the following formula let B stand for the event that it was a Blue cab, and let b stand

for the event that the witness called it blue. Similarly for G and g.

Most of the participants in Tversky and Kahneman’s experiment guessed that the proba-

bility that it was the blue cab was around .80, when in fact the correct answer is approxi-

mately .41. Thus Kahneman and Tversky concluded that judges place too much weight on

=
.12

.12 1 .17
=

.12

.29
= .414

=
(.80)(.15)

(.80)(.15) 1 (.20)(.85)

p(B|b) =
p(b|B)p(B)

p(b|B)p(B) 1 p(g|B)p(G)
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the witness’ testimony, and not enough weight on the prior probabilities. Here is a situa-

tion where the discrepancy between what judges say and what they should say gives us

clues to the strategies that judges use and where they go wrong. You would probably come

to a similar conclusion if you asked people about our example of steroid use in cyclists.

A Generic Formula

The formulae given above were framed in terms of the specific example under discussion.

It may be helpful to have a more generic formula that you can adapt to your own purposes.

Suppose that we are asking about the probability that some hypothesis (H) is true, given

certain data (D). For our examples H represented “the cyclist is a user” or “it was the Blue

Cab company.” The D represent “he tested positive” or “the witness reported that the cab

was blue” The symbol is read “not H” and stands for the case where the hypothesis is

false. Then

Back to the Hypothesis Testing

In Chapter Four we discussed hypothesis testing and different approaches to it. Bayes’ the-

orem has an important contribution to make to that discussion, although I am only going to

touch on the issue here. (I want you to understand the nature of the argument, but it is not

reasonable to expect you to go much beyond that.) Recall that I said that in some ways a

hypothesis test is not really designed to answer the question we would ideally like to an-

swer. We want to collect some data and then ask about the probability that the null hypoth-

esis is true given the data. But instead, our statistical procedures tell us the probability that

we would obtain those data given that the null hypothesis (H
0
) is true. In other words, we

want p(H
0
|D) when what we really have is p(D|H

0
). Many people have pointed out that we

could have the answer we seek if we simply apply Bayes’ theorem

where H
0

stands for the null hypothesis, H
1

stands for the alternative hypothesis, and D
stands for the data.

The problem here is that we don’t know most of the necessary probabilities. We could

estimate those probabilities, but those would only be estimates. It is one thing to be able to

calculate the probability of a user testing positive, because we can collect a group of known

users and see how many test positive. But it is quite a different thing to be able to estimate

the probability that the null hypothesis is true. Using the example of waiting times in park-

ing lots, you and I might have quite different prior probability estimates that people leave a

parking space at the same speed whether or not there is someone waiting. In addition, our

statistical test is designed to give us p(D|H
0
), which is helpful. But where do we obtain

p(D|H
1
) from if we don’t have a specific alternative hypothesis in mind (other than the

negation of the null)? It was one thing to estimate it when we had something concrete like

the percentage of nonusers who test positive, but considerably more difficult when the al-

ternative is that people leave more slowly when someone is waiting if we don’t know how
much more slowly. The probabilities would be dramatically different if we were thinking

in terms of “5 seconds more slowly” or “25 seconds more slowly.” The fact that these

probabilities we need are hard, or impossible, to come up with has stood in the way 

of developing this as a general approach to hypothesis testing—though many have tried.

p(H0|D) =
p(D|H0)p(H0)

p(D|H0)p(H0) 1 p(D|H1)p(H1)

p(H|D) =
p(D|H)p(H)

p(D|H)p(H) 1 p(D|H)p(H)

H

126 Chapter 5 Basic Concepts of Probability



(One approach is to choose a variety of reasonable estimates, and note how the results hold

up under those different estimates. If most believable estimates lead to the same conclu-

sion, that tells us something useful.)

I don’t mean to suggest that the application of Bayes’ theorem (known as Bayesian

statistics) is hopeless—it certainly is not. There are a lot of people who are very interested

in that approach, though its use is mostly restricted to situations where the null and alterna-

tive hypotheses are sharply defined, such as H
0
: 5 0 and H1: 5 3. But I have never

seen clearly specified alternative hypotheses in the behavioral sciences.

5.8 The Binomial Distribution

We now have all the information on probabilities and combinations that we need for under-

standing one of the most common probability distributions—the binomial distribution.

This distribution will be discussed briefly, and you will see how it can be used to test sim-

ple hypotheses. I don’t think that I can write a chapter on probability without discussing

the binomial distribution, but there are many students and instructors who would be more

than happy if I did. There certainly are many applications for it (the sign test to be dis-

cussed shortly is one example), but I would easily forgive you for not wanting to memorize

the necessary formulae—you can always look them up.

The binomial distribution deals with situations in which each of a number of independ-

ent trials results in one of two mutually exclusive outcomes. Such a trial is called a

Bernoulli trial (after a famous mathematician of the same name). The most common ex-

ample of a Bernoulli trial is flipping a coin, and the binomial distribution could be used to

give us the probability of, for example, 3 heads out of 5 tosses of a coin. Since most people

don’t get turned on by the prospect of flipping coins, think of calculating the probability

that 20 out of your 30 cancer patients will survive a diagnosis of lung cancer if the proba-

bility of survival for any one of them is .70.

The binomial distribution is an example of a discrete, rather than a continuous, dis-

tribution, since one can flip coins and obtain 3 heads or 4 heads, but not, for example,

3.897 heads. Similarly one can have 21 survivors or 22 survivors, but not anything in

between.

Mathematically, the binomial distribution is defined as

where

p(X) 5 The probability of X successes

N 5 The number of trials

p 5 The probability of a success on any one trial

q 5 (1 2 p) 5 The probability of a failure on any one trial

5 The number of combinations of N things take X at a time

The notation for combinations has been changed from r to X because the symbol X is

used to refer to data. Whether we call something r or X is arbitrary; the choice is made for

convenience or intelligibility.

The words success and failure are used as arbitrary labels for the two alternative out-

comes. If we are talking about cancer, the meaning is obvious. If we are talking about

whether a driver will turn left or right at a fork, the designation is arbitrary. We will require

that the trials be independent of one another, meaning that the result of has no influ-

ence on trialj.

triali

CN
X

p(X) = CN
X pXq(N2X) =

N!

X!(N 2 X)!
pXq(N2X)

mm
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To illustrate the binomial distribution we will take the classic example often referred to

as perception without awareness, or that loaded phrase “subliminal perception.”3 A com-

mon example would be to flash either a letter or a number on a screen for a very short pe-

riod (e.g., 3 msecs) and ask the respondent to report which it was. If we flash the two

stimuli at equal rates, and if the respondent is purely guessing with a response bias, then

the probability of being correct on any one trial is .50.

Suppose that we present the stimulus 10 times, and suppose that our respondent was

correct 9 times and wrong 1 time. What is the probability of being correct 90% of the time

(out of 10 trials) if the respondent really cannot see the stimulus and is just guessing?

The probability of being correct on any one trial is denoted p and equals .50, whereas the

probability of being incorrect on any one trial is denoted q and also equals .50. Then we have

But so

Thus, the probability of making 9 correct choices out of 10 trials with p 5 .50 is remote,

occurring approximately 1 time out of every 100 replications of this experiment. This

would lead me to believe that even though the respondent does not perceive a particular

stimulus, he is sufficiently aware to guess correctly at better than chance levels.

As a second example, the probability of 6 correct choices out of 10 trials is the probabil-

ity of any one such outcome ( ) times the number of possible 6:4 outcomes ). Thus,

Here our respondent is not performing significantly better than chance.

Plotting Binomial Distributions

You will notice that the probability of six correct choices is greater than the probability of

nine of them. This is what we would expect, since we are assuming that our judge is oper-

ating at random and would be right about as often as he is wrong. If we were to calculate

= .2051

=
5040

24
(.00098)

=
10 # 9 # 8 # 7 # 6!

6!4 # 3 # 2 # 1 (.5)10

=
10!

6!4!
(.5)6(.5)4

p(6) =
N!

X!(N 2 X)!
pXq(N2X)

C10
6p6q4

= 10(.001953)(.50) = .0098

p(9) =
10 # 9!

9!1!
(.509)(.501)

10! = 10 # 9 # 8 # Á # 2 # 1 = 10 # 9!

p(9) =
10!

9!1!
(.509)(.501)

p(X) =
N!

X!(N 2 X)!
pXq(N2X)
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3 Philip Merikle wrote an excellent entry in Kazdin’s Encyclopedia of Psychology (2000) covering subliminal per-
ception and debunking some of the extraordinary claims that are sometimes made about it. That chapter is avail-
able at http://watarts.uwaterloo.ca/~pmerikle/papers/SubliminalPerception.html.



the probabilities for each outcome between 0 and 10 correct out of 10, we would find the

results shown in Table 5.4. Observe from this table that the sum of those probabilities is 1,

reflecting the fact that all possible outcomes have been considered.

Now that we have calculated the probabilities of the individual outcomes, we can plot

the distribution of the results, as has been done in Figure 5.4. Although this distribution re-

sembles many of the distributions we have seen, it differs from them in two important

ways. First, notice that the ordinate has been labeled “probability” instead of “frequency.”

This is because Figure 5.4 is not a frequency distribution at all, but rather is a probability

distribution. This distinction is important. With frequency, or relative frequency, distribu-

tions, we were plotting the obtained outcomes of some experiment—that is, we were plot-

ting real data. Here we are not plotting real data; instead, we are plotting the probability

that some event or another will occur.

To reiterate a point made earlier, the fact that the ordinate (Y-axis) represents probabili-

ties instead of densities (as in the normal distribution) reflects the fact that the binomial

distribution deals with discrete rather than continuous outcomes. With a continuous distri-

bution such as the normal distribution, the probability of any specified individual outcome

is near 0. (The probability that you weigh 158.214567 pounds is vanishingly small.) With a

discrete distribution, however, the data fall into one or another of relatively few categories,

and probabilities for individual events can be obtained easily. In other words, with discrete

distributions we deal with the probability of individual events, whereas with continuous

distributions we deal with the probability of intervals of events.

The second way this distribution differs from many others we have discussed is that al-

though it is a sampling distribution, it is obtained mathematically rather than empirically.

The values on the abscissa represent statistics (the number of successes as obtained in a
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Table 5.4 Binomial distribution for p 5 .50, N 5 10
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Figure 5.4 Binomial distribution when N 5 10 and p 5 .50



given experiment) rather than individual observations or events. We have already discussed

sampling distributions in Chapter 4, and what we said there applies directly to what we will

consider in this chapter.

The Mean and Variance of a Binomial Distribution

In Chapter 2, we saw that it is possible to describe a distribution in many ways—we can

discuss its mean, its standard deviation, its skewness, and so on. From Figure 5.4 we can

see that the distribution for the outcomes for our judge is symmetric. This will always be

the case for p 5 q 5 .50, but not for other values of p and q. Furthermore, the mean and

standard deviation of any binomial distribution are easily calculated. They are always:

For example, Figure 5.4 shows the binomial distribution when N 5 10 and p 5 .50. The

mean of this distribution is 10(.5) 5 5 and the standard deviation is 

We will see shortly that being able to specify the mean and standard deviation of any

binomial distribution is exceptionally useful when it comes to testing hypotheses. First,

however, it is necessary to point out two more considerations.

In the example of perception without awareness, we assumed that our judge was choos-

ing at random (p 5 q 5 .50). Had we slowed down the stimulus so as to increase the per-

son’s accuracy of response on any one trial—the arithmetic would have been the same but

the results would have been different. For purposes of illustration, three distributions

obtained with different values of p are plotted in Figure 5.5.

12.5 = 1.58.

110(.5)(.5) =

Standard deviation = 2Npq

Variance = Npq

Mean = Np
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For the distribution on the left of Figure 5.5, the stimulus is set at a speed that just barely

allows the participant to respond at better than chance levels, with a probability of .60 of be-

ing correct on any given trial. The distribution in the middle represents the results expected

from a judge who has a probability of only .30 of being correct on each trial. The distribu-

tion on the right represents the behavior of a judge with a nearly unerring ability to choose

the wrong stimulus. On each trial, this judge had a probability of only .05 of being correct.

From these three distributions, you can see that, for a given number of trials, as p and q de-

part more and more from .50, the distributions become more and more skewed although the

mean and standard deviation are still Np and respectively. Moreover, it is important

to point out (although it is not shown in Figure 5.5, in which N is always 10) that as the num-

ber of trials increases, the distribution approaches normal, regardless of the values of p and q.

As a rule of thumb, as long as both Np and Nq are greater than about 5, the distribution is

close enough to normal that our estimates won’t be far in error if we treat it as normal.

Figure 5.6 shows the binomial distribution when p 5 .70 and there are 25 trials.

5.9 Using the Binomial Distribution 
to Test Hypotheses

Many of the situations for which the binomial distribution is useful in testing hypotheses

are handled equally well by the chi-square test, discussed in Chapter 6. For that reason, this

discussion will be limited to those cases for which the binomial distribution is uniquely

useful.

In the previous sections, we dealt with the situation in which a person was judging very

brief stimuli, and we saw how to calculate the distribution of possible outcomes and their

probabilities over N 5 10 trials. Now suppose we turn the question around and ask whether

the available data from a set of presentation trials can be taken as evidence that our judge

really can identify presented characters at better than chance levels.

For example, suppose we had our judge view eight stimuli, and the judge has been cor-

rect on seven out of eight trials. Do these data indicate that she is operating at a better than

1Npq,
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chance level? Put another way, are we likely to have seven out of eight correct choices if

the judge is really operating by blind guessing?

Following the procedure outlined in Chapter 4, we can begin by stating as our research

hypothesis that the judge knows a digit when she sees it (at least that is presumably what

we set out to demonstrate). In other words, the research hypothesis ( ) is that her per-

formance is at better than chance levels (p . .50). (We have chosen a one-tailed test merely

to simplify the example; in general, we would prefer to use a two-tailed test.) The null hy-

pothesis is that the judge’s behavior does not differ from chance ( ). The sam-

pling distribution of the number of correct choices out of eight trials, given that the null

hypothesis is true, is provided by the binomial distribution with p 5 .50. Rather than

calculate the probability of each of the possible number of correct choices (as we did in

Figure 5.5, for example), all we need to do is calculate the probability of seven correct

choices and the probability of eight correct choices, since we want to know the probability

of our judge doing at least as well as she did if she were choosing randomly.

Letting N represent the number of trials (eight) and X represent the number of correct

trials, the probability of seven correct trials out of eight is given by

Thus, the probability of making seven correct choices out of eight by chance is .0312. But

we know that we test null hypotheses by asking questions of the form, “What is the proba-

bility of at least this many correct choices if is true?” In other words, we need to sum

p(7) and p(8):

Then

Here we see that the probability of at least seven correct choices is approximately .035.

Earlier, we said that we will reject whenever the probability of a Type I error (a) is less

than or equal to .05. Since we have just determined that the probability of making at least

seven correct choices out of eight is only .035 if is true (i.e., if p 5 .50), we will reject

and conclude that our judge is performing at better than chance levels. In other words,

her performance is better than we would expect if she were just guessing.4

The Sign Test

Another example of the use of the binomial to test hypotheses is one of the simplest tests

we have: the sign test. Although the sign test is very simple, it is also very useful in a

H0

H0

H0

p(7 or 8) = .0351

1 p(8) = .0039

p(7) = .0312

p(8) = C8
8 p

8q0 = 1(.0039)(1) = .0039

H0

=
8!

7!1!
(.5)7(.5)1 = 8(.0078)(.5) = 8(.0039) = .0312

p(7) = C8
7 p

7q1

p(X) = CN
X p

X q(N2X)

H0 : p = .50

H1
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4 One problem with discrete distributions is that there is rarely a set of outcomes with a probability of exactly .05.
In our particular example with 7 correct guesses you rejected the null because p 5 .035. If we had found 6 correct
choices the probability would have been .133, and we would have failed to reject the null. There is no possible
outcome with a tail area of exactly .05. So we are faced with the choice of a case where the critical value is either
too conservative or too liberal. One proposal that has been seriously considered is to use what is called the “mid-p”
value, which takes one half of the probability of the observed outcome, plus all of the probabilities of more extreme
outcomes. For a discussion of this approach see Berger (2005).
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variety of settings. Suppose we hypothesize that when people know each other they tend to

be more accepting of individual differences. As a test of this hypothesis, we asked a group

of first-year male students matriculating at a small college to rate 12 target subjects (also

male) on physical appearance (higher scores represent greater attractiveness). At the end of

the first semester, when students have come to know one another, we again ask them to rate

those same 12 targets. Assume we obtain the data in Table 5.5, where each entry is the me-

dian rating that person (target) received when judged by participants in the experiment on a

30 point scale.

The gain score in this table was computed by subtracting the score obtained at the be-

ginning of the semester from the one obtained at the end of the semester. For example, the

first target was rated 3 points higher at the end of the semester than at the beginning. No-

tice that in 10 of the 12 cases the score at the end of the semester was higher than at the be-

ginning. In other words, the sign was positive. (The sign test gets its name from the fact

that we look at the sign, but not the magnitude, of the difference.)

Consider the null hypothesis in this example. If familiarity does not affect ratings of

physical appearance, we would not expect a systematic change in ratings (assuming that no

other variables are involved). Ignoring tied scores, which we don’t have anyway, we would

expect that by chance about half the ratings would increase and half the ratings would

decrease over the course of the semester. Thus, under , p(higher) 5 p(lower) 5 .50. The

binomial can now be used to compute the probability of obtaining at least 10 out of 12 im-

provements if is true:

From these calculations we see that the probability of at least 10 improvements 5 .0161 1

.0029 1 .0002 5 .0192 if the null hypothesis is true and ratings are unaffected by familiar-

ity. Because this probability is less than our traditional cutoff of .05, we will reject and

conclude that ratings of appearance have increased over the course of the semester. (Al-

though variables other than familiarity could explain this difference, at the very least our

test has shown that there is a significant difference to be explained.)

5.10 The Multinomial Distribution

The binomial distribution we have just examined is a special case of a more general distri-

bution, the multinomial distribution. In binomial distributions, we deal with events that

can have only one of two outcomes—a coin could land heads or tails, a wine could be

judged as more expensive or less expensive, and so on. In many situations, however, an

H0

p(12) =
12!

12!0!
(.5)12(.5)0 = .0002

p(11) =
12!

11!1!
(.5)11(.5)1 = .0029

p(10) =
12!

10!2!
(.5)10(.5)2 = .0161

H0
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Table 5.5 Median ratings of physical appearance at the beginning 

and end of the semester

Target 1 2 3 4 5 6 7 8 9 10 11 12

Beginning 12 21 10 8 14 18 25 7 16 13 20 15

End 15 22 16 14 17 16 24 8 19 14 28 18

Gain 3 1 6 6 3 22 21 1 3 1 8 3

multinomial

distribution
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Exercises

5.1 Give an example of an analytic, a relative-frequency, and a subjective view of probability.

5.2 Assume that you have bought a ticket for the local fire department lottery and that your

brother has bought two tickets. You have just read that 1000 tickets have been sold.

event can have more than two possible outcomes—a roll of a die has six possible out-

comes; a maze might present three choices (right, left, and center); political opinions could

be classified as For, Against, or Undecided. In these situations, we must invoke the more

general multinomial distribution.

If we define the probability of each of k events (categories) as and wish to

calculate the probability of exactly outcomes of , outcomes of , . . . ,

outcomes of , this probability is given by

where N has the same meaning as in the binomial. Note that when k 5 2 this is in fact the

binomial distribution, where and .

As a brief illustration, suppose we had a die with two black sides, three red sides, and

one white side. If we roll this die, the probability of a black side coming up is 2/6 5 .333,

the probability of a red is 3/6 5 .500, and the probability of a white is 1/6 5 .167. If we

roll the die 10 times, what is the probability of obtaining exactly four blacks, five reds, and

one white? This probability is given as

At this point, this is all we will say about the multinomial. It will appear again in

Chapter 6, when we discuss chi-square, and forms the basis for some of the other tests you

are likely to run into in the future.

= .081

= 1260 (.333)4(.500)5(.167)1 = 1260 (.000064)
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Key Terms

Analytic view (5.1)

Frequentist view (5.1)

Sample with replacement (5.1)

Subjective probability (5.1)

Event (5.2)

Independent events (5.2)

Mutually exclusive (5.2)

Exhaustive (5.2)

Additive law of probability (5.2)

Multiplicative law of probability (5.2)

Sample without replacement (5.2)

Joint probability (5.2)

Conditional probability (5.2)

Unconditional probability (5.2)

Density (5.5)

Combinatorics (5.6)

Permutation (5.6)

Factorial (5.6)

Combinations (5.6)

Bayes’ Theorem (5.7)

Prior probability (5.7)

Posterior probability (5.7)

Bayesian statistics (5.7)

Binomial distribution (5.8)

Bernoulli trial (5.8)

Success (5.8)

Failure (5.8)

Sign test (5.9)

Multinomial distribution (5.10)
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a. What is the probability that you will win the grand prize?

b. What is the probability that your brother will win?

c. What is the probability that you or your brother will win?

5.3 Assume the same situation as in Exercise 5.2, except that a total of only 10 tickets were sold

and that there are two prizes.

a. Given that you don’t win first prize, what is the probability that you will win second

prize? (The first prize-winning ticket is not put back in the hopper.)

b. What is the probability that your brother will win first prize and you will win second

prize?

c. What is the probability that you will win first prize and your brother will win second

prize?

d. What is the probability that the two of you will win the first and second prizes?

5.4 Which parts of Exercise 5.3 deal with joint probabilities?

5.5 Which parts of Exercise 5.3 deal with conditional probabilities?

5.6 Make up a simple example of a situation in which you are interested in joint probabilities.

5.7 Make up a simple example of a situation in which you are interested in conditional proba-

bilities.

5.8 In some homes, a mother’s behavior seems to be independent of her baby’s, and vice versa.

If the mother looks at her child a total of 2 hours each day, and the baby looks at the mother

a total of 3 hours each day, and if they really do behave independently, what is the probabil-

ity that they will look at each other at the same time?

5.9 In Exercise 5.8, assume that both the mother and child are asleep from 8:00 P.M. to 7:00 A.M.

What would the probability be now?

5.10 In the example dealing with what happens to supermarket fliers, we found that the probabil-

ity that a flier carrying a “do not litter” message would end up in the trash, if what people

do with fliers is independent of the message that is on them, was .033. I also said that 4.5%

of those messages actually ended up in the trash. What does this tell you about the effective-

ness of messages?

5.11 Give an example of a common continuous distribution for which we have some real interest

in the probability that an observation will fall within some specified interval.

5.12 Give an example of a continuous variable that we routinely treat as if it were discrete.

5.13 Give two examples of discrete variables.

5.14 A graduate-admissions committee has finally come to realize that it cannot make valid dis-

tinctions among the top applicants. This year, the committee rated all 300 applicants and

randomly chose 10 from those in the top 20%. What is the probability that any particular

applicant will be admitted (assuming you have no knowledge of her or his rating)?

5.15 With respect to Exercise 5.14,

a. What is the conditional probability that a person will be admitted given that she has the

highest faculty rating among the 300 students?

b. What is the conditional probability given that she has the lowest rating?

5.16 Using Appendix Data Set or the file ADD.dat on the Web site,

a. What is the probability that a person drawn at random will have an ADDSC score

greater than 50 if the scores are normally distributed with a mean of 52.6 and a stan-

dard deviation of 12.4?

b. What percentage of the sample actually exceeded 50?
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5.17 Using Appendix Data Set or the file on the web named ADD.dat,

a. What is the probability that a male will have an ADDSC score greater than 50 if the

scores are normally distributed with a mean of 54.3 and a standard deviation of 12.9?

b. What percentage of the male sample actually exceeded 50?

5.18 Using Appendix Data Set, what is the empirical probability that a person will drop out of

school given that he or she has an ADDSC score of at least 60? Here we do not need to as-

sume normality.

5.19 How might you use conditional probabilities to determine if an ADDSC cutoff score in Ap-

pendix Data Set of 66 is predictive of whether or not a person will drop out of school?

5.20 Using Appendix Data Set scores, compare the conditional probability of dropping out of

school given an ADDSC score of at least 60, which you computed in Exercise 5.18, with

the unconditional probability that a person will drop out of school regardless of his or her

ADDSC score.

5.21 In a five-choice task, subjects are asked to choose the stimulus that the experimenter has

arbitrarily determined to be correct; the 10 subjects only make one guess. Plot the sampling

distribution of the number of correct choices on trial 1.

5.22 Refer to Exercise 5.21. What would you conclude if 6 of 10 subjects were correct on trial 2?

5.23 Refer to Exercise 5.21. What is the minimum number of correct choices on a trial necessary

for you to conclude that the subjects as a group are no longer performing at chance levels?

5.24 People who sell cars are often accused of treating male and female customers differently.

Make up a series of statements to illustrate simple, joint, and conditional probabilities with

respect to such behavior. How might we begin to determine if those accusations are true?

5.25 Assume you are a member of a local human rights organization. How might you use what

you know about probability to examine discrimination in housing?

5.26 In a study of human cognition, we want to look at recall of different classes of words

(nouns, verbs, adjectives, and adverbs). Each subject will see one of each. We are afraid that

there may be a sequence effect, however, and want to have different subjects see the differ-

ent classes in a different order. How many subjects will we need if we are to have one sub-

ject per order?

5.27 Refer to Exercise 5.26. Assume we have just discovered that, because of time constraints,

each subject can see only two of the four classes. The rest of the experiment will remain the

same, however. Now how many subjects do we need? (Warning: Do not actually try to run

an experiment like this unless you are sure you know how you will analyze the data.)

5.28 In a learning task, a subject is presented with five buttons. He must learn to press three spe-

cific buttons in a predetermined order. What chance does that subject have of pressing cor-

rectly on the first trial?

5.29 An ice-cream shop has six different flavors of ice cream, and you can order any combina-

tion of any number of them (but only one scoop of each flavor). How many different ice-

cream cone combinations could they truthfully advertise? (We do not care if the Oreo Mint

is above or below the Raspberry-Pistachio. Each cone must have at least one scoop of ice

cream—an empty cone doesn’t count.)

5.30 We are designing a study in which six external electrodes will be implanted in a rat’s brain.

The six-channel amplifier in our recording apparatus blew two channels when the research

assistant took it home to run her stereo. How many different ways can we record from the

brain? (It makes no difference what signal goes on which channel.)

5.31 In a study of knowledge of current events, we give a 20-item true–false test to a class of col-

lege seniors. One of the not-so-alert students gets 11 answers right. Do we have any reason

to believe that he has done anything other than guess?

5.32 Earlier in this chapter I stated that the probability of drawing 25 blue M&M’s out of 60

draws, with replacement, was .0011. Reproduce that result. (Warning, your calculator will
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be computing some very large numbers, which may lead to substantial rounding error. The

value of .0011 is what my calculator produced. From earlier we know that p(blue) 5 .24)

5.33 This question is not an easy one, and requires putting together material in Chapters 3, 4, and

5. Suppose we make up a driving test that we have good reason to believe should be passed

by 60% of all drivers. We administer it to 30 drivers, and 22 pass it. Is the result sufficiently

large to cause us to reject (p 5 .60)? This problem is too unwieldy to be approached by

solving the binomial for X 5 22, 23, . . . , 30. But you do know the mean and variance of

the binomial, and something about its shape. With the aid of a diagram of what the distribu-

tion would look like, you should be able to solve the problem.

5.34 Make up a simple experiment for which a sign test would be appropriate.

a. Create reasonable data and run the test.

b. Draw the appropriate conclusion.

Discussion Questions

5.35 The “law of averages,” or the “gambler’s fallacy,” is the oft-quoted belief that if random

events have come out one way for a number of trials they are “due” to come out the other

way on one of the next few trials. (For example, it is the (mistaken) belief that if a fair coin

has come up heads on 18 out of the last 20 trials, it has a better than 50:50 chance of com-

ing up tails on the next trial to balance things out.) The gambler’s fallacy is just that, a

fallacy—coins have an even worse memory of their past performance than I do. Ann

Watkins, in the Spring 1995 edition of Chance magazine, reported a number of instances of

people operating as if the “law of averages” were true. One of the examples that Watkins

gave was a letter to Dear Abby in which the writer complained that she and her husband had

just had their eighth child and eighth girl. She criticized fate and said that even her doctor

had told her that the law of averages was in her favor 100 to 1. Watkins also cited another

example in which the writer noted that fewer English than American men were fat, but the

English must be fatter to keep the averages the same. And, finally, she quotes a really re-

markable application of this (non-)law in reference to Marlon Brando: “Brando has had so

many lovers, it would only be surprising if they were all of one gender; the law of averages

alone would make him bisexual.” (Los Angeles Times, 18 September 1994, Book Reviews,

p. 13) What is wrong with each of these examples? What underlying belief system would

seem to lie behind such a law? How might you explain to the woman who wrote to Dear

Abby that she really wasn’t owed a boy to “make up” for all those girls?

5.36 At age 40, 1% of women can be expected to have breast cancer. Of those women with breast

cancer, 80% will have positive mammographies. In addition, 9.6% of women who do not

have breast cancer will have a positive mammography. If a woman in this age group tests

positive for breast cancer, what is the probability that she actually has it. Use Bayes’ theo-

rem to solve this problem. (Hint: Letting BC stand for “breast cancer,” we have p(BC) 5

.01, p(1|BC) 5 .80, and p(1| ) 5 .096. You want to solve for p(BC|1).)

5.37 The answer that you found in 5.36 is probably much lower than the answer that you ex-

pected, knowing that 80% of women with breast cancer have positive mammographies.

Why is it so low?

5.38 What would happen to the answer to Exercise 5.36 if we were able to refine our test so that

only 5% of women without breast cancer test positive? (In others words, we reduce the rate

of false positives.)

BC

H0
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CHAPTER 6

Categorical Data 

and Chi-Square
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To present the chi-square test as a procedure for testing hypotheses when the

data are categorical, and to examine other measures that clarify the meaning of

our results.
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IN CHAPTER 1 a distinction was drawn between measurement data (sometimes called quan-

titative data) and categorical data (sometimes called frequency data). When we deal with

measurement data, each observation represents a score along some continuum, and the

most common statistics are the mean and the standard deviation. When we deal with cate-

gorical data, on the other hand, the data consist of the frequencies of observations that fall

into each of two or more categories (e.g., “How many people rate their mom as their best

friend? ”).

In Chapter 5 we examined the use of the binomial distribution to test simple hypothe-

ses. In those cases, we were limited to situations in which an individual event had one of

only two possible outcomes, and we merely asked whether, over repeated trials, one out-

come occurred (statistically) significantly more often than the other. We will shortly see

how we can ask the same question using the chi-square test.

In this chapter we will expand the kinds of situations that we can evaluate. We will deal

with the case in which a single event can have two or more possible outcomes, and then

with the case in which we have two independent variables and we want to test null hy-

potheses concerning their independence. For both of these situations, the appropriate sta-

tistical test will be the chi-square ( ) test.

The term chi-square (x2) has two distinct meanings in statistics, a fact that leads to

some confusion. In one meaning, it is used to refer to a particular mathematical distribu-

tion that exists in and of itself without any necessary referent in the outside world. In the

second meaning, it is used to refer to a statistical test that has a resulting test statistic dis-

tributed in approximately the same way as the distribution. When you hear someone re-

fer to chi-square, they usually have this second meaning in mind. (The test itself was

developed by Karl Pearson [1900] and is often referred to as Pearson’s chi-square to dis-

tinguish it from other tests that also produce a statistic—for example, Friedman’s test,

discussed in Chapter 18, and the likelihood ratio tests discussed at the end of this chapter

and in Chapter 17.) You need to be familiar with both meanings of the term, however, if

you are to use the test correctly and intelligently, and if you are to understand many of the

other statistical procedures that follow.

6.1 The Chi-Square Distribution

The chi-square (x2) distribution is the distribution defined by

This is a rather messy-looking function and most readers will be pleased to know that they

will not have to work with it in any arithmetic sense. We do need to consider some of its fea-

tures, however, to understand what the distribution of is all about. The first thing that

should be mentioned, if only in the interest of satisfying healthy curiosity, is that the term

in the denominator, called a gamma function, is related to what we normally mean

by factorial. In fact, when the argument of gamma (k/2) is an integer, then

. We need gamma functions in part because arguments are not always

integers. Mathematical statisticians have a lot to say about gamma, but we’ll stop here.

A second and more important feature of this equation is that the distribution has only

one parameter (k). Everything else is either a constant or else the value of for which

we want to find the ordinate [ ]. Whereas the normal distribution was a two-parameter

function, with µ and s as parameters, is a one-parameter function with k as the only

parameter. When we move from the mathematical to the statistical world, k will become

our degrees of freedom. (We often signify the degrees of freedom by subscripting .x2

x2
f(x2)

x2

≠(k/2) = [(k/2) 2 1]!

≠(k/2)

x2

f(x2) =
1

2
k
2 ≠(k>2)

x2[(k>2)21]e
-(X2)

2

x2

x2

x2
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Thus, is read “chi-square with three degrees of freedom.” Alternatively, some authors

write it as .)

Figure 6.1 shows the plots for several different distributions, each representing a dif-

ferent value of k. From this figure it is obvious that the distribution changes markedly with

changes in k, becoming more symmetric as k increases. It is also apparent that the mean

and variance of each distribution increase with increasing values of k and are directly

related to k. It can be shown that in all cases

6.2 The Chi-Square Goodness-of-Fit 
Test—One-Way Classification

We now turn to what is commonly referred to as the chi-square test, which is based on the

distribution. We will first examine the test as it is applied to one-dimensional tables and

then as applied to two-dimensional tables (contingency tables).

We will start with a simple but interesting example with only two categories and then

move on to an example with more than two categories. Our first example comes from a

paper on therapeutic touch that was published in the Journal of the American Medical As-

sociation (Rosa, Rosa, Sarner, and Barrett,1996). One of the things that made this an inter-

esting paper is that the second author, Emily Rosa, was only eleven years old at the time,

and she was the principal experimenter.1 To quote from the abstract, “Therapeutic Touch (TT)

x2

Variance = 2k

Mean = k

x2

x2
x2(3)

x2
3
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(a) d f = 1

15131197531

3.84

Chi-square (χ2) Chi-square (χ2)

Chi-square (χ2) Chi-square (χ2)

(c) d f = 4

15131197531

9.49

(b) d f = 2

15131197531

5.99

(d) d f = 8

15131197531 1917

15.51

Figure 6.1 Chi-square distributions for df 5 1, 2, 4, and 8. (Arrows indicate critical

values at alpha 5 .05.)

1 The interesting feature of this paper is that Emily Rosa was an invited speaker at the “Ig Noble Prize” ceremony
sponsored by the Annals of Irreproducible Results,” located at MIT. This is a group of “whacky” scientists, to use a
psychological term, who look for and recognize interesting research studies. Ig Nobel Prizes honor “achievements
that cannot or should not be reproduced.” Emily’s invitation was meant as an honor, and true believers in therapeu-
tic touch were less than kind to her. The society’s web page is located at http://www.improb.com/ and I recommend
going to it when you need a break from this chapter.

chi-square test



is a widely used nursing practice rooted in mysticism but alleged to have a scientific basis.

Practitioners of TT claim to treat many medical conditions by using their hands to manipu-

late a ‘human energy field’ perceptible above the patient’s skin.” Emily recruited 21 practi-

tioners of therapeutic touch, blindfolded them, and then placed her hand over one of their

hands. If therapeutic touch is a real phenomenon, the principles behind it suggest that the

participant should be able to identify which of their hands is below Emily’s hand. Out of

280 trials, the participant was correct on 123 of them, which is an accuracy rate of 44%.

By chance we would expect the participants to be correct 50% of the time, or 140 times.

Although we can tell by inspection that participants performed even worse that chance

would predict, I have chosen this example in part because it raises an interesting question

of the statistical significance of a test. We will return to that issue shortly. The first ques-

tion that we want to answer is whether the data’s departure from chance expectation is sta-

tistically significantly greater than chance. The data follow in Table 6.1.

Even if participants were operating at chance levels, one category of response is likely

to come out more frequently than the other. What we want is a goodness-of-fit test to ask

whether the deviations from what would be expected by chance are large enough to lead us

to conclude that responses weren’t random.

The most common and important formula for involves a comparison of observed

and expected frequencies. The observed frequencies, as the name suggests, are the fre-

quencies you actually observed in the data—the numbers in row two of the table above.

The expected frequencies are the frequencies you would expect if the null hypothesis were
true. The expected frequencies are shown in row 3 of Table 6.1. We will assume that par-

ticipants’ responses are independent of each other. (In this use of “independence,” I mean

that what the participant reports on trial k does not depend on what he or she reported on

trial k 2 1, though it does not mean that the two different categories of choice are equally

likely, which is what we are about to test.)

Because we have two possibilities over 280 trials, we would expect that there would be

140 correct and 140 incorrect choices. We will denote the observed number of choices with

the letter “O” and the expected number of choices with the letter “E.” Then our formula for

chi-square is

where summation is taken over both categories of response.

This formula makes intuitive sense. Start with the numerator. If the null hypothesis is

true, the observed and expected frequencies (O and E) would be reasonably close together

and the numerator would be small, even after it is squared. Moreover, how large the differ-

ence between O and E would be ought to depend on how large a number we expected. If

we were taking about 140 correct, a difference of 5 choices would be a small difference.

But if we had expected 10 correct choices, a difference of 5 would be substantial. To keep

the squared size of the difference in perspective relative to the number of observations we

expect, we divide the former by the latter. Finally, we sum over both possibilities to com-

bine these relative differences.

x2 = a
(O 2 E )2

E

x2

142 Chapter 6 Categorical Data and Chi-Square

Table 6.1 Results of experiment on therapeutic touch 

Correct Incorrect Total

Observed 123 157 280

Expected 140 140 280

goodness-of-fit

test

observed

frequencies

expected

frequencies



The statistic for these data using the observed and expected frequencies given in

Table 6.1 follows.

The Tabled Chi-Square Distribution

Now that we have obtained a value of , we must refer it to the distribution to determine

the probability of a value of at least this extreme if the null hypothesis of a chance distri-

bution were true. We can do this through the use of the standard tabled distribution of .

The tabled distribution of x2, like that of most other statistics, differs in a very impor-

tant way from the tabled standard normal distribution that we saw in Chapter 3 in that it

depends on the degrees of freedom. In the case of a one-dimensional table, as we have

here, the degrees of freedom equal one less than the number of categories (k – 1). If we

wish to reject at the .05 level, all that we really care about is whether or not our value of

is greater or less than the value of that cuts off the upper 5% of the distribution. Thus,

for our particular purposes, all we need to know is the 5% cutoff point for each df. Other

people might want the 2.5% cutoff, 1% cutoff, and so on, but it is hard to imagine wanting

the 17% cutoff, for example. Thus, tables of such as the one given in Appendix and

reproduced in part in Table 6.2 supply only those values that might be of general interest.

Look for a moment at Table 6.2. Down the leftmost column you will find the degrees

of freedom. In each of the other columns, you will find the critical values of cutting off

the percentage of the distribution labeled at the top of that column. Thus, for example, you

will see that for 1 df a of 3.84 cuts off the upper 5% of the distribution. (Note the bold-

faced entry in Table 6.2.)

Returning to our example, we have found a value of 5 4.129 on 1 df. We have al-

ready seen that, with 1 df, a of 3.84 cuts off the upper 5% of the distribution. Since our

obtained value ( ) 5 4.129 is greater than 5 3.84, we will reject the null hypoth-

esis and conclude that the obtained frequencies differ significantly from those expected un-

der the null hypothesis by more than could be attributed to chance. In this case participants

performed less accurately than chance would have predicted.

x2
1(.05)x2

obt

x2
x2

x2

x2

x2x2

x2x2
H0

x2
x2

x2x2

=
-172

140
1

172

140
= 2(2.064) = 4.129

x2 = a
(O 2 E )2

E
=

(123 2 140)2

140
1

(157 2 140)2

140

x2
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Table 6.2 Upper percentage points of the distribution

df .995 .990 .975 .950 .900 .750 .500 .250 .100 .050 .025 .010 .005

1 0.00 0.00 0.00 0.00 0.02 0.10 0.45 1.32 2.71 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.10 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.60

3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.82 9.35 11.35 12.84

4 0.21 0.30 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75

6 0.68 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.54 20.09 21.96

9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.66 23.59

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x2

tabled

distribution of x2

degrees of

freedom



As I suggested earlier, this result could raise a question about how we interpret a null

hypothesis test. Whether we take the traditional view of hypothesis testing or the view put

forth by Jones and Tukey (2000), we can conclude that the difference is greater than

chance. If the pattern of responses had come out favoring the effectiveness of therapeutic

touch, we would come to the conclusion supporting therapeutic touch. But these results

came out significant in the opposite direction, and it is difficult to argue that the effective-

ness of touch has been supported because respondents were wrong more often than ex-

pected. Personally, I would conclude that we can reject the effectiveness of therapeutic

touch. But there is an inconsistency here because if we had 157 correct responses I would

say “See, the difference is significant!” but when there were 157 incorrect responses I say

“Well, that’s just bad luck and the difference really isn’t significant.” That makes me feel

guilty because I am acting inconsistently. On the other hand, there is no credible theory that

would predict participants being significantly wrong, so there is no real alternative expla-

nation to support. People simply did not do as well as they should have if therapeutic touch

works. (Sometimes life is like that!)

An Example with More Than Two Categories

Many psychologists are particularly interested in how people make decisions, and they 

often present their subjects with simple games. A favorite example is called the Prisoner’s

Dilemma, and it consists of two prisoners (players) who are being interrogated separately.

The optimal strategy in this situation is for a player to confess to the crime, but people often

depart from optimal behavior. Psychologists use such a game to see how human behavior

compares with optimal behavior. We are going to look at a different type of game, the uni-

versal children’s game of “rock/paper/scissors,” often abbreviated as “RPS.” In case your

childhood was a deprived one, in this game each of two players “throws” a sign. A fist rep-

resents a rock, a flat hand represents paper, and two fingers represent scissors. Rocks break

scissors, scissors cut paper, and paper covers rock. So if you throw a scissors and I throw a

rock, I win because my rock will break your scissors. But if I had thrown a paper when you

threw scissors, you’d win because scissors cut paper. Children can keep this up for an aw-

fully long time. (Some adults take this game very seriously and you can get a flavor of what

is involved by going to a fascinating article at http://www.danieldrezner.com/archives/

002022.html. The topic is not as simple as you might think. There is even a World RPS

Society with its own web page.)

It seems obvious that in rock/paper/scissors the optimal strategy is to be completely un-

predictable and to throw each symbol equally often. Moreover, each throw should be inde-

pendent of others so that your opponent can’t predict your next throw. There are, however,

other strategies, each with its own advocates. Aside from adults who go to championship

RPS competitions, the most common players are children on the playground. Suppose that

we ask a group of children who is the most successful RPS player in their school and we

then follow that player through a game with 75 throws, recording the number of throws of

each symbol. The results of this hypothetical study are given in Table 6.3.
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Table 6.3 Number of throws of each symbol in 

a playground game of rock/paper/scissors

Symbol Rock Paper Scissors

Observed 30 21 24

Expected (25) (25) (25)



Although our player should throw each symbol equally often, our data suggest that she

is throwing Rock more often than would be expected. However this may just be a random

deviation due to chance. Even if you are deliberately randomizing your throws, one is

likely to come out more frequently than others. (Moreover, people are notoriously poor at

generating random sequences.) What we want is a goodness-of-fit test to ask whether the

deviations from what would be expected by chance are large enough to lead us to conclude

that this child’s throws weren’t random, but that she was really throwing Rock at greater

than chance levels.

The statistic for these data using the observed and expected frequencies given in

Table 6.3 follows. Notice that it is a simple extension of what we did when we had two

categories.

In this example we have three categories and thus 2 df. The critical value of on 2 df 5
5.99, and we have no reason to doubt that our player was equally likely to throw each

symbol.

6.3 Two Classification Variables: Contingency
Table Analysis

In the previous examples we considered the case in which data are categorized along only

one dimension (classification variable). More often, however, data are categorized with

respect to two (or more) variables, and we are interested in asking whether those variables

are independent of one another. To put this in the reverse, we often are interested in asking

whether the distribution of one variable is contingent on a second variable. (Statisticians

often use the phrase “conditional on” instead of “contingent on,” but they mean the same

thing. I mention this because you will see the word “conditional” appearing often in this

chapter.) In this situation we will construct a contingency table showing the distribution

of one variable at each level of the other variable. A good example of such a test concerns

the controversial question of whether or not there is racial bias in the assignment of death

sentences.

There have been a number of studies over the years looking at whether the imposition

of a death sentence is affected by the race of the defendant (and/or the race of the victim).

You will see an extended example of such data in Exercise 6.41. Peterson (2001) reports

data on a study by Unah and Borger (2001) examining the death penalty in North Carolina

in 1993–1997. The data in Table 6.4 show the outcome of sentencing for white and non-

white (mostly black and Hispanic) defendants when the victim was white. The expected

frequencies are shown in parentheses.

Expected Frequencies for Contingency Tables

The expected frequencies in a contingency table represent those frequencies that we would

expect if the two variables forming the table (here, race and sentence) were independent.

For a contingency table the expected frequency for a given cell is obtained by multiplying

x2

= 1.68

=
(30–25)2

25
1

(21–25)2

25
1

(24–25)2

25
=

52 1 42 1 12

25

x2 = a
(O 2 E)2

E

x2
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together the totals for the row and column in which the cell is located and dividing by the

total sample size (N). (These totals are known as marginal totals, because they sit at the

margins of the table.) If is the expected frequency for the cell in row i and column j, 
and are the corresponding row and column totals, and N is the total number of observa-

tions, we have the following formula:2

For our example

These are the values shown in parentheses in Table 6.4.

Calculation of Chi-Square

Now that we have the observed and expected frequencies in each cell, the calculation of 

is straightforward. We simply use the same formula that we have been using all along, al-

though we sum our calculations over all cells in the table.

= 7.71

=
(33 2 22.72)2

22.72
1

(251 2 261.28)2

261.28
1

(33 2 43.28)2

43.28
1

(508 2 497.82)2

497.72

x2 = a
(O 2 E)2

E

x2

E22 =
541 3 759

825
= 497.72

E21 =
541 3 66

285
= 43.28

E12 =
284 3 759

825
= 261.28

E11 =
284 3 66

825
= 22.72

Eij =
RiCj

N

Cj

RiEij
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Table 6.4 Sentencing as a function of the race of the defendant—the victim was white

Death Sentence

Defendant’s Race Yes No Total

Nonwhite 33 (22.72) 251 (261.28) 284

White 33 (43.28) 508 (497.72) 541

Total 66 759 825

2 This formula for the expected values is derived directly from the formula for the probability of the joint oc-
currence of two independent events given in Chapter 5 on probability. For this reason the expected values that
result are those that would be expected if were true and the variables were independent. A large discrepancy
in the fit between expected and observed would reflect a large departure from independence, which is what we
want to test.

H0

marginal totals

row totals

column totals



Degrees of Freedom

Before we can compare our value of to the value in Appendix , we must know the de-

grees of freedom. For the analysis of contingency tables, the degrees of freedom are given by

df 5 (R 2 1)(C 2 1)

where

R 5 the number of rows in the table

and

C 5 the number of columns in the table

For our example we have R 5 2 and C 5 2; therefore, we have (2 2 1)(2 2 1) 5 1 df.

Evaluation of x2

With 1 df the critical value of , as found in Appendix , is 3.84. Because our value of

7.71 exceeds the critical value, we will reject the null hypothesis that the variables are in-

dependent of each other. In this case we will conclude that whether a death sentence is im-

posed is related to the race of the defendant. When the victim was white, nonwhite

defendants were more likely to receive the death penalty than white defendants.3

2 3 2 Tables are Special Cases

There are some unique features of the treatment of 2 3 2 tables, and the example that we

have been working with offers a good opportunity to explore them.

Correcting for Continuity

Many books advocate that for simple 2 3 2 tables such as Table 6.4 we should employ

what is called Yates’ correction for continuity, especially when the expected frequencies

are small. (The correction merely involves reducing the absolute value of each numerator

by 0.5 units before squaring.) There is an extensive literature on the pros and cons of Yates’

correction, with firmly held views on both sides. However, the common availability of

Fisher’s Exact Test, to be discussed next, makes Yates’ correction superfluous.

Fisher’s Exact Test

Fisher introduced what is called Fisher’s Exact Test in 1934 at a meeting of the Royal

Statistical Society. (Good (2001) has pointed out that one of the speakers who followed

Fisher referred to Fisher’s presentation as “the braying of the Golden Ass.” Statistical de-

bates at that time were far from boring, and no doubt Fisher had something equally kind to

say about that speaker.)

Without going into details, Fisher’s proposal was to take all possible 2 3 2 tables that

could be formed from the fixed set of marginal totals. He then determined the proportion

of those tables whose results are as extreme, or more so, than the table we obtained in our data.

x2x2

x2x2
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3 If the victim was nonwhite there was no significant relationship between race and sentence, although that has
been found in other data sets. The authors point out that when the victim was non white the prosecutor was more
likely to plea bargain, and the overall proportion of death sentences are much lower.

Yates’ correction
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If this proportion is less than a, we reject the null hypothesis that the two variables are in-

dependent, and conclude that there is a statistically significant relationship between the two

variables that make up our contingency table. (This is classed as a conditional test because

it is conditioned on the marginal totals actually obtained, instead of all possible marginal

totals that could have arisen given the total sample size.) I will not present a formula for

Fisher’s Exact Test because it is almost always obtained using statistical software. (SPSS

produces this statistic for all 2 3 2 tables.)

Fisher’s Exact Test has been controversial since the day he proposed it. One of the

problems concerns the fact that it is a conditional test (conditional on the fixed margin-

als). Some have argued that if you repeated the experiment exactly you would likely find

different marginal totals, and have asked why those additional tables should not be in-

cluded in the calculation. Making the test unconditional on the marginals would compli-

cate the calculations, though not excessively. This may sound like an easy debate to

resolve, but if you read the extensive literature surrounding fixed and random marginals,

you will find that it is not only a difficult debate to follow, but you will probably come

away thoroughly confused. (An excellent discussion of some of the issues can be found in

Agresti (2002), pp. 95–96.)

Fisher’s Exact Test also leads to controversy because of the issue of one-tailed versus

two-tailed tests, and what outcomes would constitute a “more extreme” result in the op-

posite tail. Instead of going into how to determine what is a more extreme outcome, I

will avoid that complication by simply telling you to decide in advance whether you

want a one- or a two-tailed test, (I strongly recommend two-tailed tests) and then report

the values given by standard statistical software. Virtually all common statistical soft-

ware prints out Fisher’s Exact Test results along with Pearson’s chi-square and related

test statistics. The test does not produce a chi-square statistic, but it does produce a p
value. In our example the p value is extremely small (.007), just as it was for the stan-

dard chi-square test.

Fisher’s Exact Test versus Pearson’s Chi Square

We now have at least two statistical tests for 2 3 2 contingency tables, and will soon have

a third—which one should we use? Probably the most common solution is to go with

Pearson’s chi-square; perhaps because “that is what we have always done.” In fact, in pre-

vious editions of this book I recommended against Fisher’s Exact Test, primarily because

of the conditional nature of it. However in recent years there has been an important growth

of interest in permutation and randomization tests, of which Fisher’s Exact Test is an ex-

ample. (This approach is discussed extensively in Chapter 18.) I am extremely impressed

with the logic and simplicity of such tests, and have come to side with Fisher’s Exact Test.

In most cases the conclusion you will draw will be the same for the two approaches, though

this is not always the case. When we come to tables larger than 2 3 2, Fisher’s approach

does not apply, without modification, and there we almost always use the Pearson 

Chi-Square. (But see Howell & Gordon, 1976.)

6.4 An Additional Example—A 4 3 2 Design

Sexual abuse is a serious problem in our society and it is important to understand the fac-

tors behind it. Jankowski, Leitenberg, Henning, and Coffey (2002) examined the relation-

ship between childhood sexual abuse and later sexual abuse as an adult. They

cross-tabulated the number of childhood abuse categories (in increasing order of severity)

reported by 934 undergraduate women and their reports of adult sexual abuse. The results

are shown in Table 6.5.
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The calculation of chi-square for the data on sexual abuse follows.

The contingency table was a 4 3 2 table, so it has (4–1) 3 (2–1) 5 3 df. The critical

value for on 3 df is 7.82, so we can reject the null hypothesis and conclude that the level

of adult sexual abuse is related to childhood sexual abuse. In fact adult abuse increases con-

sistently as the severity of childhood abuse increases. We will some back to this idea shortly.4

Computer Analyses

We will use Unah and Boger’s data on criminal sentencing for this example because it

illustrates Fisher’s Exact Test as well as other tests. The first column of data (labeled Race)

x2

= 29.63

=
(512 2 494.19)2

494.19
1

(54 2 71.51)2

71.51
Á

(18 2 26.21)2

26.21
1

(12 2 3.79)2

3.79

x2 = a
(O 2 E )2

E
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Table 6.5 Adult sexual abuse related to prior childhood sexual abuse

Abused as Adult

Number of Child 

Abuse Categories No Yes Total

0 512 (494.49) 54 (71.51) 566

1 227 (230.65) 37 (33.35) 264

2 59 (64.65) 15 (9.35) 74

3–4 18 (26.21) 12 (3.79) 30

Total 816 118 934

4 The most disturbing thing about these data is that nearly 40% of the women reported some level of abuse.

Exhibit 6.1a SPSS data file and dialogue box

SOURCE: Courtesy of SSPS Inc.



Value

95% Confidence Interval

Lower Upper

Odds Ratio for Fault

(Little / Much)

For cohort Guilt 5 Guilty

For cohort Guilt 5

NotGuilty

N of Valid Cases

4.614

1.490

.323

358

2.738

1.299

214

7.776

1.709

.486

Value Approx. Sig.

Nominal by Phi

Nominal Cramer’s V

Contingency Coefficient

N of Valid Cases

2.097

097

096

825

.005

.005

.005

Value df

Asymp. Sig. 

(2-Sided)

Exact Sig. 

(2-sided)

Exact Sig. 

(1-sided)

Pearson Chi-Square

Continuity Correctionb

Likelihood Ratio

Fisher’s Exact Test

Linear-by-Linear Association

N of Valid Cases

7.710a

6.978

7.358

7.701

825

1

1

1

1

.005

.008

.007

.006

.007 .005
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Exhibit 6.1b SPSS output on death sentence data

Exhibit 6.1c Measures of association for Unah and Boger’s data

Exhibit 6.1d Risk estimates on death sentence data

will contain a W or an NW, depending on the race of the defendant. The second column

(labeled Sentence) will contain “Yes” or “No”, depending on whether or not a death sen-

tence was assigned. Finally, there will be a third column giving the frequency associated

with each cell. (We could use numerical codes for the first two columns if we preferred, so

Chi-Square Tests

a 0 cells (.0%) have expected count less than 5. The minimum expected count is 22.72.
b Computed only for a 2 3 2 table.

Symmetric Measures

Risk Estimate

Race of Defendant*Sentence Crosstabulation

Count

Sentence

No Yes Total

Race of Defendant Nonwhite

White

Total

251

508

759

33

33

66

284

541

825



long as we are consistent.) In addition you need to specify that the column labeled Freq

contains the cell frequencies. This is done by going to Data/Weight cases and entering

Freq in the box labeled “Weight cases by.” An image of the data file and the dialogue box

for selecting the test are shown in Exhibit 6.1a, and the output follows in Exhibit 6.1b.

Exhibit 6.1b contains several statistics we have not yet discussed. The Likelihood ratio

test is one that we shall take up shortly, and is simply another approach to calculating chi-

square. The three statistics in Exhibit 6.1c (phi, Cramér’s V, and the contingency coefficient)

will also be discussed later in this chapter, as will the odds ratio shown in Exhibit 6.1d. Each

of these four statistics is an attempt at assessing the size of the effect.

Small Expected Frequencies

One of the most important requirements for using the Pearson chi-square test concerns the

size of the expected frequencies. We have already met this requirement briefly in dis-

cussing corrections for continuity. Before defining more precisely what we mean by small,
we should examine why a small expected frequency causes so much trouble.

For a given sample size, there are often a limited number of different contingency ta-

bles that you could obtain, and thus a limited number of different values of chi-square. If

only a few different values of are possible, then the distribution, which is continu-

ous, cannot provide a reasonable approximation to the distribution of our statistic, which is

discrete. Those cases that result in only a few possible values of , however, are the ones

with small expected frequencies in one or more cells. (This is directly analogous to the fact

that if you flip a coin three times, there are only four possible values for the number of

heads, and the resulting sampling distribution certainly cannot be satisfactorily approxi-

mated by the normal distribution.)

We have seen that difficulties arise when we have small expected frequencies, but the

question of how small is small remains. Those conventions that do exist are conflicting

and have only minimal claims to preference over one another. Probably the most common

is to require that all expected frequencies should be at least five. This is a conservative po-

sition and I don’t feel overly guilty when I violate it. Bradley et al. (1979) ran a computer-

based sampling study. They used tables ranging in size from 2 3 2 to 4 3 4 and found

that for those applications likely to arise in practice, the actual percentage of Type I errors

rarely exceeds .06, even for total samples sizes as small as 10, unless the row or column

marginal totals are drastically skewed. Camilli and Hopkins (1979) demonstrated that even

with quite small expected frequencies, the test produces few Type I errors in the 2 3 2 case

as long as the total sample size is greater than or equal to eight; but they, and Overall

(1980), point to the extremely low power to reject a false that such tests possess. With

small sample sizes, power is more likely to be a problem than inflated Type I error rates.

One major advantage of Fisher’s Exact Test is that it is not based on the distribution,

and is thus not affected by a lack of continuity. One of the strongest arguments for that test

is that it applies well to cases with small expected frequencies.

6.5 Chi-Square for Ordinal Data

Chi-square is an important statistic for the analysis of categorical data, but it can sometimes

fall short of what we need. If you apply chi-square to a contingency table, and then re-

arrange one or more rows or columns and calculate chi-square again, you will arrive at ex-

actly the same answer. That is as it should be, because chi-square is does not take the

ordering of the rows or columns into account.

But what do you do if the order of the rows and/or columns does make a difference?

How can you take that ordinal information and make it part of your analysis? An interesting

x2

H0

x2
obt

x2x2
obt
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example of just such a situation was provided in a query that I received from Jennifer

Mahon at the University of Leicester, in England.

Ms Mahon collected data on the treatment for eating disorders. She was interested in

how likely participants were to remain in treatment or drop out, and she wanted to examine

this with respect to the number of traumatic events they had experienced in childhood. Her

general hypothesis was that participants who had experienced more traumatic events dur-

ing childhood would be more likely to drop out of treatment. Notice that her hypothesis

treats the number of traumatic events as an ordered variable, which is something that chi-

square ignores. There is a solution to this problem, but it is more appropriately covered af-

ter we have talked about correlations. I will come back to this problem in Chapter 10 and

show you one approach. (Many of you could skip now to Chapter 10, Section 10.4 and be

able to follow the discussion.) I mention it here because it comes up most often when dis-

cussing even though it is largely a correlational technique. In addition, anyone looking

up such a technique would logically look in this chapter first.

6.6 Summary of the Assumptions of Chi-Square

Because of the widespread misuse of chi-square still prevalent in the literature, it is important

to pull together in one place the underlying assumptions of x2. For a thorough discussion of

the misuse of , see the paper by Lewis and Burke (1949) and the subsequent rejoinders to

that paper. These articles are not yet out of date, although it has been over 50 years since they

were written. A somewhat more recent discussion of many of the issues raised by Lewis and

Burke (1949) can be found in Delucchi (1983), but even that paper is more than 25 years old.

(Some things in statistics change fairly rapidly, but other topics hang around forever.)

The Assumption of Independence

At the beginning of this chapter, we assumed that observations were independent of one

another. The word independence has been used in two different ways in this chapter. A ba-

sic assumption of deals with the independence of observations and is the assumption,

for example, that one participant’s choice among brands of coffee has no effect on another

participant’s choice. This is what we are referring to when we speak of an assumption of

independence. We also spoke of the independence of variables when we discussed contin-

gency tables. In this case, independence is what is being tested, whereas in the former use

of the word it is an assumption. So we want the observations to be independent and we are

testing the independence of variables.

It is not uncommon to find cases in which the assumption of independence of observa-

tions is violated, usually by having the same participant respond more than once. A typical

illustration of the violation of the independence assumption occurred when a former stu-

dent categorized the level of activity of each of five animals on each of four days. When he

was finished, he had a table similar to this:

This table looks legitimate until you realize that there were only five animals, and thus each

animal was contributing four tally marks toward the cell entries. If an animal exhibited high

activity on Day 1, it is likely to have exhibited high activity on other days. The observa-

tions are not independent, and we can make a better-than-chance prediction of one score

Activity

High Medium Low Total

10 7 3 20

x2

x2

x2
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knowing another score. This kind of error is easy to make, but it is an error nevertheless.

The best guard against it is to make certain that the total of all observations (N) equals pre-

cisely the number of participants in the experiment.5

Inclusion of Nonoccurrences

Although the requirement that nonoccurrences be included has not yet been mentioned

specifically, it is inherent in the derivation. It is probably best explained by an example.

Suppose that out of 20 students from rural areas, 17 were in favor of having daylight

savings time (DST) all year. Out of 20 students from urban areas, only 11 were in favor of

DST on a permanent basis. We want to determine if significantly more rural students than

urban students are in favor of DST. One erroneous method of testing this would be to set

up the following data table on the number of students favoring DST:
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5 I can imagine that some of you are wondering how I was able to take 75 responses from one playground RPS
whiz and treat the responses as if they were independent. In fact the validity of my conclusion depended on the
assumption of independence and I subsequently ran a different analysis to check on the independence of
responses. I thought about that question a good deal before I used it as an example.

We could then compute 5 1.29 and fail to reject . This data table, however, does not take

into account the negative responses, which Lewis and Burke (1949) call nonoccurrences. In

other words, it does not include the numbers of rural and urban students opposed to DST.

However, the derivation of chi-square assumes that we have included both those opposed to

DST and those in favor of it. So we need a table such as:

H0x2

nonoccurrences

Now 5 4.29, which is significant at a 5 .05, resulting in an entirely different interpre-

tation of the results.

Perhaps a more dramatic way to see why we need to include nonoccurrences can be

shown by assuming that 17 out of 2000 rural students and 11 out of 20 urban students pre-

ferred DST. Consider how much different the interpretation of the two tables would be.

Certainly our analysis must reflect the difference between the two data sets, which would

not be the case if we failed to include nonoccurrences.

Failure to take the nonoccurrences into account not only invalidates the test, but also

reduces the value of , leaving you less likely to reject . Again, you must be sure that

the total (N) equals the number of participants in the study.

6.7 Dependent or Repeated Measurements

The previous section stated that the standard chi-square test of a contingency table assumes

that data are independent, which generally means that we have not measured each participant

more than one time. But there are perfectly legitimate experimental designs where participants

H0x2

x2

Rural Urban Total

Observed 17 11 28

Expected 14 14 28

Rural Urban

Yes 17 11 28

No 3 9 12

20 20 40



must be measured more than once. A good example was sent to me by Stacey Freedenthal at

the University of Denver, though the data that I will use are fictitious and should not be taken

to represent her results. Dr Freedenthal was interested in studying help-seeking behavior in

children. She took a class of 70 children and recorded the incidence of help-seeking before

and after an intervention that was designed to increase student’s help-seeking behavior. She

measured help-seeking in the fall, introduced an intervention around Christmas time, and

then measured help-seeking again, for these same children, in the spring.

Because we are measuring each child twice, we need to make sure that the dependence

between measures does not influence our results. One way to do this is to focus on how

each child changed over the course of the year. To do so it is necessary to identify the

behavior separately for each child so that we know whether each specific child sought help

in the fall and/or in the spring. We can then focus on the change and not on the multiple

measurements per child. To see why independence is important, consider an extreme case.

If exactly the same children who sought help in the fall also sought it in the spring, and

none of the other children did, then the change in the percentage of help-seeking would be

0 and the standard error (over replications of the experiment) would also be 0. But if

whether or not a child sought help in the spring was largely independent of whether he or

she sought help in fall, the difference in the two percentages might still be close to zero,

but the standard error would be relatively large. In other words the standard error of change

scores varies as a function of how dependent the scores are.

Suppose that we ran this experiment and obtained the following not so extreme data.

Notice that Table 6.6 looks very much like a contingency table, but with a difference. This

table basically shows how children changed or didn’t change as a result of the intervention.

Notice that two of the cells are shown in bold, and these are really the only cells that we care

about. It is not surprising that some children would show a change in their behavior from fall

to spring. And if the intervention had no effect (in other words if the null hypothesis is true),

we would expect about as many to change from “Yes” to “No” as from “No” to Yes.” How-

ever if the intervention were effective we would expect many more children to move from

“No” to “Yes” than to move in the other direction. That is what we will test.

The test that we will use is often called McNemar’s test (McNemar, 1947) and reduces

to a simple one-way goodness of fit chi-square where the data are those from the two off-

diagonal cells and the expected frequencies are each half of the number of children chang-

ing. This is shown in Table 6.7.6
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6 This is exactly equivalent to the common z test on the difference in independent proportions where we are ask-
ing if a significantly greater proportion of people changed in one direction than in the other direction.

Table 6.7 Results of experiment on help-seeking 

behavior in children

No Yes Yes No Total

Observed 12 4 16

Expected 8.0 8.0 16

::

Table 6.6 Help-seeking behavior in fall and spring

Spring

Yes No Total

Fall Yes 38 4 42

No 12 18 30

Total 50 22 72



This is a chi-square on 1 df and is significant because it exceeds the critical value of 3.84.

There is reason to conclude that the intervention was successful.

One Further Step

The question that Dr Freedenthal asked was actually more complicated than the one that I

just answered, because she also had a control group that did not receive the intervention

but was evaluated at both times as well. She wanted to test whether the change in the

intervention group was greater than the change in the control group. This actually turns out

to be an easier test than you might suspect. The test is attributable to Marascuilo and Serlin

(1979). The data are independent because we have different children in the two treatments

and because those who change in one direction are different from those who change in the

other direction. So all that we need to do is create a 2 3 2 contingency table with Treat-

ment Condition on the columns and Increase versus Decrease on the rows and enter data

only from those children in each group who changed their behavior from fall to spring. The

chi-square test on this contingency table tests the null hypothesis that there was an equal

degree of change in the two groups. (A more extensive discussion of the whole issue of

testing non-independent frequency data can be found at http://www.uvm.edu/~dhowell/

StatPages/More_Stuff/Chi-square/Testing Dependent Proportions.pdf.)

6.8 One- and Two-Tailed Tests

People are often confused as to whether chi-square is a one- or a two-tailed test. This confu-

sion results from the fact that there are different ways of defining what we mean by a one-

or a two-tailed test. If we think of the sampling distribution of , we can argue that is a

one-tailed test because we reject only when our value of lies in the extreme right tail

of the distribution. On the other hand, if we think of the underlying data on which our ob-

tained is based, we could argue that we have a two-tailed test. If, for example, we were

using chi-square to test the fairness of a coin, we would reject if it produced too many

heads or if it produced too many tails, since either event would lead to a large value of .

The preceding discussion is not intended to start an argument over semantics (it does

not really matter whether you think of the test as one-tailed or two); rather, it is intended to

point out one of the weaknesses of the chi-square test, so that you can take this into ac-

count. The weakness is that the test, as normally applied, is nondirectional. To take a sim-

ple example, consider the situation in which you wish to show that increasing amounts of

quinine added to an animal’s food make it less appealing. You take 90 rats and offer them a

choice of three bowls of food that differ in the amount of quinine that has been added. You

then count the number of animals selecting each bowl of food. Suppose the data are

Amount of Quinine

Small Medium Large

39 30 21

The computed value of is 5.4, which, on 2 df, is not significant at p , .05. 

The important fact about the data is that any of the six possible configurations of the

same frequencies (such as 21, 30, 39) would produce the same value of , and you receive

no credit for the fact that the configuration you obtained is precisely the one that you pre-

dicted. Thus, you have made a multi-tailed test when in fact you have a specific prediction

x2

x2

x2
H0

x2

x2H0

x2x2

x2 =
©(O 2 E )2

E
=

(4 2 8.0)2

8.0
1

(12 2 8.0)2

8.0
= 4.00
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of the direction in which the totals will be ordered. I referred to this problem a few pages

back when discussing a problem raised by Jennifer Mahon. A solution will be given in

Chapter 10 (Section 10.4), where I discuss creating a correlational measure of the relation-

ship between the two variables.

6.9 Likelihood Ratio Tests

An alternative approach to analyzing categorical data is based on likelihood ratios.

(Exhibit 6.1b included the likelihood ratio along with the standard Pearson chi-square.) For

large sample sizes the two tests are equivalent, though for small sample sizes the standard

Pearson chi-square is thought to be better approximated by the exact chi-square distribu-

tion than is the likelihood ratio chi-square (Agresti, 1990). Likelihood ratio tests are heav-

ily used in log-linear models, discussed in Chapter 17, for analyzing contingency tables,

because of their additive properties. Such models are particularly important when we want

to analyze multi-dimensional contingency tables. Such models are being used more and

more, and you should be exposed to such methods, at least minimally.

Without going into detail, the general idea of a likelihood ratio can be described quite

simply. Suppose we collect data and calculate the probability or likelihood of the data

occurring given that the null hypothesis is true. We also calculate the likelihood that the

data would occur under some alternative hypothesis (the hypothesis for which the data

are most probable). If the data are much more likely for some alternative hypothesis than

for , we would be inclined to reject . However, if the data are almost as likely under

as they are for some other alternative, we would be inclined to retain . Thus, the

likelihood ratio (the ratio of these two likelihoods) forms a basis for evaluating the null

hypothesis.

Using likelihood ratios, it is possible to devise tests, frequently referred to as “maxi-

mum likelihood ,” for analyzing both one-dimensional arrays and contingency tables.

For the development of these tests, see Agresti (2002) or Mood and Graybill (1963).

For the one-dimensional goodness-of-fit case,

where and are the observed and expected frequencies for each cell and “ln” denotes

the natural logarithm (logarithm to the base e). This value of can be evaluated using the

standard table of on C 2 1 degrees of freedom.

For analyzing contingency tables, we can use essentially the same formula,

where and are the observed and expected frequencies in each cell. The expected fre-

quencies are obtained just as they were for the standard Pearson chi-square test. This statis-

tic is evaluated with respect to the distribution on (R 2 1)(C 2 1) degrees of freedom.

Death Sentence

Defendant’s Race Yes No Total

Nonwhite 33 251 284

White 33 508 541

Total 66 759 825

x2

EijOij

x2
(R21)(C21) = 2aOij ln a

Oij

Eij
b

x2
x2

EiOi

x2
(C21) = 2aOi ln aOi

Ei
b

x2

H0H0

H0H0
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As an illustration of the use of the likelihood ratio test for contingency tables, consider

the data found in the death sentence study. The cell and marginal frequencies follow:

This answer agrees with the likelihood ratio statistic found in Exhibit 6.1b. It is a on

1 df, and since it exceeds , it will lead to rejection of .

6.10 Mantel-Haenszel Statistic

We have been dealing with two-dimensional tables where the interpretation is relatively

straightforward. But often we have a 2 3 2 table that is replicated over some other vari-

able. There are many situations in which we wish to control for (often called “condition

on”) a third variable. We might look at the relationship between (X) stress (high/low) and

(Y) mental status (normal/disturbed) when we have data collected across several different

environments (Z). Or we might look at the relationship between the race of the defendant

(X) and the severity of the sentence (Y) conditioned on the severity of the offense (Z)—see

Exercise 6.41. The Mantel-Haenszel statistic (often referred to as the Cochran-Mantel-

Haenszel statistic because of Cochran’s (1954) early work on it) is designed to deal with

just these situations. For our example here we will take a well-known example involving a

study of sex discrimination in graduate admissions at Berkeley in the early1970s. This ex-

ample will serve two purposes because it will also illustrate a phenomenon known as

Simpson’s paradox. This paradox was described by Simpson in the early 1950s, but was

known to Yule nearly half a century earlier. (It should probably be called the Yule-Simpson

paradox.) It refers to the situation in which the relationship between two variables, seen at

individual levels of a third variable, reverses direction when you collapse over the third

variable. The Mantel-Haenszel statistic is meaningful whenever you simply want to con-

trol the analysis of a 2 3 2 table for a third variable, but it is particularly interesting in the

examination of the Yule-Simpson paradox.

The University of California at Berkeley investigated racial discrimination in graduate

admissions in 1973 (Bickel, Hammel, and O’Connell (1975)). A superficial examination of

admissions for that year revealed that approximately 45% of male applicants were admit-

ted compared with only about 30% of female applicants. On the surface this would appear

to be a clear case of gender discrimination. However, graduate admissions are made by de-

partments, not by a University admissions office, and it is appropriate and necessary to

look at admissions data at the departmental level. The data in Table 6.8 show the break-

down by gender in six large departments at Berkeley. (They are reflective of data from all

101 graduate departments.) For reasons that will become clear shortly, we will set aside for

now the data from the largest department (Department A), which is why that department is

shaded in Table 6.8.

Looking at the bottom row of Table 6.8, which does not include Department A, you can

see that 36.8% of males and 28.8% of females were admitted by the five departments. A

chi-square test on the data produces which has a probability under H
0

that is

0.00 to the 9th decimal place. This seems to be convincing evidence that males are admitted

x2 = 37.98,

H0x2
.05(1) = 3.84

x2

= 2[3.6790] = 7.358

= 2[33(.3733) 1 251(-.0401) 1 33(-0.2172) 1 508(0.0204)]

= 2 c33 ln a 33

22.72
b 1 251 ln a 251

261.28
b 1 33 ln a 33

43.28
b 1 508 ln a 508

497.72
b d

x2 = 2aOij ln a
Oij

Eij
b
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at substantially higher rates than females. However, when we break the data down by de-

partments, we see that in three of those departments women were admitted at a higher rate,

and in the remaining two the differences in favor of men were quite small.

The Mantel-Haenszel statistic (Mantel and Mantel and Haenszel (1959)) is designed to

deal with the data from each department separately (i.e., we condition on departments). We

then sum the results across departments. Although the statistic is not a sum of the chi-

square statistics for each department separately, you might think of it as roughly that. It is

more powerful than simply combining individual chi-squares and is less susceptible to the

problem of small expected frequencies in the individual 2 3 2 tables (Cochran, 1954).

The computation of the Mantel-Haenszel statistic is based on the fact that for any 2 3 2

table, the entry in any one cell, given the marginal totals, determines the entry in every

other cell. This means that we can create a statistic using only the data in cell
11

of the table

for each department. There are several variations of the Mantel-Haenszel statistic, but the

most common one is

where O
11k

and E
11k

are the observed and expected frequencies in the upper left cell of each

of the k 2 3 2 tables and the entries in the denominator are the marginal totals and grand

total of each of the k 2 3 2 tables. The denominator represents the variance of the numera-

tor. The entry of 21⁄2 in the numerator is the same Yates’ correction for continuity that I

passed over earlier. These values are shown in the calculations that follow (Table 6.9).

This statistic can be evaluated as a chi-square on 1 df, and its probability under H
0

is .76.

We certainly cannot reject the null hypothesis that admission is independent of gender, in

direct contradiction to the result we found when we collapsed across departments.

In the calculation of the Mantel-Haenszel statistic I left out the data from Department

A, and you are probably wondering why. The explanation is based on odds ratios, which I

won’t discuss until the next section. The short answer is that Department A had a different

=
A ƒ 686 2 681.93 ƒ 2

1
2B2

132.777
=

(4.07 2 .5)2

132.777
= 0.096

M2 =
A ƒ ©O11k 2 ©E11k ƒ 2

1
2B2

gn11k n21k n11k n12k>n
2
11k(n11k 2 1)

M2 =

A ƒgO11k 2 ©E11k ƒ 2
1
2B2

gn11kn21kn11kn12k>n
2
11k(n11k 2 1)
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Table 6.8 Admissions data for graduate departments at Berkeley (1973)

Major Males Females

Admit Reject Admit Reject

A 512 313 89 19

B 353 207 17 8

C 120 205 202 391

D 138 279 131 244

E 53 138 94 299

F 22 351 24 317

Total B-F 686 1180 508 1259

% of Total B-F 36.8% 63.2% 28.8% 71.2%



relationship between gender and admissions than did the other five departments, which

were largely homogeneous in that respect. The Mantel-Haenszel statistic is based on the

assumption that departments are homogeneous with respect to the pattern of admissions.

The obvious question following the result of our analysis of these data concerns why it

should happen. How is it that there is a clear bias toward men in the aggregated data, but

no such bias when we break the results down by department. If you calculate the percent-

age of applicants admitted by each department, you will find that Departments A, B, and D

admit over 50% of their applicants, and those are also the departments to which males ap-

ply in large numbers. On the other hand, women predominate in applying to Departments

C and E, which are among the departments who reject two-thirds of their applicants. In

other words, women are admitted at a lower rate overall because they predominately apply

to departments with low admittance rates (for both males and females). This is obscured

when you sum across departments.

6.11 Effect Sizes

The fact that a relationship is “statistically significant” does not tell us very much about

whether it is of practical significance. The fact that two independent variables are not sta-

tistically independent does not necessarily mean that the lack of independence is important

or worthy of our attention. In fact, if you allow the sample size to grow large enough, al-

most any two variables would likely show a statistically significant lack of independence.

What we need, then, are ways to go beyond a simple test of significance to present one

or more statistics that reflect the size of the effect we are looking at. There are two differ-

ent types of measures designed to represent the size of an effect. One type, called the 

d-family by Rosenthal (1994), is based on one or more measures of the differences be-

tween groups or levels of the independent variable. For example, as we will see shortly, the

probability of receiving a death sentence is about 5% points higher for defendants who are

nonwhite. The other type of measure, called the r-family, represents some sort of correla-

tion coefficient between the two independent variables. We will discuss correlation thor-

oughly in Chapter 9, but I will discuss these measures here because they are appropriate at

this time. Measures in the r-family are often called “measures of association.”

An Example

An important study of the beneficial effects of small daily doses of aspirin on reducing

heart attacks in men was reported in 1988. Over 22,000 physicians were administered as-

pirin or a placebo over a number of years, and the incidence of later heart attacks was

recorded. The data follow in Table 6.10. Notice that this design is a prospective study

Section 6.11 Effect Sizes 159

Table 6.9 Observed and expected frequencies for Berkeley data

Department O
11

E
11

Variance

A 512 531.43 21.913

B 353 354.19 5.572

C 120 114.00 47.861

D 138 141.63 44.340

E 53 48.08 24.251

F 22 24.03 10.753

Total B-F 686 681.93 132.777

d-family

r-family

measures of

association

prospective

study



because the treatments (aspirin versus no aspirin) were applied and then future outcome

was determined. This will become important shortly. Prospective studies are often called

cohort studies (because we identify two or more cohorts of participants) or, especially in

medicine, a randomized clinical trial because participants are randomized to conditions.

On the other hand, a retrospective study, frequently called a case-control design, would

select people who had, or had not, experienced a heart attack and then look backward in

time to see whether they had been in the habit of taking aspirin in the past.

For these data on one degree of freedom, which is statistically significant

at a 5 .05, indicating that there is a relationship between whether or not one takes aspirin

daily, and whether one later has a heart attack.7

d-Family: Risks and Odds

Two important concepts with categorical data, especially for 2 3 2 tables, are the concepts

of risks and odds. These concepts are closely related, and often confused, but they are basi-

cally very simple.

For the aspirin data, 0.94% (104/11,037) of people in the aspirin group and 1.71%

(189/11,034) of those in the control group suffered a heart attack during the course of the

study. (Unless you are a middle-aged male worrying about your health, the numbers look

rather small. But they are important.) These two statistics are commonly referred to as risk

estimates because they describe the risk that someone with, or without, aspirin will suffer

a heart attack. For example, I would expect 1.71% of men who do not take aspirin to suffer

a heart attack over the same period of time as that used in this study. Risk measures offer a

useful way of looking at the size of an effect.

The risk difference is simply the difference between the two proportions. In our exam-

ple, the difference is 1.71% 2 0.94% 5 .77%. Thus there is about three-quarters of a per-

centage point difference between the two conditions. Put another way, the difference in risk

between a male taking aspirin and one not taking aspirin is about three-quarters of one per-

cent. This may not appear to be very large, but keep in mind that we are talking about heart

attacks, which are serious events.

One problem with a risk difference is that its magnitude depends on the overall level of

risk. Heart attacks are quite low-risk events, so we would not expect a huge difference be-

tween the two conditions. (When we looked at the death sentence data, the probability of

being sentenced to death was 11.6% and 6.1% for a risk difference of 5% points, which

appears to be a much greater effect than the 0.75% difference in the aspirin study. Does

x2 = 25.014
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7 It is important to note that, while taking aspirin daily is associated with a lower rate of heart attack, more recent
data have shown that there are important negative side effects. Current literature suggests other treatments are at
least as effective with fewer side effects.

cohort studies

randomized

clinical trial

retrospective

study

case-control

design

risk

risk difference

Table 6.10 The effect of aspirin on the incidence

of heart attacks

Outcome

Heart No Heart 

Attack Attack

Aspirin 104 10,933 11,037

Placebo 189 10,845 11,034

293 21,778 22,071



that mean that the death sentence study found a larger effect size? Well, it depends—it cer-

tainly did with respect to risk difference.

Another way to compare the risks is to form a risk ratio, also called relative risk,

which is just the ratio of the two risks. For the heart attack data the risk ratio is

Thus the risk of having a heart attack if you do not take aspirin is 1.8 times higher than if you

do take aspirin. That strikes me as quite a difference. For the death sentence study the risk ra-

tio was 11.6%/6.1% 5 1.90, which is virtually the same as the ratio we found with aspirin.

There is a third measure of effect size that we must consider, and that is the odds ratio.

At first glance, odds and odds ratios look like risk and risk ratios, and they are often

confused, even by people who know better. Recall that we defined the risk of a heart attack

in the aspirin group as the number having a heart attack divided by the total number of peo-
ple in that group (e.g., 104/11,037 5 0.0094 5 .94%). The odds of having a heart attack

for a member of the aspirin group is the number having a heart attack divided by the num-

ber not having a heart attack (e.g., 104/10,933 5 0.0095.). The difference (though very

slight) comes in what we use as the denominator—risk uses the total sample size and is

thus the proportion of people in that condition who experience a heart attack. Odds uses as

a denominator the number not having a heart attack, and is thus the ratio of the number

having an attack versus the number not having an attack. Because in this example the de-

nominators are so much alike, the results are almost indistinguishable. That is certainly not

always the case. In Jankowski’s study of sexual abuse, the risk of adult abuse if a woman

was severely abused as a child is .40, whereas the odds are 0.67. (Don’t think of the odds

as a probability just because they look like one. Odds are not probabilities, as can be shown

by taking the odds of not being abused, which are 1.50—the woman is 1.5 times more

likely to not be abused than to be abused.)

Just as we can form a risk ratio by dividing the two risks, we can form an odds ratio by

dividing the two odds. For the aspirin example the odds of heart attack given that you did

not take aspirin were 189/10,845 5 .017. The odds of a heart attack given that you did take

aspirin were 104/10,933 5 .010. The odds ratio is simply the ratio of these two odds and is

Thus the odds of a heart attack without aspirin are 1.83 times higher than the odds of a

heart attack with aspirin.8

Why do we have to complicate things by having both odds ratios and risk ratios, since

they often look very much alike? That is a very good question, and it has some good an-

swers. Risk is something that I think most of us have a feel for. When we say the risk of

having a heart attack in the No Aspirin condition is .0171, we are saying that 1.7% of the

participants in that condition had a heart attack, and that is pretty straightforward. Many

people prefer risk ratios for just that reason. In fact, Sackett, Deeks, and Altman (1996) ar-

gued strongly for the risk ratio on just those grounds—they feel that odds ratios, while ac-

curate, are misleading. When we say that the odds of a heart attack in that condition are

.0174, we are saying that the odds of having a heart attack are 1.7% of the odds of not hav-

ing a heart attack. That may be a popular way of setting bets on race horses, but it leaves

me dissatisfied. So why have an odds ratio in the first place?

OR =
Odds|No Aspirin

Odds|Aspirin
=

0.0174

0.0095
= 1.83

RR = Riskno aspirin>Riskaspirin = 1.71%>0.94% = 1.819

Section 6.11 Effect Sizes 161

8 In computing an odds ratio there is no rule as to which odds go in the numerator and which in the denominator. It
depends on convenience. Where reasonable I prefer to put the larger value in the numerator to make the ratio come
out greater than 1.0, simply because I find it easier to talk about it that way. If we reversed them in this example we
would find OR 5 0.546, and conclude that your odds of having a heart attack in the aspirin condition are about half
of what they are in the No Aspirin condition. That is simply the inverse of the original OR (0.546 5 1/1.83).

risk ratio

relative risk

odds ratio

odds



The odds ratio has at least two things in its favor. In the first place, it can be calculated in sit-

uations in which a true risk ratio cannot be. In a retrospective study, where we find a group of

people with heart attacks and of another group of people without heart attacks, and look back to

see if they took aspirin, we can’t really calculate risk. Risk is future oriented. If we give 1000

people aspirin and withhold it from 1000 others, we can look at these people ten years down the

road and calculate the risk (and risk ratio) of heart attacks. But if we take 1000 people with (and

without) heart attacks and look backward, we can’t really calculate risk because we have sam-

pled heart attack patients at far greater than their normal rate in the population (50% of our sam-

ple has had a heart attack, but certainly 50% of the population does not suffer from heart attacks).

But we can always calculate odds ratios. And, when we are talking about low probability events,

such as having a heart attack, the odds ratio is usually a very good estimate of what the risk ratio

would be.9 (Sackett, Deeks, & Altman (1996), referred to above, agree that this is one case where

an odds ratio is useful—and it is useful primarily because in this case it is so close to a relative

risk.) The odds ratio is equally valid for prospective, retrospective, and cross-sectional sampling

designs. That is important. However, when you do have a prospective study the risk ratio can be

computed and actually comes closer to the way we normally think about risk.

A second important advantage of the odds ratio is that taking the natural log of the odds

ratio [ln(OR)] gives us a statistic that is extremely useful in a variety of situations. Two of these

are logistic regression and log-linear models, both of which are discussed later in the book.

I don’t expect most people to be excited by the fact that a logarithmic transformation of the

odds ratio has interesting statistical properties, but that is a very important point nonetheless.

Odds Ratios in 2 3 k Tables

When we have a simple 2 3 2 table the calculation of the odds ratio (or the risk ratio) is

straightforward. We simply take the ratio of the two odds (or risks). But when the table is a

2 3 k table things are a bit more complicated because we have three or more sets of odds,

and it is not clear what should form our ratio. Sometimes odds ratios here don’t make much

sense, but sometimes they do—especially when the levels of one variable form an ordered

series. The data from Jankowski’s study of sexual abuse offer a good illustration. These

data are reproduced in Table 6.11.

Because this study was looking at how adult abuse is influenced by earlier childhood

abuse, it makes sense to use the group who suffered no childhood abuse as the reference

group. We can then take the odds ratio of each of the other groups against this one. For example,
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9 The odds ratio can be defined as where OR 5 odds ratio, RR 5 relative risk, p
1 

is the

population proportion of heart attacks in one group, and p
2

is the population proportion of heart attacks in the
other group. When those two proportions are close to 0, they nearly cancel each other and OR . RR.

OR = RR A1 2 p
2

1 2 p1
B,

Table 6.11 Adult sexual abuse related to prior childhood sexual abuse

Abused as Adult

Number of Child

Abuse Categories No Yes Total Risk Odds

0 512 54 566 .095 .106

1 227 37 264 .140 .163

2 59 15 74 .203 .254

3–4 18 12 30 .400 .667

Total 816 118 934 .126 .145



those who reported one category of childhood abuse have an odds ratio of 0.163/0.106 5

1.54. Thus the odds of being abused as an adult for someone from the Category 1 group are

1.54 times the odds for someone from the Category 0 group. For the other two groups the

odds ratios relative to the Category 0 group are 2.40 and 6.29. The effect of childhood sexual

abuse becomes even clearer when we plot these results in Figure 6.2. The odds of being

abused increase very noticeably with a more serious history of childhood sexual abuse.

Odds Ratios in 2 3 2 3 k Tables

Just as we can compute an odds ratio for a 2 3 2 table, so also can we compute an odds

ratio when that same study is replicated over several strata such as departments. We will

define the odds ratio for all strata together as

For the Berkeley data we have

OR =
©(n11kn22k>n..k)

©(n12kn21k>n..k)
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Figure 6.2 Odds ratios relative to the non-abused category
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(continues)



The two entries on the right for Department B are 353 3 8/585 5 4.827 and 207 3

17/585 5 6.015. The odds for the remaining rows are computed in a similar manner. The

overall odds ratio is just the ratio of the sums of those two columns. Thus

OR 5 141.957/137.108 5 1.03.

The odds ratio tells us that the odds of being admitted if you are a male are 1.03 times the

odds of being admitted if you are a female, which means that the odds are almost identical.

Underlying the Mantel-Haenszel statistic is the assumption that the odds ratios are com-

parable across all strata—in this case all departments. But Department A is clearly an out-

lier. In that department the odds ratio for men to women is 0.35, while all of the other odds

ratios are near 1.0, ranging from 0.80 to 1.22. The inclusion of that department would vio-

late one of the assumptions of the test. In this particular case, where we are checking for dis-

crimination against women, it does not distort the final result to leave that department out.

Department A actually admitted significantly more women than men. If it had been the other

way around I would have serious qualms about looking only at the other five departments.

r-Family: Phi and Cramér’s V

The measures that we have discussed above are sometimes called d-family measures

because they focus on comparing differences between conditions—either by calculating the

difference directly or by using ratios of risks or odds. An older, and more traditional, set of

measures, sometimes called “measures of association” look at the correlation between two

variables. Unfortunately we won’t come to correlation until Chapter 9, but I would expect

that you already know enough about correlation coefficients to understand what follows.

There are a great many measures of association, and I have no intention of discussing

most of them. One of the nicest discussions of these can be found in Nie, Hull, Jenkins,

Steinbrenner, and Bent (1970). (If your instructor is very old—like me—he or she proba-

bly remembers it fondly as the old “maroon SPSS manual.” It is such a classic that it is very

likely to be available in your university library or through interlibrary loan.)

Phi (f) and Cramér’s V

In the case of 2 3 2 tables, a correlation coefficient that we will consider in Chapter 10

serves as a good measure of association. This coefficient is called phi (f), and it represents

the correlation between two variables, each of which is a dichotomy. (A dichotomy is a

variable that takes on one of two distinct values.) If we coded Aspirin as 1 or 2, for Yes and

No, and coded Heart Attack as 1 for Yes and 2 for No, and then correlated the two variables

(see Chapters 9 and 10), the result would be phi. (It does not even matter what two num-

bers we use as values for coding, so long as one condition always gets one value and the

other always gets a different [but consistent] value.)

An easier way to calculate f for these data is by the relation

f = Bx2

N
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phi (f)

Department Data n11kn22k/n..k n12kn21k/n..k

F 22 351 9.768 11.798

24 317

Sum 141.957 137.108



For the Aspirin data in Table 6.10, 5 25.014 That

does not appear to be a very large correlation, but on the other hand we are speaking about

a major, life-threatening event, and even a small correlation can be meaningful.

Phi applies only to 2 3 2 tables, but Cramér (1946) extended it to larger tables by

defining

where N is the sample size and k is defined as the smaller of R and C. This is known as

Cramér’s V. When k 5 2 the two statistics are equivalent. For larger tables its interpreta-

tion is similar to that for f. The problem with V is that it is hard to give a simple intuitive

interpretation to it when there are more than two categories and they do not fall on an or-

dered dimension.

I am not happy with the r-family of measures simply because I don’t think that they have

a meaningful interpretation in most situations. It is one thing to use a d-family measure like

the odds ratio and declare that the odds of having a heart attack if you don’t take aspirin are

1.83 times higher than the odds of having a heart attack if you do take aspirin. I think that

most people can understand what that statement means. But to use an r-family measure,

such as phi, and say that the correlation between aspirin intake and heart attack is .034 does

not seem to be telling them anything useful. (And squaring it and saying that aspirin usage

accounts for 0.1% of the variance in heart attacks is even less helpful.) Although you will

come across these coefficients in the literature, I would suggest that you stay away from the

older r-family measures unless you really have a good reason to use them.

6.12 A Measure of Agreement

We have one more measure that we should discuss. It is not really a measure of effect size,

like the previous measures, but it is an important statistic when you want to ask about the

agreement between judges.

Kappa (k)—A Measure of Agreement

An important statistic that is not based on chi-square but that does use contingency tables

is kappa (k), commonly known as Cohen’s kappa (Cohen, 1960). This statistic measures

interjudge agreement and is often used when we wish to examine the reliability of ratings.

Suppose we asked a judge with considerable clinical experience to interview 30 ado-

lescents and classify them as exhibiting (1) no behavior problems, (2) internalizing behav-

ior problems (e.g., withdrawn), and (3) externalizing behavior problems (e.g., acting out).

Anyone reviewing our work would be concerned with the reliability of our measure—how

do we know that this judge was doing any better than flipping a coin? As a check we ask a

second judge to go through the same process and rate the same adolescents. We then set up

a contingency table showing the agreements and disagreements between the two judges.

Suppose the data are those shown in Table 6.12.

Ignore the values in parentheses for the moment. In this table, Judge I classified 16 adoles-

cents as exhibiting no problems, as shown by the total in column 1. Of those 16, Judge II agreed

that 15 had no problems, but also classed 1 of them as exhibiting internalizing problems and 0

as exhibiting externalizing problems. The entries on the diagonal (15, 3, 3) represent agreement

between the two judges, whereas the off-diagonal entries represent disagreement.

A simple (but unwise) approach to these data is to calculate the percentage of agreement.

For this statistic all we need to say is that out of 30 total cases, there were 21 cases (15 1 3 1 3)

where the judges agreed. Then 21/30 5 0.70 5 70% agreement. This measure has problems,

V = B x2

N(k 2 1)

f = 125.014>22,071 = .034.x2
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however. The majority of the adolescents in our sample exhibit no behavior problems, and both

judges are (correctly) biased toward a classification of No Problem and away from the other

classifications. The probability of No Problem for Judge I would be estimated as 16/30 5 .53.

The probability of No Problem for Judge II would be estimated as 20/30 5 .67. If the two

judges operated by pulling their diagnoses out of the air, the probability that they would both

classify the same case as No Problem is .53 3 .67 5 .36, which for 30 judgments would mean

that .36 3 30 5 10.67 agreements on No Problem alone, purely by chance.

Cohen (1960) proposed a chance-corrected measure of agreement known as kappa. To

calculate kappa we first need to calculate the expected frequencies for each of the diagonal

cells, assuming that judgments are independent. We calculate these the same way we calcu-

late expected values for the standard chi-square test. For example, the expected frequency of

both judges assigning a classification of No Problem, assuming that they are operating at

random, is (20 3 16)/30 5 10.67. For Internalizing it is (6 3 6)/30 5 1.2, and for External-

izing it is (4 3 8)/30 5 1.07. These values are shown in parentheses in the table.

We will now define kappa as

where represents the observed frequencies on the diagonal and represents the ex-

pected frequencies on the diagonal. Thus

and

Then

Notice that this coefficient is considerably lower than the 70% agreement figure that we calcu-

lated above. Instead of 70% agreement, we have 47% agreement after correcting for chance.
If you examine the formula for kappa, you can see the correction that is being ap-

plied. In the numerator we subtract, from the number of agreements, the number of

agreements that we would expect merely by chance. In the denominator we reduce the

total number of judgments by that same amount. We then form a ratio of the two chance-

corrected values.

Cohen and others have developed statistical tests for the significance of kappa. How-

ever, its significance is rarely the issue. If kappa is low enough for us to even question its

significance, the lack of agreement among our judges is a serious problem.

k =
21 2 12.94

30 2 12.94
=

8.06

17.06
= .47

a fE = 10.67 1 1.20 1 1.07 = 12.94.

a fO = 15 1 3 1 3 = 21

fEfO

k =
a fO 2 a fE

N 2 a fE
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Table 6.12 Agreement data betweeen two judges 

Judge I

Judge II No Problem Internalizing Externalizing Total

No Problem 15  (10.67) 2 3 20

Internalizing 1 3  (1.20) 2 6

Externalizing 0 1 3  (1.07) 4

Total 16 6 8 30
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6.13 Writing Up the Results

We will take as our example Jankowski’s study of sexual abuse. If you were writing up

these results, you would probably want to say something like the following:

In an examination of the question of whether adult sexual abuse can be traced back to

earlier childhood sexual abuse, 934 undergraduate women were asked to report on the

severity of any childhood sexual abuse and whether or not they had been abused as

adults. Severity of abuse was taken as the number of categories of abuse to which the

participants responded. The data revealed that the incidence of adult sexual abuse in-

creased with the severity of childhood abuse. A chi-square test of the relationship be-

tween adult and childhood abuse produced , which is statistically

significant at p , .05. The odds ratio of being abused as an adult with only one cate-

gory of childhood abuse, relative to the odds of abuse for the non-childhood abused

group was 1.54. The odds ratio climbed to 2.40 and 6.29 as severity of childhood abuse

increased. Sexual abuse as a child is a strong indicator of later sexual abuse as an adult. 

x2
3 = 29.63
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Exercises

6.1 The chairperson of a psychology department suspects that some of her faculty are more

popular with students than are others. There are three sections of introductory psychology,

taught at 10:00 A.M., 11:00 A.M., and 12:00 P.M. by Professors Anderson, Klatsky, and

Kamm. The number of students who enroll for each is 

Professor Anderson Professor Klatsky Professor Kamm

32 25 10

State the null hypothesis, run the appropriate chi-square test, and interpret the results.
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6.2 From the point of view of designing a valid experiment (as opposed to the arithmetic of cal-

culation), there is an important difference between Exercise 6.1 and the examples used in

this chapter. The data in Exercise 6.1 will not really answer the question the chairperson

wants answered. What is the problem and how could the experiment be improved?

6.3 You have a theory that if you ask subjects to sort one-sentence characteristics of people

(e.g., “I eat too fast”) into five piles ranging from “not at all like me” to “very much like

me,” the percentage of items placed in each of the five piles will be approximately 10, 20,

40, 20, and 10. You have one of your friend’s children sort 50 statements, and you obtain

the following data: [8, 10, 20, 8, 4] Do these data support your hypothesis?

6.4 To what population does the answer to Exercise 6.3 generalize? (Hint: From what popula-

tion of observations might these observations be thought to be randomly sampled?)

6.5 In a classic study by Clark and Clark (1939), African-American children were shown black

dolls and white dolls and were asked to select the one with which they wished to play. Out

of 252 children, 169 chose the white doll and 83 chose the black doll. What can we con-

clude about the behavior of these children?

6.6 Thirty years after the Clark and Clark study, Hraba and Grant (1970) repeated the study re-

ferred to in Exercise 6.5. The studies, though similar, were not exactly equivalent, but the

results were interesting. Hraba and Grant found that out of 89 African-American children,

28 chose the white doll and 61 chose the black doll. Run the appropriate chi-square test on

their data and interpret the results.

6.7 Combine the data from Exercises 6.5 and 6.6 into a two-way contingency table and run the

appropriate test. How does the question that the two-way classification addresses differ

from the questions addressed by Exercises 6.5 and 6.6?

6.8 We know that smoking has all sorts of ill effects on people; among other things, there is ev-

idence that it affects fertility. Weinberg and Gladen (1986) examined the effects of smoking

and the ease with which women become pregnant. They took 586 who had planned preg-

nancies, and asked them how many menstrual cycles it had taken for them to become preg-

nant after discontinuing contraception. They also sorted the women into whether they were

smokers or non-smokers. The data follow.

1 cycle 2 cycles 31 cycles Total

Smokers 29 16 55 100

Nonsmokers 198 107 181 486

Total 227 123 236 586

Does smoking affect the ease with which women become pregnant? (I do not recommend

smoking as a birth control device, regardless of your answer.)

6.9 In discussing the correction for continuity, we referred to the idea of fixed marginals, mean-

ing that a replication of the study would produce the same row and/or column totals. Give

an example of a study in which

a. no marginal totals are fixed.

b. one set of marginal totals is fixed.

c. both sets of marginal totals (row and column) could reasonably be considered to be

fixed. (This is a hard one.)

6.10 Howell and Huessy (1981) used a rating scale to classify children in a second-grade class as

showing or not showing behavior commonly associated with attention deficit disorder

(ADD). They then classified these same children again when they later were in fourth and

fifth grades. When the children reached the end of the ninth grade, the researchers exam-

ined school records and noted which children were enrolled in remedial English. In the
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following data, all children who were ever classified as exhibiting behavior associated with

ADD have been combined into one group (labeled ADD): 

Remedial English Nonremedial English

Normal 22 187 209

ADD 19 74 93

41 261 302

Does behavior during elementary school discriminate class assignment during high
school?

6.11 Use the data in Exercise 6.10 to demonstrate how chi-square varies as a function of sample size.

a. Double each cell entry and recompute chi-square.

b. What does your answer to (a) say about the role of the sample size in hypothesis

testing?

6.12 In Exercise 6.10 children were classified as those who never showed ADD behavior and

those who showed ADD behavior at least once in the second, fourth, or fifth grade. If we do

not collapse across categories, we obtain the following data: 

2nd & 2nd & 4th & 2nd, 4th, &

Never 2nd 4th 4th 5th 5th 5th 5th

Remedial 22 2 1 3 2 4 3 4

Nonrem. 187 17 11 9 16 7 8 6 

a. Run the chi-square test.

b. What would you conclude, ignoring the small expected frequencies?

c. How comfortable do you feel with these small expected frequencies? If you are not

comfortable, how might you handle the problem?

6.13 In 2000, the State of Vermont legislature approved a bill authorizing civil unions between

gay or lesbian partners. This was a very contentious debate with very serious issues raised

by both sides. How the vote split along gender lines may tell us something important about

the different ways in which males and females looked at this issue. The data appear below.

What would you conclude from these data? 

Vote

Yes No Total

Women 35 9 44

Men 60 41 101

Total 95 50 145

6.14 Stress has long been known to influence physical health. Visintainer, Volpicelli, and

Seligman (1982) investigated the hypothesis that rats given 60 trials of inescapable shock

would be less likely later to reject an implanted tumor than would rats who had received 60

trials of escapable shock or 60 no-shock trials. They obtained the following data: 

Inescapable

Shock Escapable Shock No Shock

Reject 8 19 18 45

No Reject 22 11 15 48

30 30 33 93

What could Visintainer et al. conclude from the results?
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6.15 Darley and Latané (1968) asked subjects to participate in a discussion carried on over an in-

tercom. Aside from the experimenter to whom they were speaking, subjects thought that

there were zero, one, or four other people (bystanders) also listening over intercoms. Part-

way through the discussion, the experimenter feigned serious illness and asked for help.

Darley and Latané noted how often the subject sought help for the experimenter as a func-

tion of the number of supposed bystanders. The data follow: 

What could Darley and Latané conclude from the results?

6.16 In a study similar to the one in Exercise 6.15, Latané and Dabbs (1975) had a confederate

enter an elevator and then “accidentally” drop a handful of pencils. They then noted whether

bystanders helped pick them up. The data tabulate helping behavior by the gender of the by-

stander: 

Gender of Bystander

Female Male 

Help 300 370 670 

No Help 1003 950 1953 

1303 1320 2623

What could Latané and Dabbs conclude from the data? (Note that when we collapse over

gender, only about one-quarter of the bystanders helped. That is not relevant to the ques-

tion, but it is an interesting finding that could easily be missed by routine computer-based

analyses.)

6.17 In a study of eating disorders in adolescents, Gross (1985) asked each of her subjects

whether they would prefer to gain weight, lose weight, or maintain their present weight.

(Note: Only 12% of the girls in Gross’s sample were actually more than 15% above their

normative weight—a common cutoff for a label of “overweight.”) When she broke down

the data for girls by race (African-American versus white), she obtained the following re-

sults (other races have been omitted because of small sample sizes): 

Reducers Maintainers Gainers

White 352 152 31 535 

African-American 47 28 24 99 

399 180 55 634

a. What conclusions can you draw from these data?

b. Ignoring race, what conclusion can you draw about adolescent girls’ attitudes toward

their own weight?

6.18 Use the likelihood ratio approach to analyze the data in Exercise 6.10.

6.19 Use the likelihood ratio approach to analyze the data in Exercise 6.12.

6.20 It would be possible to calculate a one-way chi-square test on the data in row 2 of the table

in Exercise 6.12. What hypothesis would you be testing if you did that? How would that

hypothesis differ from the one you tested in Exercise 6.12?

Sought Assistance

Yes No

0 11 2 13 
Number of

1 16 10 26 
Bystanders

4 4 9 13 

31 21 52
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6.21 Suppose we asked a group participants whether they liked Monday Night Football, made

them watch a game, and then asked them again. Our interest lies in whether watching a game

changes people’s opinions. Out of 80 participants, 20 changed their opinion from Favorable

to Unfavorable, while 5 changed from Unfavorable to Favorable. (The others did not change).

Did watching the game have a systematic effect on opinion change? (This test on changes is

a test suggested by McNemar [1969] and is often referred to as the McNemar test.)

a. Run the test.

b. Explain how this tests the null hypothesis that you wanted to test.

c. In this situation the test does not answer our question of whether watching football has

a serious effect on opinion change. Why not?

6.22 Pugh (1983) conducted a study of how jurors make decisions in rape cases. He presented

358 people with a mock rape trial. In about half of those trials the victim was presented as

being partly at fault, and in the other half of the trials she was presented as not at fault. The

verdicts are shown in the following table. What conclusion would you draw?

Fault Guilty Not Guilty Total

Little 153 24 177

Much 105 76 181

Total 258 100 358

6.23 The following SPSS output represents that analysis of the data in Exercise 6.17.

a. Verify the answer to Exercise 6.17a.

b. Interpret the row and column percentages.

c. What are the values labeled “Asymp. Sig.”?

d. Interpret the coefficients.

RACE*GOAL Crosstabulation

Goal

Gain Lose Maintain Total

RACE African-Amer Count 24 47 28 99

Expected Count 8.6 62.3 28.1 99.0

% within RACE 24.2% 47.5% 28.3% 100.0%

% within GOAL 43.6% 11.8% 15.6% 15.6%

% of Total 3.8% 7.4% 4.4% 15.6%

White Count 31 352 152 535

Expected Count 46.4 336.7 151.9 535.0

% within RACE 5.8% 65.8% 28.4% 100.0%

% within GOAL 56.4% 88.2% 84.4% 84.4%

% of Total 4.9% 55.5% 24.0% 84.4%

Total Count 55 399 180 634

Expected Count 55.0 399.0 180.0 634.0

% within RACE 8.7% 62.9% 28.4% 100.0%

% within GOAL 100.0% 100.0% 100.0% 100.0%

% of Total 8.7% 62.9% 28.4% 100.0%

Exhibit 6.2

(continues)
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Chi-Square Tests

Asymp. Sig.

Value df (2-sided)

Pearson Chi-Square 37.229a 2 .000

Likelihood Ratio 29.104 2 .000

N of Valid Cases 634

a 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.59.

Symmetric Measures

Approx.

Value Sig.

Nominal by Phi .242 .000

Nominal Cramer’s V .242 .000

Contingency Coefficient .236 .000

N of Valid Cases 634

Exhibit 6.2 (continued)

6.24 A more complete set of data on heart attacks and aspirin, from which Table 6.10 was taken,

is shown below. Here we distinguish not just between Heart Attacks and No Heart Attacks,

but also between Fatal and Nonfatal attacks. 

Myocardial Infarction

Fatal Attack NonFatal Attack No Attack Total 

Placebo 18 171 10,845 11,034

Aspirin 5 99 10,933 11,037 

Total 23 270 21,778 22,071

a. Calculate both Pearson’s chi-square and the likelihood ratio chi-square table. Interpret

the results

b. Using only the data for the first two columns (those subjects with heart attacks), calcu-

late both Pearson’s chi-square and the likelihood ratio chi-square and interpret your

results.

c. Combine the Fatal and Nonfatal heart attack columns and compare the combined col-

umn against the No Attack column, using both Pearson’s and likelihood ratio chi-

squares. Interpret these results.

d. Sum the Pearson chi-squares in (b) and (c) and then the likelihood ratio chi-squares in

(b) and (c), and compare each of these results to the results in (a). What do they tell you

about the partitioning of chi-square?

e. What do these results tell you about the relationship between aspirin and heart attacks?

6.25 Calculate and interpret Cramér’s V and useful odds ratios for the results in Exercise 6.24.

6.26 Compute the odds ratio for the data in Exercise 6.10. What does this value mean?

6.27 Compute the odds ratio for Table 6.4 What does this ratio add to your understanding of the

phenomenon being studied?



Exercises 173

6.28 Compute the odds in favor of seeking assistance for each of the groups in Exercise 6.15.

Interpret the results.

6.29 Dabbs and Morris (1990) examined archival data from military records to study the rela-

tionship between high testosterone levels and antisocial behavior in males. Out of 4016 men

in the Normal Testosterone group, 10.0% had a record of adult delinquency. Out of 446 men

in the High Testosterone group, 22.6% had a record of adult delinquency. Is this relation-

ship significant?

6.30 What is the odds ratio in Exercise 6.29? How would you interpret it?

6.31 In the study described in Exercise 6.29, 11.5% of the Normal Testosterone group and 17.9%

of the High Testosterone group had a history of childhood delinquency.

a. Is there a significant relationship between these two variables?

b. Interpret this relationship.

c. How does this result expand on what we already know from Exercise 6.29?

6.32 In a study examining the effects of individualized care of youths with severe emotional prob-

lems, Burchard and Schaefer (1990, personal communication) proposed to have caregivers

rate the presence or absence of specific behaviors for each of 40 adolescents on a given day.

To check for rater reliability, they asked two raters to rate each adolescent. The following hy-

pothetical data represent reasonable results for the behavior of “extreme verbal abuse.” 

Rater A 

Rater B Presence Absence 

Presence 12 2 14

Absence 1 25 26

13 27 40

a. What is the percentage of agreement for these raters?

b. What is Cohen’s kappa?

c. Why is kappa noticeably less than the percentage of agreement?

d. Modify the raw data, keeping N at 40, so that the two statistics move even farther apart.

How did you do this?

6.33 Many school children receive instruction on child abuse around the “good touch-bad touch”

model, with the hope that such a program will reduce sexual abuse. Gibson and Leitenberg

(2000) collected data from 818 college students, and recorded whether they had ever re-

ceived such training and whether they had subsequently been abused. Of the 500 students

who had received training, 43 reported that they had subsequently been abused. Of the 318

who had not received training, 50 reported subsequent abuse.

a. Do these data present a convincing case for the efficacy of the sexual abuse prevention

program?

b. What is the odds ratio for these data, and what does it tell you?

Computer Exercises

6.34 In a data set named Mireault.dat and described in Appendix Data Set, Mireault (1990) col-

lected data from college students on the effects of the death of a parent. Leaving the critical

variables aside for a moment, let’s look at the distribution of students. The data set contains
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information on the gender of the students and the college (within the university) in which

they were enrolled.

a. Use any statistical package to tabulate Gender against College.

b. What is the chi-square test on the hypothesis that College enrollment is independent of

Gender?

c. Interpret the results.

6.35 When we look at the variables in Mireault’s data, we will want to be sure that there are not

systematic differences of which we are ignorant. For example, if we found that the gender

of the parent who died was an important variable in explaining some outcome variable, we

would not like to later discover that the gender of the parent who died was in some way re-

lated to the gender of the subject, and that the effects of the two variables were confounded.

a. Run a chi-square test on these two variables.

b. Interpret the results.

c. What would it mean to our interpretation of the relationship between gender of the par-

ent and some other variable (e.g., subject’s level of depression) if the gender of the par-

ent is itself related to the gender of the subject?

6.36 Zuckerman, Hodgins, Zuckerman, and Rosenthal (1993) surveyed over 500 people and

asked a number of questions on statistical issues. In one question a reviewer warned a re-

searcher that she had a high probability of a Type I error because she had a small sample

size. The researcher disagreed. Subjects were asked, “Was the researcher correct?” The pro-

portions of respondents, partitioned among students, assistant professors, associate profes-

sors, and full professors, who sided with the researcher and the total number of respondents

in each category were as follows:

Assistant Associate Full

Students Professors Professors Professors

Proportion .59 .34 .43 .51

Sample size 17 175 134 182

(Note: These data mean that 59% of the 17 students who responded sided with the
researcher. When you calculate the actual obtained frequencies, round to the nearest
whole person.)

a. Would you agree with the reviewer, or with the researcher? Why?

b. What is the error in logic of the person you disagreed with in (a)?

c. How would you set up this problem to be suitable for a chi-square test?

d. What do these data tell you about differences among groups of respondents?

6.37 The Zuckerman et al. paper referred to in the previous question hypothesized that faculty

were less accurate than students because they have a tendency to give negative responses to

such questions. (“There must be a trick.”) How would you design a study to test such a

hypothesis?

6.38 Hout, Duncan, and Sobel (1987) reported data on the relative sexual satisfaction of married

couples. They asked each member of 91 married couples to rate the degree to which they
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agreed with “Sex is fun for me and my partner” on a four-point scale ranging from “never

or occasionally” to “almost always.” The data appear below:

Wife’s Rating

Husband’s Fairly Very Almost 

Rating Never Often Often Always TOTAL

Never 7 7 2 3 19 

Fairly Often 2 8 3 7 20 

Very Often 1 5 4 9 19 

Almost Always 2 8 9 14 33 

TOTAL 12 28 18 33 91

a. How would you go about analyzing these data? Remember that you want to know more

than just whether or not the two ratings are independent. Presumably you would like to

show that as one spouse’s ratings go up, so do the other’s, and vice versa.

b. Use both Pearson’s chi-square and the likelihood ratio chi-square.

c. What does Cramér’s V offer?

d. What about odds ratios?

e. What about kappa?

f. Finally, what if you combined the Never and Fairly Often categories and the Very Often

and Almost Always categories? Would the results be clearer, and under what conditions

might this make sense?

6.39 In the previous question we were concerned with whether husbands and wives rate their de-

gree of sexual fun congruently (i.e., to the same degree). But suppose that women have dif-

ferent cut points on an underlying scale of “fun.” For example, maybe women’s idea of

Fairly Often or Almost Always is higher than men’s. (Maybe men would rate “a couple of

times a month” as “Very Often” while women would rate “a couple of times a month” as

“Fairly Often.”) How would this affect your conclusions? Would it represent an underlying

incongruency between males and females?

6.40 Use SPSS or another statistical package to calculate Fisher’s Exact Test for the data in Exer-

cise 6.13. How does it compare to the probability associated with Pearson’s chi-square?

6.41 The following data come from Ramsey and Shafer (1996) but were originally collected in

conjunction with the trial of McClesky v. Zant in 1998. In that trial the defendant’s

lawyers tried to demonstrate that black defendants were more likely to receive the death

penalty if the victim was white than if the victim was black. They were attempting to

prove systematic discrimination in sentencing. The State of Georgia agreed with the basic

fact, but argued that the crimes against whites tended to be more serious crimes than those

committed against blacks, and thus the difference in sentencing was understandable. The

data are shown below. Were the statisticians on the defendant’s side correct in arguing that

sentencing appeared discriminatory? Test this hypothesis using the Mantel-Haenszel

procedure.
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Death Penalty

Seriousness Race Victim Yes No

1 White 2 60

Black 1 181

2 White 2 15

Black 1 21

3 White 6 7

Black 2 9

4 White 9 3

Black 2 4

5 White 9 0

Black 4 3

6 White 17 0

Black 4 0

Calculate the odds ratio of a death sentence with white versus black victims.

6.42 Fidalgo (2005) presented data on the relationship between bullying in the work force

(Yes/No) and gender (Male/Female) of the bully. He further broke the data down by job

level. The data are given below.

Bullying

Gender Job Category No Yes

Male Manual 148 28

Female 98 22

Male Clerical 68 13

Female 144 32

Male Technician 121 18

Female 43 10

Male Middle Manager 95 7

Female 38 7

Male Manager/ 29 2

Female Executive 8 1

a. Do we have evidence that there is a relationship between bullying on the job and gen-

der if we collapse across job categories?

b. What is the odds ratio for the analysis in part a?

c. When we condition on job category is there evidence of gender differences in bullying?

d. What is the odds ratio for the analysis in part c?

e. You probably do not have the software to extend the Mantel-Haenszel test to strata con-

taining more than a 2 3 2 contingency table. However using standard Pearson chi-

square, examine the relationship between bullying and Job Category separately by

gender. Explain the results of this analysis.



6.43 The State of Maine collected data on seat belt use and highway fatalities in 1996. (Full data

are available at http://maine.gov/dps/bhs/crash-data/stats/seatbelts.html.) Psychologists

often study how to address self-injurious behavior, and the data shown below speak to the

issue of whether seat belts prevent injury or death. (The variable “Occupants” counts occupants

actually involved in highway accidents.)

Not Belted Belted

Occupants 6307 65,245

Injured 2323 8138

Fatalities 62 35

Present these data in ways to show the effectiveness of seat belts in preventing death and

injury.
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CHAPTER 7

Hypothesis Tests

Applied to Means

Object ives

To introduce the t test as a procedure for testing hypotheses with

measurement data, and to show how it can be used with several different

designs. To describe ways of estimating the magnitude of any differences that

do appear.
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IN CHAPTERS 5 AND 6 we considered tests dealing with frequency (categorical) data. 

In those situations, the results of any experiment can usually be represented by a few

subtotals—the frequency of occurrence of each category of response. In this and subse-

quent chapters, we will deal with a different type of data, that which I have previously

termed measurement or quantitative data.

In analyzing measurement data, our interest can focus either on differences between

groups of subjects or on the relationship between two or more variables. The question of

relationships between variables will be postponed until Chapters 9, 10, 15, and 16. This

chapter will be concerned with the question of differences, and the statistic we will be most

interested in will be the sample mean.

Low-birthweight (LBW) infants (who are often premature) are considered to be at risk

for a variety of developmental difficulties. As part of an example we will return to later,

Nurcombe et al. (1984) took 25 LBW infants in an experimental group and 31 LBW in-

fants in a control group, provided training to the parents of those in the experimental

group on how to recognize the needs of LBW infants, and, when these children were

2 years old, obtained a measure of cognitive ability. Suppose that we found that the LBW

infants in the experimental group had a mean score of 117.2, whereas those in the control

group had a mean score of 106.7. Is the observed mean difference sufficient evidence for

us to conclude that 2-year-old LBW children in the experimental group score higher, on

average, than do 2-year-old LBW control children? We will answer this particular ques-

tion later; I mention the problem here to illustrate the kind of question we will discuss in

this chapter.

7.1 Sampling Distribution of the Mean

As you should recall from Chapter 4, the sampling distribution of any statistic is the distri-

bution of values we would expect to obtain for that statistic if we drew an infinite number

of samples from the population in question and calculated the statistic on each sample. Be-

cause we are concerned in this chapter with sample means, we need to know something

about the sampling distribution of the mean. Fortunately, all the important information

about the sampling distribution of the mean can be summed up in one very important theo-

rem: the central limit theorem. The central limit theorem is a factual statement about the

distribution of means. In an extended form it states:

Given a population with mean m and variance s2, the sampling distribution of the mean

(the distribution of sample means) will have a mean equal to m (i.e., ), a vari-

ance ( ) equal to , and a standard deviation ( ) equal to . The distribution

will approach the normal distribution as n, the sample size, increases.1

This is one of the most important theorems in statistics. It not only tells us what the

mean and variance of the sampling distribution of the mean must be for any given sample

size, but also states that as n increases, the shape of this sampling distribution approaches

normal, whatever the shape of the parent population. The importance of these facts will

become clear shortly.

s>1nsXs2>nsX
2

m
X

= m
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1 The central limit theorem can be found stated in a variety of forms. The simplest form merely says that the sam-
pling distribution of the mean approaches normal as n increases. The more extended form given here includes all
the important information about the sampling distribution of the mean.

sampling

distribution of

the mean

central limit

theorem



The rate at which the sampling distribution of the mean approaches normal as n in-

creases is a function of the shape of the parent population. If the population is itself nor-

mal, the sampling distribution of the mean will be normal regardless of n. If the population

is symmetric but nonnormal, the sampling distribution of the mean will be nearly normal

even for small sample sizes, especially if the population is unimodal. If the population is

markedly skewed, sample sizes of 30 or more may be required before the means closely

approximate a normal distribution.

To illustrate the central limit theorem, suppose we have an infinitely large population

of random numbers evenly distributed between 0 and 100. This population will have what

is called a uniform (rectangular) distribution—every value between 0 and 100 will be

equally likely. The distribution of 50,000 observations drawn from this population is shown

in Figure 7.1. You can see that the distribution is very flat, as would be expected. For uni-

form distributions the mean (m) is known to be equal to one-half of the range (50), the stan-

dard deviation (s) is known to be equal the range divided by the square root of 12, which

in this case is 28.87, and the variance ( ) is thus 833.33.

Now suppose we drew 5000 samples of size 5 (n 5 5) from this population and plotted

the resulting sample means. Such sampling can be easily accomplished with a simple com-

puter program; the results of just such a procedure are presented in Figure 7.2a, with a nor-

mal distribution superimposed. It is apparent that the distribution of means, although not

exactly normal, is at least peaked in the center and trails off toward the extremes. (In fact

the superimposed normal distribution fits the data quite well.) The mean and standard

deviation of this distribution are shown, and they are extremely close to m 5 50 and

. Any discrepancy between the actual values and those

predicted by the central limit theorem is attributable to rounding error and to the fact that

we did not draw an infinite number of samples.

Now suppose we repeated the entire procedure, only this time drawing 5000 samples

of 30 observations each. The results for these samples are plotted in Figure 7.2b. Here you

sX = s>1n = 28.87>15 = 12.91

s2

Section 7.1 Sampling Distribution of the Mean 181

Individual observations

9
7
.0

9
3
.0

8
9
.0

8
5
.0

8
1
.0

7
7
.0

7
3
.0

6
9
.0

6
5
.0

6
1
.0

5
7
.0

5
3
.0

4
9
.0

4
5
.0

4
1
.0

3
7
.0

3
3
.0

2
9
.0

2
5
.0

2
1
.0

1
7
.0

1
3
.0

9
.0

5
.0

1
.0

F
re

q
u

en
cy

1200

1000

800

600

400

200

0

Figure 7.1 50,000 observations from a uniform distribution

uniform

(rectangular)

distribution



see that just as the central limit theorem predicted, the distribution is approximately nor-

mal, the mean is again at m 5 50, and the standard deviation has been reduced to approxi-

mately .

You can get a better idea of the difference in the normality of the sampling distribution

when n 5 5 and n 5 30 by looking at Figure 7.2c. This figure presents Q-Q plots for the

two sampling distributions, and you can see that although the distribution for n 5 5 is not

very far from normal, the distribution with n 5 30 is even closer to normal.

28.87>130 = 5.27
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Figure 7.2b Sampling distribution of the mean when n 5 30
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7.2 Testing Hypotheses About Means—s Known

From the central limit theorem, we know all the important characteristics of the sampling

distribution of the mean. (We know its shape, its mean, and its standard deviation.) On the

basis of this information, we are in a position to begin testing hypotheses about means.

In most situations in which we test a hypothesis about a population mean, we don’t

have any knowledge about the variance of that population. (This is the main reason we

have t tests, which are the main focus of this chapter.) However, in a limited number of sit-

uations we do know s. A discussion of testing a hypothesis when s is known provides a

good transition from what we already know about the normal distribution to what we want

to know about t tests. An example of behavior problem scores on the Achenbach Child

Behavior Checklist (CBCL) (Achenbach, 1991a) is a useful example for this purpose, because

we know both the mean and the standard deviation for the population of Total Behavior

Problems scores (m 5 50 and s 5 10). Assume that we have a sample of fifteen children

who had spent considerable time in a hospital for serious medical reasons, and further sup-

pose that they had a mean score on the CBCL of 56.0. We want to test the null hypothesis

that these fifteen children are a random sample from a population of normal children (i.e.,

normal with respect to their general level of behavior problems). In other words, we want

to test against the alternative 

Because we know the mean and standard deviation of the population of general behav-

ior problem scores, we can use the central limit theorem to obtain the sampling distribution

when the null hypothesis is true. The central limit theorem states that if we obtain the sam-

pling distribution of the mean from this population, it will have a mean of m 5 50, a vari-

ance of , and a standard deviation (usually referred to as

the standard error2) of (See footnote 2.) This distribution is diagrammed

in Figure 7.3. The arrow in Figure 7.3 represents the location of the sample mean.

s>1n = 2.58.

s2>n = 102>15 = 100>15 = 6.67

H1 :m Z 50.H0 :m = 50
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Figure 7.2c Q-Q plots for sampling distributions with n 5 5 and n 5 30
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2The standard deviation of any sampling distribution is normally referred to as the standard error of that distribu-
tion. Thus, the standard deviation of means is called the standard error of the mean (symbolized by ), whereas
the standard deviation of differences between means, which will be discussed shortly, is called the standard error
of differences between means and is symbolized by . Minor changes in terminology, such as calling a stan-
dard deviation a standard error, are not really designed to confuse students, though they probably have that effect.

sX12X2

sX

standard error



Because we know that the sampling distribution is normally distributed with a mean of

50 and a standard error of 2.58, we can find areas under the distribution by referring to

tables of the standard normal distribution. Thus, for example, because two standard errors

is 2(2.58) 5 5.16, the area to the right of is simply the area under the normal

distribution greater than two standard deviations above the mean.

For our particular situation, we first need to know the probability of a sample mean

greater than or equal to 56, and thus we need to find the area above We can calcu-

late this in the same way we did with individual observations, with only a minor change in

the formula for z:

becomes

which can also be written as

For our data this becomes

Notice that the equation for z used here is in the same form as our earlier formula for z in
Chapter 4. The only differences are that X has been replaced by and s has been replaced

by . These differences occur because we are now dealing with a distribution of means,

and thus the data points are now means, and the standard deviation in question is now the

standard error of the mean (the standard deviation of means). The formula for z continues to

sX

X

z =
56 2 50

10115

=
6

2.58
= 2.32

z =
X 2 m

s1n

z =
X 2 m

sX

z =
X 2 m

s

X = 56.

X = 55.46
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Figure 7.3 Sampling distribution of the mean for n 5 15 drawn from a population

with m 5 50 and s 5 10



represent (1) a point on a distribution, minus (2) the mean of that distribution, all divided by

(3) the standard deviation of the distribution. Now rather than being concerned specifically

with the distribution of , we have re-expressed the sample mean in terms of z scores and

can now answer the question with regard to the standard normal distribution.

From Appendix z we find that the probability of a z as large as 2.32 is .0102. Because we

want a two-tailed test of , we need to double the probability to obtain the probability of a

deviation as large as 2.58 standard errors in either direction from the mean. This is 2(.0102) 5

.0204. Thus, with a two-tailed test (that hospitalized children have a mean behavior problem

score that is different in either direction from that of normal children) at the .05 level of sig-

nificance, we would reject because the obtained probability is less than .05. We would

conclude that we have evidence that hospitalized children differ from normal children in

terms of behavior problems. (In the language of Jones and Tukey (2000) discussed earlier, we

have evidence that the mean of stressed children is above that of other children.)

7.3 Testing a Sample Mean When s Is 
Unknown—The One-Sample t Test

The preceding example was chosen deliberately from among a fairly limited number of situ-

ations in which the population standard deviation (s) is known. In the general case, we rarely

know the value of s and usually have to estimate it by way of the sample standard deviation (s).
When we replace s with s in the formula, however, the nature of the test changes. We can no

longer declare the answer to be a z score and evaluate it using tables of z. Instead, we will

denote the answer as t and evaluate it using tables of t, which are different from tables of z.

The reasoning behind the switch from z to t is really rather simple. The basic problem that

requires this change to t is related to the sampling distribution of the sample variance.

The Sampling Distribution of s2

Because the t test uses as an estimate of , it is important that we first look at the sam-

pling distribution of . This sampling distribution gives us some insight into the problems

we are going to encounter. We saw in Chapter 2 that is an unbiased estimate of , mean-

ing that with repeated sampling the average value of will equal . Although an unbiased

estimator is a nice thing, it is not everything. The problem is that the shape of the sampling

distribution of is positively skewed, especially for small samples. I drew 50,000 samples

of n 5 5 from a population with m 5 5 and s2 5 50. I calculated the variance for each sam-

ple, and have plotted those 50,000 variances in Figure 7.4. Notice that the mean of this dis-

tribution is almost exactly 50, reflecting the unbiased nature of s2 as an estimate of s2.

However, the distribution is very positively skewed. Because of the skewness of this distri-

bution, an individual value of s2 is more likely to underestimate s2 than to overestimate it,

especially for small samples. Also because of this skewness, the resulting value of t is likely

to be larger than the value of z that we would have obtained had s been known and used.

The t Statistic

We are going to take the formula that we just developed for z,

z =
X 2 m

sX

=
X 2 m

s1n

=
X 2 m

Bs2

n

s2

s2s2
s2s2

s2
s2s2

H0

H0

X

Section 7.3 Testing a Sample Mean When s Is Unknown—The One-Sample t Test 185



and substitute s for s to give

Since we know that for any particular sample, is more likely than not to be smaller than

the appropriate value of , we can see that the t formula is more likely than not to produce

a larger answer (in absolute terms) than we would have obtained if we had solved for z us-

ing the true but unknown value of itself. (You can see this in Figure 7.4, where more

than half of the observations fall to the left of .) As a result, it would not be fair to treat

the answer as a z score and use the table of z. To do so would give us too many “signifi-

cant” results—that is, we would make more than 5% Type I errors. (For example, when we

were calculating z, we rejected at the .05 level of significance whenever z exceeded

61.96. If we create a situation in which  is true, repeatedly draw samples of n 5 5, and

use in place of , we will obtain a value of 61.96 or greater more than 10% of the time.

The cutoff in this case is 2.776.)

The solution to our problem was supplied in 1908 by William Gosset, who worked for

the Guinness Brewing Company, published under the pseudonym of Student, and wrote

several extremely important papers in the early 1900s. Gosset showed that if the data are

sampled from a normal distribution, using in place of would lead to a particular sam-

pling distribution, now generally known as Student’s t distribution. As a result of

Gosset’s work, all we have to do is substitute , denote the answer as t, and evaluate t with

respect to its own distribution, much as we evaluated z with respect to the normal distribu-

tion. The t distribution is tabled in Appendix t, and examples of the actual distribution of t
for various sample sizes are shown graphically in Figure 7.5.

As you can see from Figure 7.5, the distribution of t varies as a function of the degrees

of freedom, which for the moment we will define as one less than the number of observations

s2

s2s2

t.05

s2s2
H0

H0

s2
s2

s2
s2

t =
X 2 m

sX
=

X 2 m

s2n

=
X 2 m

Bs2

n
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Figure 7.4 Sampling distribution of the sample variance
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in the sample. As . (The symbol is read

“approaches.”) Since the skewness of the sampling distribution of disappears as the

number of degrees of freedom increases, the tendency for s to underestimate s will also

disappear. Thus, for an infinitely large number of degrees of freedom, t will be normally

distributed and equivalent to z.

The test of one sample mean against a known population mean, which we have just per-

formed, is based on the assumption that the sample was drawn from a normally distributed

population. This assumption is required primarily because Gosset derived the t distribution

assuming that the mean and variance are independent, which they are with a normal distri-

bution. In practice, however, our t statistic can reasonably be compared to the t distribution

whenever the sample size is sufficiently large to produce a normal sampling distribution of

the mean. Most people would suggest that an n of 25 or 30 is “sufficiently large” for most

situations, and for many situations it can be considerably smaller than that.

On the other hand, Wuensch (1993, personal communication) has argued convincingly

that, at least with very skewed distributions, the fact that n is large enough to lead to a sam-

pling distribution of the mean that appears to be normal does not guarantee that the result-

ing sampling distribution of t follows Student’s t distribution. The derivation of t makes

assumptions both about the distribution of means (which is under the control of the Central

Limit Theorem), and the variance, which is not controlled by that theorem.

Degrees of Freedom

I have mentioned that the t distribution is a function of the degrees of freedom (df ). For the

one-sample case, df 5 n 2 1; the one degree of freedom has been lost because we used the

sample mean in calculating . To be more precise, we obtained the variance ( ) by calcu-

lating the deviations of the observations from their own mean (X 2 ), rather than from the

population mean (X 2 m). Because the sum of the deviations about the mean 

is always zero, only n 2 1 of the deviations are free to vary (the nth deviation is determined

if the sum of the deviations is to be zero).

Psychomotor Abilities of Low-Birthweight Infants

An example drawn from an actual study of low-birthweight (LBW) infants will be useful at

this point because that same general study can serve to illustrate both this particular t test

and other t tests to be discussed later in the chapter. Nurcombe et al. (1984) reported on an

intervention program for the mothers of LBW infants. These infants present special prob-

lems for their parents because they are (superficially) unresponsive and unpredictable, in

Cg(X 2 X) D
X

s2s2

s2
Qn Q q , p(s2 , s2) Q p(s2 . s2)
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addition to being at risk for physical and developmental problems. The intervention program

was designed to make mothers more aware of their infants’ signals and more responsive to

their needs, with the expectation that this would decrease later developmental difficulties of-

ten encountered with LBW infants. The study included three groups of infants: an LBW ex-

perimental group, an LBW control group, and a normal-birthweight (NBW) group. Mothers

of infants in the last two groups did not receive the intervention treatment.

One of the dependent variables used in this study was the Psychomotor Development

Index (PDI) of the Bayley Scales of Infant Development. This scale was first administered

to all infants in the study when they were 6 months old. Because we would not expect to

see differences in psychomotor development between the two LBW groups as early as

6 months, it makes some sense to combine the data from the two groups and ask whether

LBW infants in general are significantly different from the normative population mean of

100 usually found with this index.

The data for the LBW infants on the PDI are presented in Table 7.1. Included in this

figure are a stem-and-leaf display and a boxplot. These two displays are important for

examining the general nature of the distribution of the data and for searching for the

presence of outliers.

From the stem-and-leaf display, we can see that the data, although not exactly normally

distributed, at least are not badly skewed. They are, however, thick in the tails, which can

be seen in the accompanying Q-Q plot. Given our sample size (56), it is reasonable to as-

sume that the sampling distribution of the mean would be reasonably normal.3 One inter-

esting and unexpected finding that is apparent from the stem-and-leaf display is the

prevalence of certain scores. For example, there are five scores of 108, but no other scores

between 104 and 112. Similarly, there are six scores of 120, but no other scores between

117 and 124. Notice also that, with the exception of six scores of 89, there is a relative ab-

sence of odd numbers. A complete analysis of the data requires that we at least notice these

oddities and try to track down their source. It would be worthwhile to examine the scoring

process to see whether there is a reason why scores often tended to fall in bunches. It is

probably an artifact of the way raw scores are converted to scale scores, but it is worth

checking. (In fact, if you check the scoring manual, you will find that these peculiarities

are to be expected.) The fact that Tukey’s exploratory data analysis (EDA) procedures lead

us to notice these peculiarities is one of the great virtues of these methods. Finally, from

the boxplot we can see that there are no serious outliers we need to worry about, which

makes our task noticeably easier.

From the data in Table 7.1, we can see that the mean PDI score for our LBW infants is

104.125. The norms for the PDI indicate that the population mean should be 100. Given the

data, a reasonable first question concerns whether the mean of our LBW sample departs sig-

nificantly from a population mean of 100. The t test is designed to answer this question.

From our formula for t and from the data, we have

= 2.45

=
104.125 2 100

12.584256

=
4.125

1.682

t =
X 2 m

sX

=
X 2 m

s1n
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3A simple resampling study (not shown) demonstrates that the sampling distribution of the mean for a population
of this shape would be very close to normal.
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Table 7.1 Data and plots for LBW infants on Psychomotor Development 

Index (PDI)

Boxplot

Raw Data

96 120 112 100

125 96 86 124

89 104 116 89

127 89 89 124

102 104 120 102

112 92 92 102

120 124 83 116

108 96 108 96

92 108 108 95

120 86 92 100

104 100 120 120

89 92 102 98

92 98 100 108

89 117 112 126

Mean 5 104.125

S.D. 5 12.584

N 5 56

Stem-and-Leaf Display

Stem Leaf

8* 3

8. 6 6 9 9 9 9 9 9

9* 2 2 2 2 2 2

9. 5 6 6 6 6 8 8

10* 0 0 0 0 2 2 2 2 4 4 4

10. 8 8 8 8 8

11* 2 2 2

11. 6 6 7

12* 0 0 0 0 0 0 4 4 4

12. 5 6 7

0–1–2 1 2
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This value will be a member of the t distribution on 56 2 1 5 55 df if the null hypothesis

is true—that is, if the data were sampled from a population with m 5 100.

A t value of 2.45 in and of itself is not particularly meaningful unless we can evaluate

it against the sampling distribution of t. For this purpose, the critical values of t are pre-

sented in Appendix t. In contrast to z, a different t distribution is defined for each possible

number of degrees of freedom. Like the chi-square distribution, the tables of t differ in

form from the table of the normal distribution (z) because instead of giving the area above

and below each specific value of t, which would require too much space, the table instead

gives those values of t that cut off particular critical areas—for example, the .05 and .01

levels of significance. Since we want to work at the two-tailed .05 level, we will want to

know what value of t cuts off in each tail. These critical values are generally

denoted or, in this case, . From the table of the t distribution in Appendix t, an ab-

breviated version of which is shown in Table 7.2, we find that the critical value of 

(rounding to 50 df for purposes of the table) 5 2.009. (This is sometimes written as

5 2.009 to indicate the degrees of freedom.) Because the obtained value of t, writ-

ten , is greater than , we will reject at a 5 .05, two-tailed, that our sample came

from a population of observations with m 5 100. Instead, we will conclude that our sample

of LBW children differed from the general population of children on the PDI. In fact, their

mean was statistically significantly above the normative population mean. This points out

the advantage of using two-tailed tests, since we would have expected this group to score

below the normative mean. (This might also suggest that we check our scoring procedures

to make sure we are not systematically overscoring our subjects. In fact, however, a num-

ber of other studies using the PDI have reported similarly high means.)

The Moon Illusion

It will be useful to consider a second example, this one taken from a classic paper by

Kaufman and Rock (1962) on the moon illusion.4 The moon illusion has fascinated psychol-

ogists for years, and refers to the fact that when we see the moon near the horizon, it appears

to be considerably larger than when we see it high in the sky. Kaufman and Rock concluded

that this illusion could be explained on the basis of the greater apparent distance of the

moon when it is at the horizon. As part of a very complete series of experiments, the authors

initially sought to estimate the moon illusion by asking subjects to adjust a variable “moon”

that appeared to be on the horizon so as to match the size of a standard “moon” that ap-

peared at its zenith, or vice versa. (In these measurements, they used not the actual moon

but an artificial one created with a special apparatus.) One of the first questions we might

ask is whether there really is a moon illusion—that is, whether a larger setting is required to

match a horizon moon or a zenith moon. The following data for 10 subjects are taken from

Kaufman and Rock’s paper and present the ratio of the diameter of the variable and standard

moons. A ratio of 1.00 would indicate no illusion, whereas a ratio other than 1.00 would rep-

resent an illusion. (For example, a ratio of 1.50 would mean that the horizon moon appeared

to have a diameter 1.50 times the diameter of the zenith moon.) Evidence in support of an

illusion would require that we reject in favor of .

Obtained ratio: 1.73 1.06 2.03 1.40 0.95

1.13 1.41 1.73 1.63 1.56

H0 : m Z 1.00H0 : m = 1.00

H0t.025tobt

t.025(50)

t.025

t.025ta>2
5>2 = 2.5%
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4A more recent paper on this topic by Lloyd Kaufman and his son James Kaufman was published in the January,
2000 issue of the Proceedings of the National Academy of Sciences.



For these data, n 5 10, 5 1.463, and s 5 0.341. A t test on is given by

From Appendix t, with 10 2 1 5 9 df for a two-tailed test at a 5 .05, the critical value of

. The obtained value of t was 4.29. Since 4.29 . 2.262, we can reject 

at a 5 .05 and conclude that the true mean ratio under these conditions is not equal to 1.00.

In fact, it is greater than 1.00, which is what we would expect on the basis of our experience.

(It is always comforting to see science confirm what we have all known since childhood, but

H0t.025(9) = 62.262

= 4.29

=
1.463 2 1.000

0.341210

=
0.463

0.108

t =
X 2 m

sX

=
X 2 m

s2n

H0 : m = 1.00X
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Table 7.2 Percentage points of the t distribution

t0

One-tailed test

+t

/2

0

Two-tailed test

–t

/2

Level of Significance for One-Tailed Test

.25 .20 .15 .10 .05 .025 .01 .005 .0005

Level of Significance for Two-Tailed Test

df .50 .40 .30 .20 .10 .05 .02 .01 .001

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.62

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.599

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 12.924

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.408

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.551

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 3.496

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.390

` 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.291

SOURCE: The entries in this table were computed by the author.



in this case the results also indicate that Kaufman and Rock’s experimental apparatus

performed as it should.) For those who like technology, a probability calculator at http://www

.danielsoper.com/statcalc/calc40.aspx gives the two-tailed probability as .001483.

Confidence Interval on m

Confidence intervals are a useful way to convey the meaning of an experimental result that

goes beyond the simple hypothesis test. The data on the moon illusion offer an excellent

example of a case in which we are particularly interested in estimating the true value 

of m—in this case, the true ratio of the perceived size of the horizon moon to the per-

ceived size of the zenith moon. The sample mean ( ), as you already know, is an unbi-

ased estimate of m. When we have one specific estimate of a parameter, we call this a

point estimate. There are also interval estimates, which are attempts to set limits that have

a high probability of encompassing the true (population) value of the mean [the mean (m)

of a whole population of observations]. What we want here are confidence limits on m.

These limits enclose what is called a confidence interval.5 In Chapter 3, we saw how to

set “probable limits” on an observation. A similar line of reasoning will apply here, where

we attempt to set confidence limits on a parameter.

If we want to set limits that are likely to include m given the data at hand, what we re-

ally want is to ask how large, or small, the true value of m could be without causing us to

reject H
0

if we ran a t test on the obtained sample mean. For example, when we tested the

null hypothesis that m 5 1.00 we rejected that hypothesis. What if we tested the null hy-

pothesis that m 5 1.15? We would again reject that null. We can keep increasing the value

of m to the point where we just barely do not reject H
0
, and that is the smallest value of m

for which we would be likely to obtain our data at p .025. Then we could start with large

values of m (e.g., 2.2) and keep lowering m until we again just barely fail to reject H
0
. That

is the largest value of m for which we would expect to obtain the data at p .025. Now

any estimate of m between those upper and lower limits would lead us to retain the null hy-

pothesis. Although we could do things this way, there is a shortcut that makes life easier.

But it will come to the same answer.

An easy way to see what we are doing is to start with the formula for t for the one-

sample case:

From the moon illusion data we know 5 1.463, s 5 0.341, n 5 10. We also know

that the critical two-tailed value for t at a 5 .05 is t
.025

(9) 5 62.262. We will substitute

these values in the formula for t, but this time we will solve for the m associated with this

value of t.

Rearranging to solve for m, we have

m 5 62.262(0.108) 1 1.463 5 60.244 1 1.463

t =
X 2 m

s1n

  62.262 =
1.463 2 m

0.341110

=
1.463 2 m

0.108

X

t =
X 2 m

sX

=
X 2 m

s1n

…

Ú

X
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5 We often speak of “confidence limits” and “confidence interval” as if they were synonymous. The pretty much
are, except that the limits are the end points of the interval. Don’t be confused when you see them used
interchangeably.

point estimate

confidence limits

confidence

interval



Using the 10.244 and 20.244 separately to obtain the upper and lower limits for m, we have

m
upper

5 10.244 1 1.463 5 1.707

m
lower

5 20.244 1 1.463 5 1.219

and thus we can write the 95% confidence limits as 1.219 and 1.707 and the confidence

interval as

CI
.95

5 1.219 m 1.707

Testing a null hypothesis about any value of m outside these limits would lead to rejec-

tion of H
0
, while testing a null hypothesis about any value of m inside those limits would

not lead to rejection. The general expression is

We have a 95% confidence interval because we used the two-tailed critical value of t at 

a 5 .05. For the 99% limits we would take Then the 99% confi-

dence interval is

We can now say that the probability is 0.95 that intervals calculated as we have calcu-

lated the 95% interval above include the true mean ratio for the moon illusion. It is very

tempting to say that the probability is .95 that the interval 1.219 to 1.707 includes the true

mean ratio for the moon illusion, and the probability is .99 that the interval 1.112 to 1.814

includes m. However, most statisticians would object to the statement of a confidence limit

expressed in this way. They would argue that before the experiment is run and the calcula-

tions are made, an interval of the form

has a probability of .95 of encompassing m. However, m is a fixed (though unknown) quan-

tity, and once the data are in, the specific interval 1.219 to 1.707 either includes the value

of m (p 5 1.00) or it does not (p 5 .00). Put in slightly different form,

is a random variable (it will vary from one experiment to the next), but the specific interval

1.219 to 1.707 is not a random variable and therefore does not have a probability associ-

ated with it. Good (1999) has made the point that we place our confidence in the method,

and not in the interval. Many would maintain that it is perfectly reasonable to say that my

confidence is .95 that if you were to tell me the true value of m, it would be found to lie be-

tween 1.219 and 1.707. But there are many people just lying in wait for you to say that the

probability is .95 that m lies between 1.219 and 1.707. When you do, they will pounce!

Note that neither the 95% nor the 99% confidence intervals that I computed include the

value of 1.00, which represents no illusion. We already knew this for the 95% confidence

interval because we had rejected that null hypothesis when we ran our t test at that signifi-

cance level.

I should add another way of looking at the interpretation of confidence limits. State-

ments of the form p(1.219 , m , 1.707) 5 .95 are not interpreted in the usual way. (In

fact, I probably shouldn’t use p in that equation.) The parameter m is not a variable—it does

not jump around from experiment to experiment. Rather, m is a constant, and the interval is

what varies from experiment to experiment. Thus, we can think of the parameter as a stake

and the experimenter, in computing confidence limits, as tossing rings at it. Ninety-five

X 6 t.025 (sX
)

X 6 t.025 (sX
)

CI.99 = X 6 t.01>2 (sX) = 1.463 6 3.250(0.108) = 1.112 … m … 1.814

t.01/2 = t.005 = 63.250.

CI12a = X 6 ta>2 (sX) = X 6 ta>2 
s1n

……
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percent of the time, a ring of specified width will encircle the parameter; 5% of the time, it

will miss. A confidence statement is a statement of the probability that the ring has been on

target; it is not a statement of the probability that the target (parameter) landed in the ring.

A graphic demonstration of confidence limits is shown in Figure 7.6. To generate this

figure, I drew 25 samples of n 5 4 from a population with a mean (m) of 5. For every

sample, a 95% confidence limit on m was calculated and plotted. For example, the limits

produced from the first sample (the top horizontal line) were approximately 4.46 and 5.72,

whereas those for the second sample were 4.83 and 5.80. Since in this case we know that

the value of m equals 5, I have drawn a vertical line at that point. Notice that the limits for

samples 12 and 14 do not include m 5 5. We would expect that 95% confidence limits

would encompass m 95 times out of 100. Therefore, two misses out of 25 seems reason-

able. Notice also that the confidence intervals vary in width. This variability is due to the

fact that the width of an interval is a function of the standard deviation of the sample, and

some samples have larger standard deviations than others.

Using SPSS to Run One-Sample t Tests

With a large data set, it is often convenient to use a program such as SPSS to compute t values.

Exhibit 7.1 shows how SPSS can be used to obtain a one-sample t test and confidence lim-

its for the moon-illusion data. To compute t for the moon illusion example you simply

choose Analyze/Compare Means/One Sample t Test from the pull down menus, and

then specify the dependent variable in the resulting dialog box. Notice that SPSS’s result

for the t test agrees, within rounding error, with the value we obtained by hand. Notice also

that SPSS computes the exact probability of a Type I error (the p level), rather than com-

paring t to a tabled value. Thus, whereas we concluded that the probability of a Type I er-

ror was less than .05, SPSS reveals that the actual probability is .0020. Most computer

programs operate in this way.

But there is a difference between the confidence limits we calculated by hand and those

produced by SPSS, though both are correct. When I calculated the confidence limits by

hand I calculated limits based on the mean moon illusion estimate, which was 1.463. But

SPSS is testing the difference between 1.463 and an illusion mean of 1.00 (no illusion),

and its confidence limits are on this difference. In other words I calculated limits around

1.463, whereas SPSS calculated limits around (1.463 2 1.00 5 0.463). Therefore the SPSS

limits are 1.00 less than my limits. Once you realize that the two procedures are calculat-

ing something slightly different, the difference in the result is explained.6

7.4 Hypothesis Tests Applied to Means—Two
Matched Samples

In Section 7.3 we considered the situation in which we had one sample mean ( ) and

wished to test to see whether it was reasonable to believe that such a sample mean would

have occurred if we had been sampling from a population with some specified mean (often

denoted ). Another way of phrasing this is to say that we were testing to determine

whether the mean of the population from which we sampled (call it ) was equal to some

particular value given by the null hypothesis ( ). In this section we will consider the case

in which we have two matched samples (often called repeated measures, when the same

subjects respond on two occasions, or related samples, correlated samples, paired

m0

m1

m0

X
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Figure 7.6 Confidence intervals computed on 25 samples from a population 

with m 5 5

One-Sample Statistics

N Mean Std. Deviation Std. Error Mean

Ratio 10 1.4630 .34069 .10773

One-Sample Test

Test Value 5 1

t df Sig. Mean 95% Confidence Interval

(2-tailed) Difference of the Difference

Lower Upper

Ratio 4.298 9 .002 .46300 .2193 .7067

Exihibit 7.1 SPSS for one-sample t test and confidence limits



samples, or dependent samples) and wish to perform a test on the difference between their

two means. In this case we want what is often called the matched-sample t test.

Treatment of Anorexia

Everitt, in Hand, et al., 1994, reported on family therapy as a treatment for anorexia. There

were 17 girls in this experiment, and they were weighed before and after treatment. The

weights of the girls, in pounds,7 is given in Table 7.3. The row of difference scores was ob-

tained by subtracting the Before score from the After score, so that a negative difference

represents weight loss, and a positive difference represents a gain.

One of the first things we should probably do, although it takes us away from t tests for

a moment, is to plot the relationship between Before Treatment and After Treatment

weights, looking to see if there is, in fact, a relationship, and how linear that relationship is.

Such a plot is given in Figure 7.7. Notice that the relationship is basically linear, with a
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7 Everitt reported that these weights were in kilograms, but if so he has a collection of anorexic young girls whose
mean weight is about 185 pounds, and that just doesn’t sound reasonable. The example is completely unaffected
by the units in which we record weight.

Table 7.3 Data from Everitt on weight gain

ID 1 2 3 4 5 6 7 8 9 10

Before 83.8 83.3 86.0 82.5 86.7 79.6 76.9 94.2 73.4 80.5

After 95.2 94.3 91.5 91.9 100.3 76.7 76.8 101.6 94.9 75.2

Diff 11.4 11.0 5.5 9.4 13.6 22.9 20.1 7.4 21.5 5.3

ID 11 12 13 14 15 16 17 Mean St. Dev

Before 81.6 82.1 77.6 83.5 89.9 86.0 87.3 83.23 5.02

After 77.8 95.5 90.7 92.5 93.8 91.7 98.0 90.49 8.48

Diff 23.8 13.4 13.1 9.0 3.9 5.7 10.7 7.26 7.16

Weight before treatment (in pounds)
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Figure 7.7 Relationship of weight before and after family therapy, for a group of

17 Anorexic girls
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slope quite near 1.0. Such a slope suggests that how much the girl weighed at the begin-

ning of therapy did not seriously influence how much weight she gained or lost by the end

of therapy. (We will discuss regression lines and slopes further in Chapter 9.)

The primary question we wish to ask is whether subjects gained weight as a function of the

therapy sessions. We have an experimental problem here, because it is possible that weight gain

resulted merely from the passage of time, and that therapy had nothing to do with it. However, I

know from other data in Everitt’s experiment that a group that did not receive therapy did not

gain weight over the same period of time, which strongly suggests that the simple passage of

time was not an important variable. If you were to calculate the weight of these girls before and

after therapy, the means would be 83.23 and 90.49 lbs, respectively, which translates to a gain

of a little over 7 pounds. However, we still need to test to see whether this difference is likely to

represent a true difference in population means, or a chance difference. By this I mean that we

need to test the null hypothesis that the mean in the population of Before scores is equal to the

mean in the population of After scores. In other words, we are testing H
0

: mA 5 mB.

Difference Scores

Although it would seem obvious to view the data as representing two samples of scores, one

set obtained before the therapy program and one after, it is also possible, and very profitable,

to transform the data into one set of scores—the set of differences between X
1

and X
2

for each

subject. These differences are called difference scores, or gain scores, and are shown in the

third row of Table 7.1. They represent the degree of weight gain between one measurement

session and the next—presumably as a result of our intervention. If, in fact, the therapy pro-

gram had no effect (i.e., if H
0

is true), the average weight would not change from session to

session. By chance some participants would happen to have a higher weight on X
2

than on

X
1
, and some would have a lower weight, but on the average there would be no difference.

If we now think of our data as being the set of difference scores, the null hypothesis

becomes the hypothesis that the mean of a population of difference scores (denoted mD)

equals 0. Because it can be shown that mD 5 m
1

2 m
2
, we can write H

0
: mD 5 m

1
2 m

2
5 0.

But now we can see that we are testing a hypothesis using one sample of data (the sample of

difference scores), and we already know how to do that.

The t Statistic

We are now at precisely the same place we were in the previous section when we had a

sample of data and a null hypothesis (m 5 0). The only difference is that in this case the

data are difference scores, and the mean and the standard deviation are based on the differ-

ences. Recall that t was defined as the difference between a sample mean and a population

mean, divided by the standard error of the mean. Then we have

where and and are the mean and the standard deviation of the difference scores and N
is the number of difference scores (i.e., the number of pairs, not the number of raw scores).

From Table 7.3 we see that the mean difference score was 7.26, and the standard deviation

of the differences was 7.16. For our data

t =
D 2 0

sD

=
D 2 0

sD1N

=
7.26 2 0

7.16117

=
7.26

1.74
= 4.18

sDD

t =
D 2 0

sD

=
D 2 0

sD1N
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Degrees of Freedom

The degrees of freedom for the matched-sample case are exactly the same as they were for

the one-sample case. Because we are working with the difference scores, N will be equal to

the number of differences (or the number of pairs of observations, or the number of inde-
pendent observations—all of which amount to the same thing). Because the variance of these

difference scores ( ) is used as an estimate of the variance of a population of difference

scores ( ) and because this sample variance is obtained using the sample mean ( ), we will

lose one df to the mean and have N 2 1 df. In other words, df 5 number of pairs minus 1.

We have 17 difference scores in this example, so we will have 16 degrees of freedom.

From Appendix t, we find that for a two-tailed test at the .05 level of significance, t.05
(16) 5

Our obtained value of t (4.18) exceeds 2.12, so we will reject H
0

and conclude that

the difference scores were not sampled from a population of difference scores where mD 5 0.

In practical terms this means that the subjects weighed significantly more after the inter-

vention program than before it. Although we would like to think that this means that the

program was successful, keep in mind the possibility that this could just be normal growth.

The fact remains, however, that for whatever reason, the weights were sufficiently higher

on the second occasion to allow us to reject H
0

: mD 5 m
1

2 m
2

5 0.

The Moon Illusion Revisited

As a second example, we will return to the work by Kaufman and Rock (1962) on the

moon illusion. An important hypothesis about the source of the moon illusion was put forth

by Holway and Boring (1940), who suggested that the illusion was due to the fact that

when the moon was on the horizon, the observer looked straight at it with eyes level,

whereas when it was at its zenith, the observer had to elevate his eyes as well as his head.

Holway and Boring proposed that this difference in the elevation of the eyes was the cause

of the illusion. Kaufman and Rock thought differently. To test Holway and Boring’s hy-

pothesis, Kaufman and Rock devised an apparatus that allowed them to present two artifi-

cial moons (one at the horizon and one at the zenith) and to control whether the subjects

elevated their eyes to see the zenith moon. In one case, the subject was forced to put his

head in such a position as to be able to see the zenith moon with eyes level. In the other

case, the subject was forced to see the zenith moon with eyes raised. (The horizon moon

was always viewed with eyes level.) In both cases, the dependent variable was the ratio of

the perceived size of the horizon moon to the perceived size of the zenith moon (a ratio of

1.00 would represent no illusion). If Holway and Boring were correct, there should have

been a greater illusion (larger ratio) in the eyes-elevated condition than in the eyes-level

condition, although the moon was always perceived to be in the same place, the zenith. The

actual data for this experiment are given in Table 7.4.

In this example, we want to test the null hypothesis that the means are equal under the

two viewing conditions. Because we are dealing with related observations (each subject

served under both conditions), we will work with the difference scores and test 

Using a two-tailed test at a 5 .05, the alternative hypothesis is . 

From the formula for a t test on related samples, we have

= 0.44

=
0.019 2 0

0.137110

=
0.019

0.043

t =
D 2 0

sD

=
D 2 0

s
D1n

H1 : mD Z 0

H0 :mD = 0.

62.12.

Ds2
D

sD
2
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From Appendix t, we find that . Since is less than 2.262,

we will fail to reject and will decide that we have no evidence to suggest that the illu-

sion is affected by the elevation of the eyes.8 (In fact, these data also include a second test

of Holway and Boring’s hypothesis since they would have predicted that there would not

be an illusion if subjects viewed the zenith moon with eyes level. On the contrary, the data

reveal a considerable illusion under this condition. A test of the significance of the illusion

with eyes level can be obtained by the methods discussed in the previous section, and the

illusion is statistically significant.)

Confidence Limits on Matched Samples

We can calculate confidence limits on matched samples in the same way we did for the

one-sample case, because in matched samples the data come down to a single column of

difference scores. Returning to Everitt’s data on anorexia we have

and thus

Notice that this confidence interval does not include mD 5 0.0, which is consistent with the

fact that we rejected the null hypothesis.

= 3.57 … m … 10.95

CI.95 = 7.26 6 3.69

CI.95 = 7.26 6 2.12(1.74)

CI.95 = D 6 t.05>2(sD) = D 6 t.025

sD1n

t =
D 2 0

sD

H0

tobt = 0.44t.025(9) = 62.262
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Table 7.4 Magnitude of the moon illusion when zenith moon is

viewed with eyes level and with eyes elevated

Observer Eyes Elevated Eyes Level Difference (D)

1 1.65 1.73 20.08

2 1.00 1.06 20.06

3 2.03 2.03 0.00

4 1.25 1.40 20.15

5 1.05 0.95 0.10

6 1.02 1.13 20.11

7 1.67 1.41 0.26

8 1.86 1.73 0.13

9 1.56 1.63 20.07

10 1.73 1.56 0.17

sD = 0.043

sD = 0.137

D = 0.019

8 In the language favored by Jones and Tukey (2000), there probably is a difference between the two viewing
conditions, but we don’t have enough evidence to tell us the sign of the difference.



Effect Size

In Chapter 6 we looked at effect size measures as a way of understanding the magnitude of

the effect that we see in an experiment—as opposed to simply the statistical significance.

When we are looking at the difference between two related measures we can, and should,

also compute effect sizes. In this case there is a slight complication as we will see shortly.

d-Family of Measures

There are a number of different effect size measures that are often recommended, and for

a complete coverage of this topic I suggest the reference by Kline (2004). As I did in

Chapter 6, I am going to distinguish between measures based on differences between

groups (the d-family) and measures based on correlations between variables (the r-family).

However, in this chapter I am not going to discuss the r-family measures, partly because I

find them less informative, and partly because they are more easily and logically discussed

in Chapter 11 when we come to the analysis of variance. An interesting paper on d-family

versus r-family measures is McGrath and Meyer (2006).

There is considerable confusion in the naming of measures, and for clarification on that

score I refer the reader to Kline (2004). Here I will use the most common approach, which

Kline points out is not quite technically correct, and refer to my measure as Cohen’s d.

Measures proposed by Hedges and by Glass are very similar, and are often named almost

interchangeably.

The data on treatment of anorexia offer a good example of a situation in which it is rel-

atively easy to report on the difference in ways that people will understand. All of us step

onto a scale occasionally, and we have some general idea of what it means to gain or lose

five or ten pounds. So for Everitt’s data, we could simply report that the difference was sig-

nificant (t 5 4.18, p , .05) and that girls gained an average of 7.26 pounds. For girls who

started out weighing, on average, 83 pounds, that is a substantial gain. In fact, it might

make sense to convert pounds gained to a percentage, and say that the girls increased their

weight by 7.26/83.23 5 9%.

An alternative measure would be to report the gain in standard deviation units. This

idea goes back to Cohen, who originally formulated the problem in terms of a statistic (d ),

where

In this equation the numerator is the difference between two population means, and the

denominator is the standard deviation of either population. In our case, we can modify that

slightly to let the numerator be the mean gain (
After

2 
Before

), and the denominator is the

population standard deviation of the pretreatment weights. To put this in terms of statistics,

rather than parameters, we substitute sample means and standard deviations instead of pop-

ulation values. This leaves us with

I have put a “hat” over the d to indicate that we are calculating an estimate of d, and I

have put the standard deviation of the pretreatment scores in the denominator. Our estimate

tells us that, on average, the girls involved in family therapy gained nearly one and a half

standard deviations of pretreatment weights over the course of therapy.

In this particular example I find it easier to deal with the mean weight gain, rather than

d, simply because I know something meaningful about weight. However, if this experiment

dN =
X1 2 X2

sX1

=
90.49 2 83.23

5.02
=

7.26

5.02
= 1.45

mm

d =
m1 2 m2

s
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had measured the girls’ self-esteem, rather than weight, I would not know what to think if

you said that they gained 7.26 self-esteem points, because that scale means nothing to me.

I would be impressed, however, if you said that they gained nearly one and a half standard

deviation units in self-esteem.

The issue is not quite as simple as I have made it out to be, because there are alternative

ways of approaching the problem. One way would be to use the average of the pre- and post-

score standard deviations, rather than just the standard deviation of the pre-scores. However,

when we are measuring gain it makes sense to me to measure it in the metric of the original

weights. You may come across other situations where you would think that it makes more

sense to use the average standard deviation. In addition, it would be perfectly possible to use

the standard deviation of the difference scores in the denominator for d. Kline (2004) dis-

cusses this approach and concludes that “If our natural reference for thinking about scores

on (some) measure is their original standard deviation, it makes most sense to report stan-

dardized mean change (using that standard deviation).” But the important point here is to

keep in mind that such decisions often depend on substantive considerations in the particu-

lar research field, and there is no one measure that is uniformly best. However, it is very im-

portant to be sure to tell your reader what standard deviation you used.

Confidence Limits on d

Just as we were able to establish confidence limits on our estimate of the population mean

(m), we can establish confidence limits on d. It is not a simple process to do so, though, and

I refer the reader to Kline (2004) or Cumming and Finch (2001). The latter provide a very

inexpensive computer program to make these calculations. Kelley (2008) has provided a

set of functions (called MBESS) for the R computing environment. These functions com-

pute numerous statistics based on effect sizes. For this particular set of data the confidence

limits, as computed using both MBESS and the software by Cumming and Finch (2001),

are 0.681 , d , 2.20.

Matched Samples

In many, but certainly not all, situations in which we will use the matched-sample t test, we

will have two sets of data from the same subjects. For example, we might ask each of 20 peo-

ple to rate their level of anxiety before and after donating blood. Or we might record ratings

of level of disability made using two different scoring systems for each of 20 disabled indi-

viduals in an attempt to see whether one scoring system leads to generally lower assessments

than does the other. In both examples, we would have 20 sets of numbers, two numbers for

each person, and would expect these two sets of numbers to be related (or, in the terminology

we will later adopt, to be correlated). Consider the blood-donation example. People differ

widely in level of anxiety. Some seem to be anxious all of the time no matter what happens,

and others just take things as they come and do not worry about anything. Thus, there should

be a relationship between an individual’s anxiety level before donating blood and her anxiety

level after donating blood. In other words, if we know what a person’s anxiety score was be-

fore donation, we can make a reasonable guess what it was after donation. Similarly, some

people are severely disabled whereas others are only mildly disabled. If we know that a par-

ticular person received a high assessment using one scoring system, it is likely that he also

received a relatively high assessment using the other system. The relationship between data

sets does not have to be perfect—it probably never will be. The fact that we can make better-

than-chance predictions is sufficient to classify two sets of data as matched or related.

In the two preceding examples, I chose situations in which each person in the study

contributed two scores. Although this is the most common way of obtaining related
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samples, it is not the only way. For example, a study of marital relationships might involve

asking husbands and wives to rate their satisfaction with their marriage, with the goal of

testing to see whether wives are, on average, more or less satisfied than husbands. (You will

see an example of just such a study in the exercises for this chapter.) Here each individual

would contribute only one score, but the couple as a unit would contribute a pair of scores.

It is reasonable to assume that if the husband is very dissatisfied with the marriage, his wife

is probably also dissatisfied, and vice versa, thus causing their scores to be related.

Many experimental designs involve related samples. They all have one thing in common,

and that is the fact that knowing one member of a pair of scores tells you something—maybe

not much, but something—about the other member. Whenever this is the case, we say that

the samples are matched.

Missing Data

Ideally, with matched samples we have a score on each variable for each case or pair of

cases. If a subject participates in the pretest, she also participates in the post-test. If one

member of a couple provides data, so does the other member. When we are finished col-

lecting data, we have a complete set of paired scores. Unfortunately, experiments do not

usually work out as cleanly as we would like.

Suppose, for example, that we want to compare scores on a checklist of children’s be-

havior problems completed by mothers and fathers, with the expectation that mothers are

more sensitive to their children’s problems than are fathers, and thus will produce higher

scores. Most of the time both parents will complete the form. But there might be 10 cases

where the mother sent in her form but the father did not, and 5 cases where we have a form

from the father but not from the mother. The normal procedure in this situation is to elimi-

nate the 15 pairs of parents where we do not have complete data, and then run a matched-

sample t test on the data that remain. This is the way almost everyone would analyze the

data. There is an alternative, however, that allows us to use all of the data if we are willing

to assume that data are missing at random and not systematically. (By this I mean that we

have to assume that we are not more likely to be missing Dad’s data when the child is re-

ported by Mom to have very few problems, nor are we less likely to be missing Dad’s data

for a very behaviorally disordered child.)

Bhoj (1978) proposed an ingenious test in which you basically compute a matched-

sample t for those cases in which both scores are present, then compute an additional inde-

pendent group t (to be discussed next) between the scores of mothers without fathers and

fathers without mothers, and finally combine the two t statistics. This combined t can then

be evaluated against special tables. These tables are available in Wilcox (1986), and ap-

proximations to critical values of this combined statistic are discussed briefly in Wilcox

(1987a). This test is sufficiently awkward that you would not use it simply because you are

missing two or three observations. But it can be extremely useful when many pieces of data

are missing. For a more extensive discussion, see Wilcox (1987b).

Using Computer Software for t Tests on Matched Samples

The use of almost any computer software to analyze matched samples can involve nothing

more than using a compute command to create a variable that is the difference between the

two scores we are comparing. We then run a simple one-sample t test to test the null hy-

pothesis that those difference scores came from a population with a mean of 0. Alterna-

tively, some software, such as SPSS, allows you to specify that you want a t on two related

samples, and then to specify the two variables that represent those samples. Since this is

very similar to what we have already done, I will not repeat that here.
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Writing up the Results of a Dependent t

Suppose that we wish to write up the results of Everitt’s study of family therapy for

anorexia. We would want to be sure to include the relevant sample statistics ( , s2, and N ),

as well as the test of statistical significance. But we would also want to include confidence

limits on the mean weight gain following therapy, and our effect size estimate (d ). We

might write:

Everitt ran a study on the effect of family therapy on weight gain in girls suffering from

anorexia. He collected weight data on 17 girls before therapy, provided family therapy

to the girls and their families, and then collected data on the girls’ weight at the end of

therapy.

The mean weight gain for the N 5 17 girls was 7.26 pounds, with a standard devia-

tion of 7.16. A two-tailed t test on weight gain was statistically significant (t(16) 5

4.18, p , .05), revealing that on average the girls did gain weight over the course of

therapy. A 95% confidence interval on mean weight gain was 3.57–10.95, which is a

notable weight gain even at the low end of the interval. Cohen’s d 5 1.45, indicating

that the girls’ weight gain was nearly 1.5 standard deviations relative to their original

pre-test weights. It would appear that family therapy has made an important contribu-

tion to the treatment of anorexia in this experiment.

7.5 Hypothesis Tests Applied to Means—Two
Independent Samples

One of the most common uses of the t test involves testing the difference between the

means of two independent groups. We might wish to compare the mean number of trials

needed to reach criterion on a simple visual discrimination task for two groups of rats—

one raised under normal conditions and one raised under conditions of sensory deprivation.

Or we might wish to compare the mean levels of retention of a group of college students

asked to recall active declarative sentences and a group asked to recall passive negative

sentences. Or we might place subjects in a situation in which another person needed help;

we could compare the latency of helping behavior when subjects were tested alone and

when they were tested in groups.

In conducting any experiment with two independent groups, we would most likely find

that the two sample means differed by some amount. The important question, however, is

whether this difference is sufficiently large to justify the conclusion that the two samples

were drawn from different populations. To put this in the terms preferred by Jones and

Tukey (2000), is the difference sufficiently large for us to identify the direction of the dif-

ference in population means? Before we consider a specific example, however, we will

need to examine the sampling distribution of differences between means and the t test that

results from it.

Distribution of Differences Between Means

When we are interested in testing for a difference between the mean of one population ( )

and the mean of a second population ( ), we will be testing a null hypothesis of the form

or, equivalently, . Because the test of this null hypothesis in-

volves the difference between independent sample means, it is important that we digress

for a moment and examine the sampling distribution of differences between means.

Suppose that we have two populations labeled and with means and andm2m1X2X1

m1 = m2H0 :m1 2 m2 = 0

m2

m1

X
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variances and . We now draw pairs of samples of size n
1 

from population and of

size n
2

from population , and record the means and the difference between the means for

each pair of samples. Because we are sampling independently from each population, the

sample means will be independent. (Means are paired only in the trivial and presumably ir-

relevant sense of being drawn at the same time.) The results of an infinite number of repli-

cations of this procedure are presented schematically in Figure 7.8. In the lower portion of

this figure, the first two columns represent the sampling distributions of and , and the

third column represents the sampling distribution of mean differences ( ). We are

most interested in the third column since we are concerned with testing differences be-

tween means. The mean of this distribution can be shown to equal The variance

of this distribution of differences is given by what is commonly called the variance sum

law, a limited form of which states,

The variance of a sum or difference of two independent variables is equal to the sum of

their variances.9

We know from the central limit theorem that the variance of the distribution of is

and the variance of the distribution of is . Since the variables (sample

means) are independent, the variance of the difference of these two variables is the sum of

their variances. Thus

sX12X2

2
= sX1

2
1 sX2

2
=

s2
1

n1

1
s2

2

n2

s2
2>n2X2s2

1>n1

X1

m1 2 m2.

X1 2 X2

X2X1

X2

X1s2
2s2

1
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Figure 7.8 Schematic set of means and mean differences 

when sampling from two populations

9 The complete form of the law omits the restriction that the variables must be independent and states that the
variance of their sum or difference is where the notation 6 is interpreted as plus
when we are speaking of their sum and as minus when we are speaking of their difference. The term (rho) in
this equation is the correlation between the two variables (to be discussed in Chapter 9) and is equal to zero when
the variables are independent. (The fact that when the variables are not independent was what forced us to
treat the related sample case separately.)
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Having found the mean and the variance of a set of differences between means, we

know most of what we need to know. The general form of the sampling distribution of

mean differences is presented in Figure 7.9.

The final point to be made about this distribution concerns its shape. An important the-

orem in statistics states that the sum or difference of two independent normally distributed

variables is itself normally distributed. Because Figure 7.9 represents the difference be-

tween two sampling distributions of the mean, and because we know that the sampling dis-

tribution of means is at least approximately normal for reasonable sample sizes, the

distribution in Figure 7.9 must itself be at least approximately normal.

The t Statistic

Given the information we now have about the sampling distribution of mean differences,

we can proceed to develop the appropriate test procedure. Assume for the moment that

knowledge of the population variances ( ) is not a problem. We have earlier defined z as a

statistic (a point on the distribution) minus the mean of the distribution, divided by the stan-

dard error of the distribution. Our statistic in the present case is ( ), the observed

difference between the sample means. The mean of the sampling distribution is ( ),

and, as we saw, the standard error of differences between means10 is

Thus we can write

The critical value for a 5 .05 is z 5 61.96 (two-tailed), as it was for the one-sample tests

discussed earlier.

The preceding formula is not particularly useful except for the purpose of showing the

origin of the appropriate t test, since we rarely know the necessary population variances.

=
(X1 2 X2) 2 (m1 2 m2)

Bs2
1

n1

1
s2

2

n2

z =
(X1 2 X2) 2 (m1 2 m2)

sX12X2
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2
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Figure 7.9 Sampling distribution of mean differences

10 Remember that the standard deviation of any sampling distribution is called the standard error of that distribution.
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(Such knowledge is so rare that it is not even worth imagining cases in which we would

have it, although a few do exist.) We can circumvent this problem just as we did in the one-

sample case, by using the sample variances as estimates of the population variances. This,

for the same reasons discussed earlier for the one-sample t, means that the result will be

distributed as t rather than z.

Since the null hypothesis is generally the hypothesis that we will drop that

term from the equation and write

Pooling Variances

Although the equation for t that we have just developed is appropriate when the sample

sizes are equal, it requires some modification when the sample sizes are unequal. This

modification is designed to improve the estimate of the population variance. One of the

assumptions required in the use of t for two independent samples is that (i.e.,

the samples come from populations with equal variances, regardless of the truth or fal-

sity of ). The assumption is required regardless of whether and are equal. Such

an assumption is often reasonable. We frequently begin an experiment with two groups

of subjects who are equivalent and then do something to one (or both) group(s) that will

raise or lower the scores by an amount equal to the effect of the experimental treatment.

In such a case, it often makes sense to assume that the variances will remain unaffected.

(Recall that adding or subtracting a constant—here, the treatment effect—to or from a

set of scores has no effect on its variance.) Since the population variances are assumed to

be equal, this common variance can be represented by the symbol , without a

subscript.

In our data we have two estimates of , namely and . It seems appropriate to ob-

tain some sort of an average of and on the grounds that this average should be a better

estimate of than either of the two separate estimates. We do not want to take the simple

arithmetic mean, however, because doing so would give equal weight to the two estimates,

even if one were based on considerably more observations. What we want is a weighted

average, in which the sample variances are weighted by their degrees of freedom ( ).

If we call this new estimate then

The numerator represents the sum of the variances, each weighted by their degrees of free-

dom, and the denominator represents the sum of the weights or, equivalently, the degrees

of freedom for .

The weighted average of the two sample variances is usually referred to as a pooled

variance estimate. Having defined the pooled estimate ( ), we can now writes2
p

s2
p

s2
p =

(n1 2 1)s2
1 1 (n2 2 1)s2

2

n1 1 n2 2 2

s2
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ni 2 1
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Notice that both this formula for t and the one we have just been using involve dividing

the difference between the sample means by an estimate of the standard error of the differ-

ence between means. The only change concerns the way in which this standard error is es-

timated. When the sample sizes are equal, it makes absolutely no difference whether or not

you pool variances; the answer will be the same. When the sample sizes are unequal, how-

ever, pooling can make quite a difference.

Degrees of Freedom

Two sample variances ( and ) have gone into calculating t. Each of these variances is

based on squared deviations about their corresponding sample means, and therefore each

sample variance has 2 1 df. Across the two samples, therefore, we will have ( 2 1) 1

( 2 1) 5 ( 1 2 2) df. Thus, the t for two independent samples will be based on

degrees of freedom.

Homophobia and Sexual Arousal

Adams, Wright, and Lohr (1996) were interested in some basic psychoanalytic theories

that homophobia may be unconsciously related to the anxiety of being or becoming homo-

sexual. They administered the Index of Homophobia to 64 heterosexual males, and classed

them as homophobic or nonhomophobic on the basis of their score. They then exposed ho-

mophobic and nonhomophobic heterosexual men to videotapes of sexually explicit erotic

stimuli portraying heterosexual and homosexual behavior, and recorded their level of sex-

ual arousal. Adams et al. reasoned that if homophobia were unconsciously related to anxi-

ety about one’s own sexuality, homophobic individuals would show greater arousal to the

homosexual videos than would nonhomophobic individuals.

In this example, we will examine only the data from the homosexual video. (There

were no group differences for the heterosexual and lesbian videos.) The data in Table 7.5

were created to have the same means and pooled variance as the data that Adams collected,

n1 1 n2 2 2

n2n1n2

n1ni

s2
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t =
(X1 2 X2)

sX12X2

=
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p

n1

1
s2

p
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1
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Table 7.5 Data from Adams et al. on level of sexual arousal in homophobic and

nonhomophobic heterosexual males

Homophobic Nonhomophobic

39.1 38.0 14.9 20.7 19.5 32.2 24.0 17.0 35.8 18.0 21.7 11.1

11.0 20.7 26.4 35.7 26.4 28.8 10.1 16.1 20.7 14.1 25.9 23.0

33.4 13.7 46.1 13.7 23.0 20.7 20.0 14.1 21.7 19.0 20.0 30.9

19.5 11.4 24.1 17.2 38.0 10.3 30.9 22.0 6.2 27.9 14.1 33.8

35.7 41.5 18.4 36.8 54.1 11.4 26.9 5.2 13.1 19.0 215.5

8.7 23.0 14.3 5.3 6.3

Mean 24.00 Mean 16.50

Variance 148.87 Variance 139.16

n 35 n 29



so our conclusions will be the same as theirs.11 The dependent variable is the degree of

arousal at the end of the 4-minute video, with larger values indicating greater arousal.

Before we consider any statistical test, and ideally even before the data are collected,

we must specify several features of the test. First we must specify the null and alternative

hypotheses:

H
0

: m
1

5 m
2

H
1

: m
1

m
2

The alternative hypothesis is bi-directional (we will reject H
0

if m
1

, m
2

or if m
1

. m
2
),

and thus we will use a two-tailed test. For the sake of consistency with other examples in

this book, we will let a 5 .05. It is important to keep in mind, however, that there is noth-

ing particularly sacred about any of these decisions. (Think about how Jones and Tukey

(2000) would have written this paragraph. Where would they have differed from what is

here, and why might their approach be clearer?)

Given the null hypothesis as stated, we can now calculate t:

Because we are testing H
0
, m

1
2 m

2
5 0, the m

1
2 m

2
term has been dropped from the

equation. We should pool our sample variances because they are so similar that we do not

have to worry about a lack of homogeneity of variance. Doing so we obtain

Notice that the pooled variance is slightly closer in value to than to because of the

greater weight given in the formula. Then

For this example, we have n
1

2 1 5 34 df for the homophobic group and n
2

2 1 5 28 df
for the nonhomophobic group, making a total of n

1
2 1 1 n

2
2 1 5 62 df. From the sam-

pling distribution of t in Appendix t, t
.025

(62) 62.003 (with linear interpolation). Since

the value of t
obt

far exceeds t
a/2

, we will reject H
0

(at a 5 .05) and conclude that there is a

difference between the means of the populations from which our observations were drawn.

In other words, we will conclude (statistically) that m
1

m
2

and (practically) that m
1

. m
2
.

In terms of the experimental variables, homophobic subjects show greater arousal to a

homosexual video than do nonhomophobic subjects. (How would the conclusions of Jones

and Tukey (2000) compare with the one given here?)
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11 I actually added 12 points to each mean, largely to avoid many negative scores, but it doesn’t change the results
or the calculations in the slightest.



Confidence Limits on m
1
– m

2

In addition to testing a null hypothesis about population means (i.e., testing H
0

: m
1

2 m
2

5 0),

and stating an effect size, it is useful to set confidence limits on the difference between

m
1

and m
2
. The logic for setting these confidence limits is exactly the same as it was for the one-

sample case. The calculations are also exactly the same except that we use the difference
between the means and the standard error of differences between means in place  of the mean

and the standard error of the mean. Thus for the 95% confidence limits on m
1

2 m
2

we have

For the homophobia study we have

The probability is .95 that an interval computed as we computed this interval encloses

the difference in arousal to homosexual videos between homophobic and nonhomophobic

participants. Although the interval is wide, it does not include 0. This is consistent with our

rejection of the null hypothesis, and allows us to state that homophobic individuals are, in

fact, more sexually aroused by homosexual videos than are nonhomophobic individuals.

However, I think that we would be remiss if we simply ignored the width of this interval.

While the difference between groups is statistically significant, there is still considerable

uncertainty about how large the difference is. In addition, keep in mind that the dependent

variable is the “degree of sexual arousal” on an arbitrary scale. Even if your confidence

interval were quite narrow, it is difficult to know what to make of the result in absolute terms.

To say that the groups differed by 7.5 units in arousal is not particularly informative. Is that a

big difference or a little difference? We have no real way to know, because the units (mm of

penile circumference) are not something that most of us have an intuitive feel for. But when

we standardize the measure, as we will in the next section, it is often more informative.

Effect Size

The confidence interval that we just calculated has shown us that we still have considerable

uncertainty about the difference in sexual arousal between groups, even though our statisti-

cally significant difference tells us that the homophobic group actually shows more arousal

than the nonhomophobic group. Again we come to the issue of finding ways to present in-

formation to our readers that conveys the magnitude of the difference between our groups.

We will use an effect size measure based on Cohen’s d. It is very similar to the one that we

used in the case of two dependent samples, where we divide the difference between the

means by a standard deviation. We will again call this statistic d . In this case, however, our

standard deviation will be the estimated standard deviation of either population. More

specifically, we will pool the two variances and take the square root of the result, and that

will give us our best estimate of the standard deviation of the populations from which the

numbers were drawn.12 (If we had noticeably different variances, we would most likely use

the standard deviation of one sample and note to the reader that this is what we had done.)

1.46 … (m1 2 m2) … 13.54

= 7.50 6 2.00(3.018) = 7.5 6 6.04

CI.95 = (X1 2 X2) 6 t.025 sX12X2
= (24.00 2 16.5) 6 2.00 B144.48

35
1

144.48

29

CI.95 = (X1 2 X2) 6 t.025 sX12X2
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For our data on homophobia we have

This result expresses the difference between the two groups in standard deviation units, and

tells us that the mean arousal for homophobic participants was nearly 2/3 of a standard

deviation higher than the arousal of nonhomophobic participants. That strikes me as a big

difference. (Using the software by Cumming and Finch (2001) we find that the confidence

intervals on d are 0.1155 and 1.125, which is also rather wide. At the same time, even the

lower limit on the confidence interval is meaningfully large.)

Some words of caution. In the example of homophobia, the units of measurement were

largely arbitrary, and a 7.5 difference had no intrinsic meaning to us. Thus it made more

sense to express it in terms of standard deviations because we have at least some under-

standing of what that means. However, there are many cases wherein the original units are

meaningful, and in that case it may not make much sense to standardize the measure (i.e.,

report it in standard deviation units). We might prefer to specify the difference between

means, or the ratio of means, or some similar statistic. The earlier example of the moon il-

lusion is a case in point. There it is far more meaningful to speak of the horizon moon ap-

pearing approximately half-again as large as the zenith moon, and I see no advantage, and

some obfuscation, in converting to standardized units. The important goal is to give the

reader an appreciation of the size of a difference, and you should choose that measure that

best expresses this difference. In one case a standardized measure such as d is best, and in

other cases other measures, such as the distance between the means, is better.

The second word of caution applies to effect sizes taken from the literature. It has been

known for some time (Sterling, 1959, Lane and Dunlap, 1978, and Brand, Bradley, Best, and

Stoica, 2008) that if we base our estimates of effect size solely on the published literature, we

are likely to overestimate effect sizes. This occurs because there is a definite tendency to pub-

lish only statistically significant results, and thus those studies that did not have a significant

effect are underrepresented in averaging effect sizes. For example, Lane and Dunlap (1978)

ran a simple sampling study with the true effect size set at .25 and a difference between means

of 4 points (standard deviation 5 16). With sample sizes set at n
1

5 n
2

5 15, they found an

average difference between means of 13.21 when looking only at results that were statistically

significant at a 5 .05. In addition they found that the sample standard deviations were notice-

ably underestimated, which would result in a bias toward narrower confidence limits. We need

to keep these findings in mind when looking at only published research studies.

Finally, I should note that the increase in interest in using trimmed means and Winsorized

variances in testing hypotheses carries over to the issue of effect sizes. Algina, Keselman, and

Penfield (2005) have recently pointed out that measures such as Cohen’s d are often improved

by use of these statistics. The same holds for confidence limits on the differences.

As you will see in the next chapter, Cohen laid out some very general guidelines for

what he considered small, medium, and large effect sizes. He characterized d 5 .20 as an

effect that is small, but probably meaningful, an effect size of d 5 .50 as a medium effect

that most people would be able to notice (such as a half of a standard deviation difference

in IQ), and an effect size of d 5 .80 as large. We should not make too much of Cohen’s lev-

els, but they are helpful as a rough guide.

Reporting results

Reporting results for a t test on two independent samples is basically similar to reporting re-

sults for the case of dependent samples. In Adams et al.’s study of homophobia, two groups

of participants were involved—one group scoring high on a scale of homophobia, and the

dN =
X1 2 X2

sp
=

24.00 2 16.50

12.02
= 0.62
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other scoring low. When presented with sexual explicit homosexual videos, the homophobic

group actually showed a higher level of sexual arousal (the mean difference 5 7.50 units). A

t test of the difference between means produced a statistically significant result (p , .05), and

Cohen’s d 5 .62 showed that the two groups differed by nearly 2/3 of a standard deviation.

However, the confidence limits on the population mean difference were rather wide (1.46 

m
1

– m
2

13.54, suggesting that we do not have a tight handle on the size of our difference.

SPSS Analysis

The SPSS analysis of the Adams et al. (1996) data is given in Table 7.6. Notice that SPSS

first provides what it calls Levene’s test for equality of variances. We will discuss this test

shortly, but it is simply a test on our assumption of homogeneity of variance. We do not

come close to rejecting the null hypothesis that the variances are homogeneous (p 5 .534),

so we don’t have to worry about that here. We will assume equal variances, and will focus

on the next-to-bottom row of the table.

Next note that the t supplied by SPSS is the same as we calculated, and that the proba-

bility associated with this value of t (.016) is less than a 5 .05, leading to rejection of the

null hypothesis. Note also that SPSS prints the difference between the means and the stan-

dard error of that difference, both of which we have seen in our own calculations. Finally,

SPSS prints the 95% confidence interval on the difference between means, and it agrees

with ours.

7.6 A Second Worked Example

Joshua Aronson has done extensive work on what he refers to as “stereotype threat,” which

refers to the fact that “members of stereotyped groups often feel extra pressure in situations

where their behavior can confirm the negative reputation that their group lacks a valued

…
…
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N

35

29

GROUP

Arousal Homophobic

Nonhomophobic

Mean

24.0000

16.5034

Std.

Deviation

12.2013

11.7966

Std. Error

Mean

2.0624

2.1906

Group Statistics

Independent Samples Test

Equal variances

assumed

Equal variances

not assumed

F

.391

Sig.

.534

t

2.484

2.492

df

62

60.495

Sig. 

(2-tailed)

.016

.015

Mean

Difference

7.4966

7.4966

Std. Error

Difference

3.0183

3.0087

Lower

1.4630

1.4794

Upper

13.5301

13.5138

95% Confidence

Interval of the

Difference

t Test for Equality of Means

Levene’s Test

for Equality of

Variances

Table 7.6 SPSS analyses of Adams et al. (1996) data



ability” (Aronson, Lustina, Good, Keough, Steele, & Brown, 1998). This feeling of stereo-

type threat is then hypothesized to affect performance, generally by lowering it from what

it would have been had the individual not felt threatened. Considerable work has been done

with ethnic groups who are stereotypically reputed to do poorly in some area, but Aronson

et al. went a step further to ask if stereotype threat could actually lower the performance of

white males—a group that is not normally associated with stereotype threat.

Aronson et al. (1998) used two independent groups of college students who were

known to excel in mathematics, and for whom doing well in math was considered impor-

tant. They assigned 11 students to a control group that was simply asked to complete a

difficult mathematics exam. They assigned 12 students to a threat condition, in which

they were told that Asian students typically did better than other students in math tests,

and that the purpose of the exam was to help the experimenter to understand why this

difference exists. Aronson reasoned that simply telling white students that Asians did

better on math tests would arousal feelings of stereotype threat and diminish the stu-

dents’ performance.

The data in Table 7.7 have been constructed to have nearly the same means and stan-

dard deviations as Aronson’s data. The dependent variable is the number of items correctly

solved.

First we need to specify the null hypothesis, the significance level, and whether we will

use a one- or a two-tailed test. We want to test the null hypothesis that the two conditions

perform equally well on the test, so we have . We will set alpha at a 5 .05, in

line with what we have been using. Finally, we will choose to use a two-tailed test because

it is reasonably possible for either group to show superior math performance.

Next we need to calculate the pooled variance estimate.

Finally, we can calculate t using the pooled variance estimate:

For this example we have n
1

1 n
2

2 2 5 21 degrees of freedom. From Appendix t we

find . Because 2.37 . 2.080, we will reject and conclude that the two pop-

ulation means are not equal.

H0t.025 = 2.080

t =
(X1 2 X2)

Ds2
p

n1

1
s2

p

n2

=
(9.64 2 6.58)

B9.5942

11
1

9.5942

12

=
3.0611.6717

=
3.06

1.2929
= 2.37

=
10(10.0489) 1 11(9.1809)

21
=

201.4789

21
= 9.5942

s2
p =

(n1 2 1)s2
1 1 (n2 2 1)s2

2

n1 1 n2 2 2
=

10(3.172) 1 11(3.032)

11 1 12 2 2

H0 : m1 = m2

212 Chapter 7 Hypothesis Tests Applied to Means

Table 7.7 Data from Aronson et al. (1998)

Control Subjects Threat Subjects

4 9 12 8 7 8 7 2

9 13 12 13 6 9 7 10

13 7 6 5 0 10 8

Mean 5 9.64 Mean 5 6.58

St. Dev 5 3.17 St. Dev 5 3.03

n
1

5 11 n
2

5 12



Writing up the Results

If you were writing up the results of this experiment, you might write something like the

following:

This experiment tested the hypothesis that stereotype threat will disrupt the perform-

ance even of a group that is not usually thought of as having a negative stereotype with

respect to performance on math tests. Aronson et al. (1998) asked two groups of partic-

ipants to take a difficult math exam. These were white male college students who re-

ported that they typically performed well in math and that good math performance was

important to them. One group of students (n 5 11) was simply given the math test and

asked to do as well as they could. A second, randomly assigned group (n 5 12), was

informed that Asian males often outperformed white males, and that the test was in-

tended to help to explain the difference in performance. The test itself was the same for

all participants. The results showed that the Control subjects answered a mean of 9.64

problems correctly, whereas the subjects in the Threat group completely only a mean

of 6.58 problems. The standard deviations were 3.17 and 3.03, respectively. This repre-

sents an effect size (d) of .99, meaning that the two groups differed in terms of the

number of items correctly completed by nearly one standard deviation.

Student’s t test was used to compare the groups. The resulting t(21) was 2.37, and was

significant at p , .05, showing that stereotype threat significantly reduced the performance

of those subjects to whom it was applied. The 95% confidence interval on the difference in

means is 0.3712 m
1

– m
2

5.7488. This is quite a wide interval, but keep in mind that

the two sample sizes were 11 and 12. An alternative way of comparing groups is to note

that the Threat group answered 32% fewer items correctly than did the Control group.

7.7 Heterogeneity of Variance: 
The Behrens–Fisher Problem

We have already seen that one of the assumptions underlying the t test for two independent

samples is the assumption of homogeneity of variance ( ). To be more spe-

cific, we can say that when is true and when we have homogeneity of variance, then,

pooling the variances, the ratio

is distributed as t on n
1

1 n
2

2 2 df. If we can assume homogeneity of variance there is no dif-

ficulty, and the techniques discussed in this section are not needed. When we do not have ho-

mogeneity of variance, however, this ratio is not, strictly speaking, distributed as t. This leaves

us with a problem, but fortunately a solution (or a number of competing solutions) exists.

First of all, unless , it makes no sense to pool (average) variances be-

cause the reason we were pooling variances in the first place was that we assumed them to

be estimating the same quantity. For the case of heterogeneous variances, we will first

dispense with pooling procedures and define

t¿ =
(X1 2 X2)

Ds2
1

n1

1
s2

2

n2

s2
1 = s2

2 = s2

t =
(X1 2 X2)

Ds2
p

n1

1
s2

p

n2

H0

s2
1 = s2

2 = s2

……
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where and are taken to be heterogeneous variances. As noted above, the expression

that I have just denoted as is not necessarily distributed as t on n
1

1 n
2

2 2 df. If we knew

what the sampling distribution of actually looked like, there would be no problem. We

would just evaluate against that sampling distribution. Fortunately, although there is no

universal agreement, we know at least the approximate distribution of .

The Sampling Distribution of t‘

One of the first attempts to find the exact sampling distribution of was begun by Behrens

and extended by Fisher, and the general problem of heterogeneity of variance has come to

be known as the Behrens–Fisher problem. Based on this work, the Behrens–Fisher distri-

bution of was derived and is presented in a table in Fisher and Yates (1953). However,

because this table covers only a few degrees of freedom, it is not particularly useful for

most purposes.

An alternative solution was developed apparently independently by Welch (1938) and by

Satterthwaite (1946). The Welch–Satterthwaite solution is particularly important because

we will refer back to it when we discuss the analysis of variance. Using this method, is

viewed as a legitimate member of the t distribution, but for an unknown number of degrees of

freedom. The problem then becomes one of solving for the appropriate df, denoted df :

The degrees of freedom (df ) are then taken to the nearest integer.13 The advantage of this

approach is that df is bounded by the smaller of n
1

2 1 and n
2

2 1 at one extreme and 

n
1

1 n
2

– 2 df at the other. More specifically, 

In this book we will rely primarily on the Welch–Satterthwaite approximation. It has

the distinct advantage of applying easily to problems that arise in the analysis of variance,

and it is not noticeably more awkward than the other solutions.

Testing for Heterogeneity of Variance

How do we know whether we even have heterogeneity of variance to begin with? Since we

obviously do not know and (if we did, we would not be solving for t), we must in

some way test their difference by using our two sample variances ( and ).

A number of solutions have been put forth for testing for heterogeneity of variance. One

of the simpler ones was advocated by Levene (1960), who suggested replacing each value of X
either by its absolute deviation from the group mean— —or by its squareddij = ƒXij 2 Xj ƒ

s2
2s2

1

s2
2s2

1

Min(n1 2 1, n2 2 1) … df ¿.
¿

¿

df ¿ =

a s2
1

n1

1
s2

2

n2

b
2

a s2
1

n1

b
2

n1 2 1
1

a s2
2

n2

b
2

n2 2 1

¿

t¿

t¿

t¿

t¿
t¿

t¿
t¿

s2
2s2

1
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13 Welch (1947) later suggested that it might be more accurate to write

df ¿ = G a s2
1

n1

1
s2

2

n2

b
2

a s2
1

n1

b
2
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deviation— —where i and j represent the ith subject in the jth group. He then

proposed running a standard two-sample t test on the s. This test makes intuitive sense, be-

cause if there is greater variability in one group, the absolute, or squared, values of the devia-

tions will be greater. If t is significant, we would then declare the two groups to differ in their

variances. Alternative approaches have been proposed; see, for example, O’Brien (1981), but

they are rarely implemented in standard software, and I will not elaborate on them here.

The procedures just described are suggested as replacements for the more traditional F
test, which is a ratio of the larger sample variance to the smaller. This F has been shown by

many people to be severely affected by nonnormality of the data, and should not be used.

The F test is still computed and printed by many of the large computer packages, but I do

not recommend using it.

The Robustness of t with Heterogeneous Variances

I mentioned that the t test is what is described as robust, meaning that it is more or less unaf-

fected by moderate departures from the underlying assumptions. For the t test for two inde-

pendent samples, we have two major assumptions and one side condition that must be

considered. The two assumptions are those of normality of the sampling distribution of dif-

ferences between means and homogeneity of variance. The side condition is the condition of

equal sample sizes versus unequal sample sizes. Although we have just seen how the prob-

lem of heterogeneity of variance can be handled by special procedures, it is still relevant to

ask what happens if we use the standard approach even with heterogeneous variances.

Box (1953), Norton (1953), Boneau (1960), and many others have investigated the ef-

fects of violating, both independently and jointly, the underlying assumptions of t. The gen-

eral conclusion to be drawn from these studies is that for equal sample sizes, violating the

assumption of homogeneity of variance produces very small effects—the nominal value of

a 5 .05 is most likely within 60.02 of the true value of a. By this we mean that if you set

up a situation with unequal variances but with true and proceed to draw (and compute t
on) a large number of pairs of samples, you will find that somewhere between 3% and 7%

of the sample t values actually exceed . This level of inaccuracy is not intolerable.

The same kind of statement applies to violations of the assumption of normality, provided

that the true populations are roughly the same shape or else both are symmetric. If the dis-

tributions are markedly skewed (especially in opposite directions), serious problems arise

unless their variances are fairly equal.

With unequal sample sizes, however, the results are more difficult to interpret. I would

suggest that whenever your sample sizes are more than trivially unequal you employ the

Welch–Satterthwaite approach. You have little to lose and potentially much to gain.

The investigator who has collected data that she thinks may violate one or more of the

underlying assumptions should refer to the article by Boneau (1960). This article may be

old, but it is quite readable and contains an excellent list of references to other work in the

area. A good summary of alternative procedures can be found in Games, Keselman, and

Rogan (1981).

Wilcox (1992) has argued persuasively for the use of trimmed samples for comparing

group means with heavy-tailed distributions. (Interestingly, statisticians seem to have a

fondness for trimmed samples, whereas psychologists and other social science practition-

ers seem not to have heard of trimming.) He provides results showing dramatic increases

in power when compared to more standard approaches. Alternative nonparametric ap-

proaches, including “resampling statistics” are discussed in Chapter 18 of this book. These

can be very powerful techniques that do not require unreasonable assumptions about the

populations from which you have sampled. I suspect that resampling statistics and related

procedures will be in the mainstream of statistical analysis in the not too-distant future.

6t.025

H0

dij

dij = (Xij 2 Xj)
2

Section 7.7 Heterogeneity of Variance: The Behrens–Fisher Problem 215

robust



A Caution

When Welch, Satterthwaite, Behrens, and Fisher developed tests on means that are not de-

pendent on homogeneous variances they may not have been doing us as much of a favor as

we think. Venables (2000) pointed out that such a test “gives naive users a cozy feeling of

protection that perhaps their test makes sense even if the variances happen to come out

wildly different.” His point is that we are often so satisfied that we don’t have to worry

about the fact that the variances are different that indeed we often don’t worry about the

fact that variances are different. That sentence may sound circular, but we really should pay

attention to unequal variances. It is quite possible that the variances are of more interest

than the means in some experiments. For example, it is entirely possible that a study com-

paring family therapy with cognitive behavior therapy for treatment of anorexia could

come out with similar means but quite different variances. In that situation perhaps we

should focus on the thought that one therapy might be very effective for some people and

very ineffective for others, leading to a high variance. Venables also points out that if one

treatment produces a higher mean than another that may not be of much interest if it also

has a high variance and is thus unreliable. Finally, Venables pointed out that we are all

happy and comfortable with the fact that we can now run a t test without worrying overly

much about heterogeneity of variance. However, when we come to the analysis of variance

in Chapter 11 we will not have such a correction and, as a result we will happily go our

way acting as if the lack of equality of variances is not a problem.

I am not trying to suggest that people ignore corrections for heterogeneity of variance.

I think that they should be used. But I think that it is even more important to consider what

those different variances are telling us. They may be the more important part of the story.

7.8 Hypothesis Testing Revisited

In Chapter 4 we spent time examining the process of hypothesis testing. I pointed out that

the traditional approach involves setting up a null hypothesis, and then generating a statis-

tic that tells us how likely we are to find the obtained results if, in fact, the null hypothesis

is true. In other words we calculate the probability of the data given the null, and if that

probability is very low, we reject the null.

In that chapter we also looked briefly at a proposal by Jones and Tukey (2000) in which

they approached the problem slightly differently. Now that we have several examples, this

is a good point to go back and look at their proposal. In discussing Adams et al.’s study of

homophobia I suggested that you think about how Jones and Tukey would have approached

the issue. I am not going to repeat the traditional approach, because that is laid out in each

of the examples of how to write up our results.

The study by Adams et al. (1996) makes a good example. I imagine that all of us would

be willing to agree that the null hypothesis of equal population means in the two conditions

is highly unlikely to be true. Even laying aside the argument about differences in the

10th decimal place, it just seems unlikely that people who differ appreciably in terms of

homophobia would show exactly the same mean level of arousal to erotic videos. We may

not know which group will show the greater arousal, but one population mean is certain to

be larger than the other. So we can rule out the null hypothesis (H
0
: mH – mN 5 0) as a vi-

able possibility. That leaves us with three possible conclusions we could draw as a result of

our test. The first is that mH , mN, the second is that mH . mN, and the third is that we do

not have sufficient evidence to draw a conclusion.

Now let’s look at the possibilities of error. It could actually be that mH , mN, but that

we draw the opposite conclusion by deciding that the nonhomophobic participants are
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more aroused. This is what Jones and Tukey call a “reversal,” and the probability of making

this error if we use a one-tailed test at a 5 .05 is .05. Alternatively it could be that mH . mN

but that we make the error of concluding that the nonhomophobic participants are less

aroused. Again with a one-tailed test the probability of making this error is .05. It is not

possible for us to make both of these errors because one of the hypotheses is true, so using

a one-tailed test (in both directions) at a 5 .05 gives us a 5% error rate. In our particular

example the critical value for a one-tailed test on 62 df is approximately 1.68. Because our

obtained value of t was 2.48, we will conclude that homophobic participants are more

aroused, on average, than nonhomophobic participants. Notice that in writing this para-

graph I have not used the phrase “Type I error,” because that refers to rejecting a true null,

and I have already said that the null can’t possibly be true. In fact, notice that my conclu-

sion did not contain the phrase “rejecting the hypothesis.” Instead I referred to “drawing a

conclusion.” These are subtle differences, but I hope this example clarifies the position

taken by Jones and Tukey.

Key Terms

Sampling distribution of the mean (7.1)

Central limit theorem (7.1)

Uniform (rectangular) distribution (7.1)

Standard error (7.2)

Student’s t distribution (7.3)

Point estimate (7.3)

Confidence limits (7.3)

Confidence interval (7.3)

p level (7.3)

Matched samples (7.4)

Repeated measures (7.4)

Related samples (7.4)

Matched-sample t test (7.4)

Difference scores (7.4)

Gain scores (7.4)

Cohen’s d (7.4)

Sampling distribution of differences

between means (7.5)

Variance sum law (7.5)

Standard error of differences 

between means (7.5)

Weighted average (7.5)

Pooled variance estimate (7.5)

Homogeneity of variance (7.7)

Heterogeneous variances (7.7)

Behrens–Fisher problem (7.7)

Welch–Satterthwaite solution (7.7)

Robust (7.7)

Exercises

7.1 The following numbers represent 100 random numbers drawn from a rectangular popula-

tion with a mean of 4.5 and a standard deviation of .2.7. Plot the distribution of these digits.

6 4 8 7 8 7 0 8 2 8 5 7

4 8 2 6 9 0 2 6 4 9 0 4

9 3 4 2 8 2 0 4 1 4 7 4

1 7 4 2 4 1 4 2 8 7 9 7

3 7 4 7 3 1 6 7 1 8 7 2

7 6 2 1 8 6 2 3 3 6 5 4

1 7 2 1 0 2 6 0 8 3 2 4

3 8 4 5 7 0 8 4 2 8 6 3

7 3 5 1



7.2 I drew 50 samples of 5 scores each from the same population that the data in Exercise 7.1

came from, and calculated the mean of each sample. The means are shown below. Plot the

distribution of these means.

2.8 6.2 4.4 5.0 1.0 4.6 3.8 2.6 4.0 4.8

6.6 4.6 6.2 4.6 5.6 6.4 3.4 5.4 5.2 7.2

5.4 2.6 4.4 4.2 4.4 5.2 4.0 2.6 5.2 4.0

3.6 4.6 4.4 5.0 5.6 3.4 3.2 4.4 4.8 3.8

4.4 2.8 3.8 4.6 5.4 4.6 2.4 5.8 4.6 4.8

7.3 Compare the means and the standard deviations for the distribution of digits in Exercise 7.1

and the sampling distribution of the mean in Exercise 7.2.

a. What would the Central Limit Theorem lead you to expect in this situation?

b. Do the data correspond to what you would predict?

7.4 In what way would the result in Exercise 7.2 differ if you had drawn more samples of size 5?

7.5 In what way would the result in Exercise 7.2 differ if you had drawn 50 samples of size 15?

7.6 Kruger and Dunning (1999) published a paper called “Unskilled and unaware of it,” in

which they examined the hypothesis that people who perform badly on tasks are unaware of

their general logical reasoning skills. Each student estimated at what percentile he or she

scored on a test of logical reasoning. The eleven students who scored in the lowest quartile

reported a mean estimate that placed them in the 68th percentile. Data with nearly the same

mean and standard deviation as they found follow: [40 58 72 73 76 78 52 72 84 70 72.]

Is this an example of “all the children are above average?” In other words is their mean per-

centile ranking greater than an average ranking of 50?

7.7 Although I have argued against one-tailed tests, why might a one-tailed test be appropriate

for the question asked in the previous exercise?

7.8 In the Kruger and Dunning study reported in the previous two exercises, the mean estimated

percentile for the 11 students in the top quartile (their actual mean percentile 5 86) was 70

with a standard deviation of 14.92, so they underestimated their abilities. Is this difference

significant?

7.9 The over- and under-estimation of one’s performance is partly a function of the fact that if

you are near the bottom you have less room to underestimate your performance than to

overestimate it. The reverse holds if you are near the top. Why doesn’t that explanation ac-

count for the huge overestimate for the poor scorers?

7.10 Compute 95% confidence limits on m for the data in Exercise 7.8.

7.11 Everitt, in Hand et al., 1994, reported on several different therapies as treatments for

anorexia. There were 29 girls in a cognitive-behavior therapy condition, and they were

weighed before and after treatment. The weight gains of the girls, in pounds, are given be-

low. The scores were obtained by subtracting the Before score from the After score, so that

a negative difference represents weight loss, and a positive difference represents a gain.

1.7 0.7 20.1 20.7 23.5 14.9 3.5 17.1 27.6 1.6 11.7

6.1 1.1 24.0 20.9 29.1 2.1 21.4 1.4 20.3 23.7 20.8

2.4 12.6 1.9 3.9 0.1 15.4 20.7

a. What does the distribution of these values look like?

b. Did the girls in this group gain a statistically significant amount of weight?

7.12 Compute 95% confidence limits on the weight gain in Exercise 7.11.

7.13 Katz, Lautenschlager, Blackburn, and Harris (1990) examined the performance of 28 stu-

dents, who answered multiple choice items on the SAT without having read the passages to

which the items referred. The mean score (out of 100) was 46.6, with a standard deviation

of 6.8. Random guessing would have been expected to result in 20 correct answers.

a. Were these students responding at better-than-chance levels?

b. If performance is statistically significantly better than chance, does it mean that the

SAT test is not a valid predictor of future college performance?
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7.14 Compas and others (1994) were surprised to find that young children under stress actually

report fewer symptoms of anxiety and depression than we would expect. But they also no-

ticed that their scores on a Lie scale (a measure of the tendency to give socially desirable

answers) were higher than expected. The population mean for the Lie scale on the Chil-

dren’s Manifest Anxiety Scale (Reynolds and Richmond, 1978) is known to be 3.87. For a

sample of 36 children under stress, Compas et al. found a sample mean of 4.39, with a stan-

dard deviation of 2.61.

a. How would we test whether this group shows an increased tendency to give socially ac-

ceptable answers?

b. What would the null hypothesis and research hypothesis be?

c. What can you conclude from the data?

7.15 Calculate the 95% confidence limits for m for the data in Exercise 7.14. Are these limits

consistent with your conclusion in Exercise 7.14?

7.16 Hoaglin, Mosteller, and Tukey (1983) present data on blood levels of beta-endorphin as a

function of stress. They took beta-endorphin levels for 19 patients 12 hours before surgery,

and again 10 minutes before surgery. The data are presented below, in fmol/ml:

ID 1 2 3 4 5 6 7 8 9 10

12 hours 10.0 6.5 8.0 12.0 5.0 11.5 5.0 3.5 7.5 5.8

10 minutes 6.5 14.0 13.5 18.0 14.5 9.0 18.0 42.0 7.5 6.0

ID 11 12 13 14 15 16 17 18 19

12 hours 4.7 8.0 7.0 17.0 8.8 17.0 15.0 4.4 2.0

10 minutes 25.0 12.0 52.0 20.0 16.0 15.0 11.5 2.5 2.0

Based on these data, what effect does increased stress have on endorphin levels?

7.17 Why would you use a matched-sample t test in Exercise 7.16?

7.18 Construct 95% confidence limits on the true mean difference between endorphin levels at

the two times described in Exercise 7.16.

7.19 Hout, Duncan, and Sobel (1987) reported on the relative sexual satisfaction of married cou-

ples. They asked each member of 91 married couples to rate the degree to which they agreed

with “Sex is fun for me and my partner” on a four-point scale ranging from “never or occa-

sionally” to “almost always.” The data appear below (I know it’s a lot of data, but it’s an

interesting question):

Husband 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Wife 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3

Husband 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

Wife 3 4 4 4 1 1 2 2 2 2 2 2 2 2 3

Husband 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

Wife 3 3 4 4 4 4 4 4 4 1 2 2 2 2 2

Husband 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4

Wife 3 3 3 3 4 4 4 4 4 4 4 4 4 1 1

Husband 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Wife 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

Husband 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Wife 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Start out by running a matched-sample t test on these data. Why is a matched-sample test

appropriate?

7.20 In the study referred to in Exercise 7.19, what, if anything does your answer to that question

tell us about whether couples are sexually compatible? What do we know from this analy-

sis, and what don’t we know?



7.21 For the data in Exercise 7.19, create a scatterplot and calculate the correlation between

husband’s and wife’s sexual satisfaction. How does this amplify what we have learned

from the analysis in Exercise 7.19. (I do not discuss scatterplots and correlation until

Chapter 9, but a quick glance at Chapter 9 should suffice if you have difficulty. SPSS will

easily do the calculation.)

7.22 Construct 95% confidence limits on the true mean difference between the Sexual Satisfac-

tion scores in Exercise 7.19, and interpret them with respect to the data.

7.23 Some would object that the data in Exercise 7.19 are clearly discrete, if not ordinal, and that

it is inappropriate to run a t test on them. Can you think what might be a counter argument?

(This is not an easy question, and I really asked it mostly to make the point that there could

be controversy here.)

7.24 Give an example of an experiment in which using related samples would be ill-advised be-

cause taking one measurement might influence another measurement.

7.25 Sullivan and Bybee (1999) reported on an intervention program for women with abusive

partners. The study involved a 10-week intervention program and a three-year follow-up,

and used an experimental (intervention) and control group. At the end of the 10-week inter-

vention period the mean quality of life score for the intervention group was 5.03 with a stan-

dard deviation of 1.01 and a sample size of 135. For the control group the mean was 4.61

with a standard deviation of 1.13 and a sample size of 130. Do these data indicate that the

intervention was successful in terms of the quality of life measure?

7.26 In Exercise 7.25 Calculate a confidence interval for the difference in group means. Then cal-

culate a d-family measure of effect size for that difference.

7.27 Another way to investigate the effectiveness of the intervention described in Exercise 7.25

would be to note that the mean quality of life score before the intervention was 4.47 with a

standard deviation of 1.18. The quality of life score was 5.03 after the intervention with a

standard deviation of 1.01. The sample size was 135 at each time. What do these data tell

you about the effect of the intervention? (Note: You don’t have the difference scores, but as-

sume that the standard deviation of difference scores was 1.30.)

7.28 For the control condition for the experiment in Exercise 7.25 the beginning and 10-week

means were 4.32 and 4.61 with standard deviations of 0.98 and 1.13, respectively. The sam-

ple size was 130. Using the data from this group and the intervention group, plot the change

in pre- to post-test scores for the two groups and interpret what you see.

7.29 In the study referred to in Exercise 7.13, Katz et al. (1990) compared the performance on

SAT items of a group of 17 students who were answering questions about a passage after

having read the passage with the performance of a group of 28 students who had not seen

the passage. The mean and standard deviation for the first group were 69.6 and 10.6,

whereas for the second group they were 46.6 and 6.8.

a. What is the null hypothesis?

b. What is the alternative hypothesis?

c. Run the appropriate t test.

d. Interpret the results.

7.30 Many mothers experience a sense of depression shortly after the birth of a child. Design a

study to examine postpartum depression and, from material in this chapter, tell how you

would estimate the mean increase in depression.

7.31 In Exercise 7.25, we saw data from Everitt that showed that girls receiving cognitive behav-

ior therapy gained weight over the course of that therapy. However, it is possible that they

just gained weight because they got older. One way to control for this is to look at the

amount of weight gained by the cognitive therapy group (n 5 29) in contrast with the

amount gained by girls in a Control group (n 5 26), who received no therapy. The data on

weight gain for the two groups is shown below.
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Exercises 221

Control Cognitive Therapy

20.5 3.3 1.7 29.1

29.3 11.3 0.7 2.1

25.4 0.0 20.1 21.4

12.3 21.0 20.7 1.4

22.0 210.6 23.5 20.3

210.2 24.6 14.9 23.7

212.2 26.7 3.5 20.8

11.6 2.8 17.1 2.4

27.1 0.3 27.6 12.6

6.2 1.8 1.6 1.9

20.2 3.7 11.7 3.9

29.2 15.9 6.1 0.1

8.3 210.2 1.1 15.4

24.0 20.7

20.9

Mean 20.45 3.01

St Dev. 7.99 7.31

Variance 63.82 53.41

Run the appropriate test to compare the group means. What would you conclude?

7.32 Calculate the confidence interval on m
1

2 m
2

for the data in Exercise 7.31.

7.33 In Exercise 7.19 we saw pairs of observations on sexual satisfaction for husbands and wives.

Suppose that those data had actually come from unrelated males and females, such that the

data are no longer paired. What effect do you expect this to have on the analysis?

7.34 Run the appropriate t test on the data in 7.19 assuming that the observations are independ-

ent. What would you conclude?

7.35 Why isn’t the difference between the results in 7.34 and 7.19 greater than it is?

7.36 What is the role of random assignment in Everitt’s anorexia study referred to in Exercise

7.31, and under what conditions might we find it difficult to carry out random assignment?

7.37 The Thematic Apperception Test presents subjects with ambiguous pictures and asks them

to tell a story about them. These stories can be scored in any number of ways. Werner,

Stabenau, and Pollin (1970) asked mothers of 20 Normal and 20 Schizophrenic children to

complete the TAT, and scored for the number of stories (out of 10) that exhibited a positive

parent-child relationship. The data follow:

Normal 8 4 6 3 1 4 4 6 4 2

Schizophrenic 2 1 1 3 2 7 2 1 3 1

Normal 2 1 1 4 3 3 2 6 3 4

Schizophrenic 0 2 4 2 3 3 0 1 2 2

a. What would you assume to be the experimental hypothesis behind this study?

b. What would you conclude with respect to that hypothesis?

7.38 In Exercise 7.37, why might it be smart to look at the variances of the two groups?

7.39 In Exercise 7.37, a significant difference might lead someone to suggest that poor parent-child

relationships are the cause of schizophrenia. Why might this be a troublesome conclusion?

7.40 Much has been made of the concept of experimenter bias, which refers to the fact that even

the most conscientious experimenters tend to collect data that come out in the desired direc-

tion (they see what they want to see). Suppose we use students as experimenters. All the ex-

perimenters are told that subjects will be given caffeine before the experiment, but one-half

of the experimenters are told that we expect caffeine to lead to good performance and one-

half are told that we expect it to lead to poor performance. The dependent variable is the



number of simple arithmetic problems the subjects can solve in 2 minutes. The data

obtained are:

Expectation good: 19 15 22 13 18 15 20 25 22

Expectation poor: 14 18 17 12 21 21 24 14

What can you conclude?

7.41 Calculate 95% confidence limits on m
1

2 m
2

for the data in Exercise 7.40.

7.42 An experimenter examining decision-making asked 10 children to solve as many problems

as they could in 10 minutes. One group (5 subjects) was told that this was a test of their in-

nate problem-solving ability; a second group (5 subjects) was told that this was just a time-

filling task. The data follow:

Innate ability: 4 5 8 3 7

Time-filling task: 11 6 9 7 9

Does the mean number of problems solved vary with the experimental condition?

7.43 A second investigator repeated the experiment described in Exercise 7.42 and obtained the

same results. However, she thought that it would be more appropriate to record the data in

terms of minutes per problem (e.g., 4 problems in 10 minutes 5 10/4 5 2.5 minutes/prob-

lem). Thus, her data were:

Innate ability: 2.50 2.00 1.25 3.33 1.43

Time-filling task: 0.91 1.67 1.11 1.43 1.11

Analyze and interpret these data with the appropriate t test.

7.44 What does a comparison of Exercises 7.42 and 7.43 show you?

7.45 I stated earlier that Levene’s test consists of calculating the absolute (or squared) differences

between individual observations and their group’s mean, and then running a t test on those

differences. Using any computer software it is simple to calculate those absolute and

squared differences and then to run a t test on them. Calculate both and determine which ap-

proach SPSS is using in the example. (Hint: F 5 t2 here, and the F value that SPSS actually

calculated was 0.391148, to 6 decimal places.)

7.46 Research on clinical samples (i.e., people referred for diagnosis or treatment) has suggested

that children who experience the death of a parent may be at risk for developing depression

or anxiety in adulthood. Mireault (1990) collected data on 140 college students who had ex-

perienced the death of a parent, 182 students from two-parent families, and 59 students from

divorced families. The data are found in the file Mireault.dat and are described in Appendix:

Computer Exercises.

a. Use any statistical program to run t tests to compare the first two groups on the Depres-

sion, Anxiety, and Global Symptom Index t scores from the Brief Symptom Inventory

(Derogatis, 1983).

b. Are these three t tests independent of one another? (Hint: To do this problem you will

have to ignore or delete those cases in Group 3 [the Divorced group]. Your instructor or

the appropriate manual will explain how to do this for the particular software that you

are using.)

7.47 It is commonly reported that women show more symptoms of anxiety and depression than

men. Would the data from Mireault’s study support this hypothesis?

7.48 Now run separate t tests to compare Mireault’s Group 1 versus Group 2, Group 1 versus

Group 3, and Group 2 versus Group 3 on the Global Symptom Index. (This is not a good

way to compare the three group means, but it is being done here because it leads to more

appropriate analyses in Chapter 12.)

7.49 Present meaningful effect sizes estimate(s) for the matched pairs data in Exercise 7.25.

7.50 Present meaningful effect sizes estimate(s) for the two independent group data in Exercise 7.31.
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Discussion Questions

7.51 In Chapter 6 (Exercise 6.38) we examined data presented by Hout et al. on the sexual satis-

faction of married couples. We did that by setting up a contingency table and computing 

on that table. We looked at those data again in a different way in Exercise 7.19, where we ran

a t test comparing the means. Instead of asking subjects to rate their statement “Sex is fun for

me and my partner” as “Never, Fairly Often, Very Often, or Almost Always,” we converted

their categorical responses to a four-point scale from 1 5 “Never” to 4 5 “Almost Always.”

a. How does the “scale of measurement” issue relate to this analysis?

b. Even setting aside the fact that this exercise and Exercise 6.37 use different statistical

tests, the two exercises are asking quite different questions of the data. What are those

different questions?

c. What might you do if 15 wives refused to answer the question, although their husbands

did, and 8 husbands refused to answer the question when their wives did?

d. How comfortable are you with the t test analysis, and what might you do instead?

7.52 Write a short paragraph containing the information necessary to describe the results of the

experiment discussed in Exercise 7.31. This should be an abbreviated version of what you

would write in a research article.

x2
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CHAPTER 8

POWER

Object ives

To introduce the concept of the power of a statistical test and to show how we

can calculate the power of a variety of statistical procedures.

Contents

8.1 Factors Affecting the Power of a Test

8.2 Effect Size

8.3 Power Calculations for the One-Sample t

8.4 Power Calculations for Differences Between Two Independent Means

8.5 Power Calculations for Matched-Sample t

8.6 Power Calculations in More Complex Designs

8.7 The Use of G*Power to Simplify Calculations

8.8 Retrospective Power

8.9 Writing Up the Results of a Power Analysis
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UNTIL RECENTLY, MOST APPLIED STATISTICAL WORK as it is actually carried out in analyzing

experimental results was primarily concerned with minimizing (or at least controlling) the

probability of a Type I error (a). When designing experiments, people tend to ignore the

very important fact that there is a probability (b) of another kind of error, Type II errors.

Whereas Type I errors deal with the problem of finding a difference that is not there, Type

II errors concern the equally serious problem of not finding a difference that is there. When

we consider the substantial cost in time and money that goes into a typical experiment, we

could argue that it is remarkably short-sighted of experimenters not to recognize that they

may, from the start, have only a small chance of finding the effect they are looking for, even

if such an effect does exist in the population.

There are very good historical reasons why investigators have tended to ignore Type II

errors. Cohen places the initial blame on the emphasis Fisher gave to the idea that the null

hypothesis was either true or false, with little attention to . Although the Neyman-Pearson

approach does emphasize the importance of , Fisher’s views have been very influential.

In addition, until recently, many textbooks avoided the problem altogether, and those books

that did discuss power did so in ways that were not easily understood by the average reader.

Cohen, however, discussed the problem clearly and lucidly in several publications.1 Cohen

(1988) presents a thorough and rigorous treatment of the material. In Welkowitz, Ewen,

and Cohen (2000) the material is treated in a slightly simpler way through the use of an ap-

proximation technique. That approach is the one adopted in this chapter. Two extremely

good papers that are very accessible and that provide useful methods are by Cohen (1992a,

1992b). You should have no difficulty with either of these sources, or, for that matter, with

any of the many excellent papers Cohen published on a wide variety of topics not neces-

sarily directly related to this particular one.

Speaking in terms of Type II errors is a rather negative way of approaching the problem,

since it keeps reminding us that we might make a mistake. The more positive approach

would be to speak in terms of power, which is defined as the probability of correctly reject-

ing a false when a particular alternative hypothesis is true. Thus, power 5 1 2 b. A more

powerful experiment is one that has a better chance of rejecting a false than does a less

powerful experiment.

In this chapter we will take the approach of Welkowitz, Ewen, and Cohen (2000) and

work with an approach that gives a good approximation of the true power of a test. This

approximation is an excellent one, especially in light of the fact that we do not really care

whether the power is .85 or .83, but rather whether it is near .80 or nearer to .30. Cohen

(1988) takes a more detailed approach; rather than working with an approximation, he

works with more exact probabilities. That approach requires much more extensive tables

but produces answers very similar to the ones that we will obtain here. However, it does

not make a great deal of sense to work through extensive tables when the alternative is to

use simple software programs that have been developed to automate power calculations.

The method that I will use makes clear the concepts involved in power calculations, and if

you wish more precise answers you can download, very good, free, software. An excel-

lent program named G*Power by Faul and Erdfelder is available on the Internet at

http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/ and there are both Macintosh

and DOS programs at that site. In what follows I will show power calculations by hand, but

then will show the results of using G*Power and the advantages that the program offers.

H0

H0

H1

H1
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1A somewhat different approach is taken by Murphy and Myors (1998), who base all of their power calculations
on the F distribution. The F distribution appears throughout this book, and virtually all of the statistics covered in
this book can be transformed to a F. The Murphy and Myors approach is worth examining, and will give results
very close to the results we find in this chapter.
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For expository purposes we will assume for the moment that we are interested in test-

ing one sample mean against a specified population mean, although the approach will

immediately generalize to testing other hypotheses.

8.1 Factors Affecting the Power of a Test

As might be expected, power is a function of several variables. It is a function of (1) a, the

probability of a Type I error, (2) the true alternative hypothesis ( ), (3) the sample size,

and (4) the particular test to be employed. With the exception of the relative power of inde-

pendent versus matched samples, we will avoid this last relationship on the grounds that

when the test assumptions are met, the majority of the procedures discussed in this book

can be shown to be the uniformly most powerful tests of those available to answer the ques-

tion at hand. It is important to keep in mind, however, that when the underlying assump-

tions of a test are violated, the nonparametric tests discussed in Chapter 18, and especially

the resampling tests, are often more powerful.

The Basic Concept

First we need a quick review of the material covered in Chapter 4. Consider the two distri-

butions in Figure 8.1. The distribution to the left (labeled ) represents the sampling dis-

tribution of the mean when the null hypothesis is true and m 5 m
0
. The distribution on the

right represents the sampling distribution of the mean that we would have if were false

and the true population mean were equal to m
1
. The placement of this distribution depends

entirely on what the value of m
1

happens to be.

The heavily shaded right tail of the H
0

distribution represents a, the probability of a

Type I error, assuming that we are using a one-tailed test (otherwise it represents  a/2). This

area contains the sample means that would result in significant values of t. The second dis-

tribution ( ) represents the sampling distribution of the statistic when is false and the

true mean is m
1
. It is readily apparent that even when is false, many of the sample means

(and therefore the corresponding values of t) will nonetheless fall to the left of the critical

value, causing us to fail to reject a false , thus committing a Type II error. The probabil-

ity of this error is indicated by the lightly shaded area in Figure 8.1 and is labeled b. When

is false and the test statistic falls to the right of the critical value, we will correctly 

reject a false . The probability of doing this is what we mean by power, and is shown in

the unshaded area of the distribution.

Power as a Function of a

With the aid of Figure 8.1, it is easy to see why we say that power is a function of a. If 

we are willing to increase a, our cutoff point moves to the left, thus simultaneously

H1

H0

H0

H0

H0

H0H1

H0

H0

H1
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decreasing b and increasing power, although with a corresponding rise in the probability

of a Type I error.

Power as a Function of 

The fact that power is a function of the true alternative hypothesis [more precisely ( 2 ),

the difference between (the mean under ) and (the mean under )] is illustrated by

comparing Figures 8.1 and 8.2. In Figure 8.2 the distance between and has been

increased, and this has resulted in a substantial increase in power, though there is still size-

able probability of a Type II error. This is not particularly surprising, since all that we are say-

ing is that the chances of finding a difference depend on how large the difference actually is.

Power as a Function of n and s2

The relationship between power and sample size (and between power and ) is only a little

subtler. Since we are interested in means or differences between means, we are interested in

the sampling distribution of the mean. We know that the variance of the sampling 

distribution of the mean decreases as either n increases or decreases, since .

Figure 8.3 illustrates what happens to the two sampling distributions ( and ) as we

increase n or decrease , relative to Figure 8.2. Figure 8.3 also shows that, as decreases,

the overlap between the two distributions is reduced with a resulting increase in power.

Notice that the two means ( and ) remain unchanged from Figure 8.2.m1m0

sX
2

s2

H1H0

= s2>nsX
2

s2

s2

m1m0

H1m1H0m0

m1m0

H1
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If an experimenter concerns himself with the power of a test, then he is most likely

interested in those variables governing power that are easy to manipulate. Since n is more

easily manipulated than is either or the difference ( ), and since tampering with

a produces undesirable side effects in terms of increasing the probability of a Type I error,

discussions of power are generally concerned with the effects of varying sample size.

8.2 Effect Size

As we saw in Figures 8.1 through 8.3, power depends on the degree of overlap between

the sampling distributions under and . Furthermore, this overlap is a function of

both the distance between and and the standard error. One measure, then, of the

degree to which is false would be the distance from to expressed in terms of

the number of standard errors. The problem with this measure, however, is that it

includes the sample size (in the computation of the standard error), when in fact we will

usually wish to solve for the power associated with a given n or else for that value of n
required for a given level of power. For this reason we will take as our distance measure,

or effect size (d)

ignoring the sign of d, and incorporating n later. Thus, d is a measure of the degree to

which and differ in terms of the standard deviation of the parent population. We see

that d is estimated independently of n, simply by estimating , , and s. In chapter 7 we

discussed effect size as the standardized difference between two means. This is the same

measure here, though one of those means is the mean under the null hypothesis. I will point

this out again when we come to comparing the means of two populations.

Estimating the Effect Size

The first task is to estimate d, since it will form the basis for future calculations. This can

be done in three ways:

1. Prior research. On the basis of past research, we can often get at least a rough approxi-

mation of d. Thus, we could look at sample means and variances from other studies and

make an informed guess at the values we might expect for and for s. In prac-

tice, this task is not as difficult as it might seem, especially when you realize that a

rough approximation is far better than no approximation at all.

2. Personal assessment of how large a difference is important. In many cases, an investi-

gator is able to say, I am interested in detecting a difference of at least 10 points between

and . The investigator is essentially saying that differences less than this have no

important or useful meaning, whereas greater differences do. (This is particularly com-

mon in biomedical research, where we are interesting in decreasing cholesterol, for ex-

ample, by a certain amount, and have no interest in smaller changes.) Here we are given

the value of directly, without needing to know the particular values of and

. All that remains is to estimate s from other data. As an example, the investigator

might say that she is interested in finding a procedure that will raise scores on the Grad-

uate Record Exam by 40 points above normal. We already know that the standard devi-

ation for this test is 100. Thus d 5 40/100 5 .40. If our hypothetical experimenter says

instead that she wants to raise scores by four-tenths of a standard deviation, she would

be giving us d directly.

m0

m1m1 2 m0

m0m1

m1 2 m0

m0m1

m0m1

d =
m1 2 m0

s

m0m1H0

m1m0

H1H0

m0 2 m1s2
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3. Use of special conventions. When we encounter a situation in which there is no way we

can estimate the required parameters, we can fall back on a set of conventions proposed

by Cohen (1988). Cohen more or less arbitrarily defined three levels of d:

Effect Size d Percentage of Overlap

Small .20 85

Medium .50 67

Large .80 53

Thus, in a pinch, the experimenter can simply decide whether she is after a small, medium, or

large effect and set d accordingly. However, this solution should be chosen only when the

other alternatives are not feasible. The right-hand column of the table is labeled Percentage

of Overlap, and it records the degree to which the two distributions shown in Figure 8.1 over-

lap. Thus, for example, when d 5 0.50, two-thirds of the two distributions overlap (Cohen,

1988). This is yet another way of thinking about how big a difference a treatment produces.

Cohen chose a medium effect to be one that would be apparent to an intelligent viewer, a

small effect as one that is real but difficult to detect visually, and a large effect as one that is

the same distance above a medium effect as “small” is below it. Cohen (1969) originally

developed these guidelines only for those who had no other way of estimating the effect size.

However, as time went on and he became discouraged by the failure of many researchers to

conduct power analyses, presumably because they think them to be too difficult, he made

greater use of these conventions (see Cohen, 1992a). In addition, when we think about d, as

we did in Chapter 7 as a measure of the size of the effect that we have found in our experi-

ment (as opposed to the size we hope to find), Cohen’s rules of thumb are being taken as a

measure of just how large our obtained difference is. However, Bruce Thompson, of Texas

A&M, made an excellent point in this regard. He was speaking of expressing obtained differ-

ences in terms of d, in place of focusing on the probability value of a resulting test statistic.

He wrote, “Finally, it must be emphasized that if we mindlessly invoke Cohen’s rules of

thumb, contrary to his strong admonitions, in place of the equally mindless consultation of p
value cutoffs such as .05 and .01, we are merely electing to be thoughtless in a new metric”

(Thompson, 2000, personal communication). The point applies to any use of arbitrary con-

ventions for d, regardless of whether it is for purposes of calculating power or for purposes of

impressing your readers with how large your difference is. Lenth (2001) has argued convinc-

ingly that the use of conventions such as Cohen’s are dangerous. We need to concentrate on

both the value of the numerator and the value of the denominator in d, and not just on their

ratio. Lenth’s argument is really an attempt at making the investigator more responsible for

his or her decisions, and I doubt that Cohen would have any disagreement with that.

It may strike you as peculiar that the investigator is being asked to define the difference

she is looking for before the experiment is conducted. Most people would respond by say-

ing, “I don’t know how the experiment will come out. I just wonder whether there will be a

difference.” Although many experimenters speak in this way (the author is no virtuous

exception), you should question the validity of this statement. Do we really not know, at

least vaguely, what will happen in our experiments; if not, why are we running them? Al-

though there is occasionally a legitimate I-wonder-what-would-happen-if experiment, in

general, “I do not know” translates to “I have not thought that far ahead.”

Recombining the Effect Size and n

We earlier decided to split the sample size from the effect size to make it easier to deal with

n separately. We now need a method for combining the effect size with the sample size. We

use the statistic d (delta) 5 d[ f(n)] to represent this combination where the particular
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function of n [i.e., f(n)] will be defined differently for each individual test. The convenient

thing about this system is that it will allow us to use the same table of d for power calcula-

tions for all the statistical procedures to be considered.

8.3 Power Calculations for the One-Sample t

We will first examine power calculations for the one-sample t test. In the preceding section

we saw that d is based on d and some function of n. For the one-sample t, that function will

be , and d will then be defined as . Given d as defined here, we can immedi-

ately determine the power of our test from the table of power in Appendix Power.

Assume that a clinical psychologist wants to test the hypothesis that people who seek

treatment for psychological problems have higher IQs than the general population. She

wants to use the IQs of 25 randomly selected clients and is interested in finding the power

of detecting a difference of 5 points between the mean of the general population and the

mean of the population from which her clients are drawn. Thus, , , and

s 5 15.

then

Although the clinician expects the sample means to be above average, she plans to use

a two-tailed test at a 5 .05 to protect against unexpected events. From Appendix Power,

for d 5 1.65 with a 5 .05 (two-tailed), power is between .36 and .40. By crude linear in-

terpolation, we will say that power 5 .38. This means that, if is false and is really

105, only 38% of the time can our clinician expect to find a “statistically significant” dif-

ference between her sample mean and that specified by . This is a rather discouraging

result, since it means that if the true mean really is 105, 62% of the time our clinician will

make a Type II error. (The more accurate calculation by G*Power computes the power as

.35, which illustrates that our approximation procedure is remarkably close.)

Since our experimenter was intelligent enough to examine the question of power 

before she began her experiment, all is not lost. She still has the chance to make changes

that will lead to an increase in power. She could, for example, set a at .10, thus increasing

power to approximately .50, but this is probably unsatisfactory. (Journal reviewers, for

example, generally hate to see a set at any value greater than .05.)

Estimating Required Sample Size

Alternatively, the investigator could increase her sample size, thereby increasing power.

How large an n does she need? The answer depends on what level of power she desires.

Suppose she wishes to set power at .80. From Appendix Power, for power 5 .80, and a 5

0.05, d must equal 2.80. Thus, we have d and can simply solve for n:

= 71.91

n = ad

d
b

2

= a2.80

0.33
b

2

= 8.482

d = d1n

H0

m1H0

= 1.65

d = d1n = 0.33125 = 0.33(5)

d =
105 2 100

15
= 0.33

m0 = 100m1 = 105

d = d1n1n
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Since clients generally come in whole lots, we will round off to 72. Thus, if the experi-

menter wants to have an 80% chance of rejecting when d 5 0.33 (i.e., when 5 105),

she will have to use the IQs for 72 randomly selected clients. Although this may be more

clients than she can test easily, the only alternative is to settle for a lower level of power.

You might wonder why we selected power 5 .80; with this degree of power, we still

run a 20% chance of making a Type II error. The answer lies in the notion of practicality.

Suppose, for example, that we had wanted power 5 .95. A few simple calculations will

show that this would require a sample of n 5 119. For power 5 .99, you would need

approximately 162 subjects. These may well be unreasonable sample sizes for this particu-

lar experimental situation, or for the resources of the experimenter. Remember that in-

creases in power are generally bought by increases in n and, at high levels of power, the

cost can be very high. If you are taking data from data tapes supplied by the Bureau of the

Census, that is quite different from studying teenage college graduates. A value of power

5 .80 makes a Type II error four times as likely as a Type I error, which some would take

as a reasonable reflection of their relative importance.

Noncentrality Parameters

Our statistic d is what most textbooks refer to as a noncentrality parameter. The concept

is relatively simple, and well worth considering. First, we know that

is distributed around zero regardless of the truth or falsity of any null hypothesis, as long
as m is the true mean of the distribution from which the Xs were sampled. If states that

(some specific value of m) and if is true, then

will also be distributed around zero. If is false and , however, then

will not be distributed around zero because in subtracting , we have been subtracting the

wrong population mean. In fact, the distribution will be centered at the point

This shift in the mean of the distribution from zero to d is referred to as the degree of
noncentrality, and d is the noncentrality parameter. (What is d when ?) The non-

centrality parameter is just one way of expressing how wrong the null hypothesis is.

The question of power becomes the question of how likely we are to find a value of the

noncentral (shifted) distribution that is greater than the critical value that t would have un-

der . In other words, even though larger-than-normal values of t are to be expected be-

cause is false, we will occasionally obtain small values by chance. The percentage of

these values that happen to lie between is b, the probability of a Type II error. As we

know, we can convert from b to power; power 5 1 2 b.

Cohen’s contribution can be seen as splitting the noncentrality parameter (d) into two

parts—sample size and effect size. One part (d) depends solely on parameters of the popu-

lations, whereas the other depends on sample size. Thus, Cohen has separated parametric

6t.025

H0

H0

m1 = m0

d =
m1 2 m0

s>1n

m0

t =
X 2 m0

s>1n

m Z m0H0

t =
X 2 m0

s>1n

H0m = m0

H0

t =
X 2 m
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considerations ( , , and s), about which we can do relatively little, from sample char-

acteristics (n), over which we have more control. Although this produces no basic change

in the underlying theory, it makes the concept easier to understand and use.

8.4 Power Calculations for Differences Between 
Two Independent Means

When we wish to test the difference between two independent means, the treatment of power

is very similar to our treatment of the case that we used for only one mean. In Section 8.3 we

obtained d by taking the difference between m under and m under and dividing by s. In

testing the difference between two independent means, we will do basically the same thing,

although this time we will work with mean differences. Thus, we want the difference between

the two population means ( ) under minus the difference ( ) under , 

divided by s. (Recall that we assume .) In all usual applications, however, 

( ) under is zero, so we can drop that term from our formula. Thus,

where the numerator refers to the difference to be expected under and the denominator

represents the standard deviation of the populations. You should recognize that this is the

same d that we saw in Chapter 7 where it was also labeled Cohen’s d, or sometimes

Hedges g. The only difference is that here it is expressed in terms of population means

rather than sample means.

In the case of two samples, we must distinguish between experiments involving equal

ns and those involving unequal ns. We will treat these two cases separately.

Equal Sample Sizes

Assume we wish to test the difference between two treatments and either expect that the

difference in population means will be approximately 5 points or else are interested only in

finding a difference of at least 5 points. Further assume that from past data we think that s

is approximately 10. Then

Thus, we are expecting a difference of one-half of a standard deviation between the two

means, what Cohen (1988) would call a moderate effect.

First we will investigate the power of an experiment with 25 observations in each of

two groups. We will define d in the two-sample case as

where n 5 the number of cases in any one sample (there are 2n cases in all). Thus,

From Appendix Power, by interpolation for d 5 1.77 with a two-tailed test at a 5 .05,

power 5 .43. Thus, if our investigator actually runs this experiment with 25 subjects,

 = 1.77
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and if her estimate of d is correct, then she has a probability of .43 of actually rejecting

if it is false to the extent she expects (and a probability of .57 of making a Type II

error).

We next turn the question around and ask how many subjects would be needed for

power 5 .80. From Appendix Power, this would require d 5 2.80.

n refers to the number of subjects per sample, so for power 5 .80, we need 63 subjects per

sample for a total of 126 subjects.

Unequal Sample Sizes

We just dealt with the case in which However, experiments often have two

samples of different sizes. This obviously presents difficulties when we try to solve for d,

since we need one value for n. What value can we use?

With reasonably large and nearly equal samples, a conservative approximation can be

obtained by letting n equal the smaller of and . This is not satisfactory, however, if the

sample sizes are small or if the two ns are quite different. For those cases we need a more

exact solution.

One seemingly reasonable (but incorrect) procedure would be to set n equal to the

arithmetic mean of and . This method would weight the two samples equally, how-

ever, when in fact we know that the variance of means is proportional not to n, but to 1/n.

The measure that takes this relationship into account is not the arithmetic mean but the har-

monic mean. The harmonic mean ( ) of k numbers ( ) is defined as

Thus for two samples sizes ( and ),

we can then use in our calculation of d.

In Chapter 7 we saw an example from Aronson et al. (1998) in which they showed that

they could produce a substantial decrement in the math scores of white males just by re-

minding them that Asian students tend to do better on math exams. This is an interesting
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difference, and I might have been tempted to use it in a research methods course that

I taught, dividing the students in the course into two groups and repeating Aronson’s study.

Of course, I would not be very happy if I tried out a demonstration experiment on my stu-

dents and found that it fell flat. I want to be sure that I have sufficient power to have a

decent probability of obtaining a statistically significant result in lab.

What Aronson actually found, which is trivially different from the sample data I gener-

ated in Chapter 7, were means of 9.58 and 6.55 for the Control and Threatened groups,

respectively. Their pooled standard deviation was approximately 3.10. We will assume that

Aronson’s estimates of the population means and standard deviation are essentially cor-

rect. (They almost certainly suffer from some random error, but they are the best guesses

that we have of those parameters.) This produces

My class has a lot of students, but only about 30 of them are males, and they are not

evenly distributed across the lab sections. Because of the way that I have chosen to run the

experiment, assume that I can expect that 18 males will be in the Control group and 12 in

the Threat group. Then we will calculate the effective sample size (the sample size to be

used in calculating d) as

We see that the effective sample size is less than the arithmetic mean of the two individual

sample sizes. In other words, this study has the same power as it would have had we run it

with 14.4 subjects per group for a total of 28.8 subjects. Or, to state it differently, with un-

equal sample sizes it takes 30 subjects to have the same power 28.8 subjects would have in

an experiment with equal sample sizes.

To continue,

For d 5 2.63, power 5 .75 at a 5 .05 (two-tailed).

In this case the power is a bit too low to inspire confidence that the study will work out

as a lab exercise is supposed to. I could take a chance and run the study, but the lab might

fail and then I’d have to stammer out some excuse in class and hope that people believed

that it “really should have worked.” I’m not comfortable with that.

An alternative would be to recruit some more students. I will use the 30 males in my

course, but I can also find another 20 in another course who are willing to participate. 

At the risk of teaching bad experimental design to my students by combining two different

classes (at least it gives me an excuse to mention that this could be a problem), I will add in

those students and expect to get sample sizes of 28 and 22.

These sample sizes would yield . Then

From Appendix Power we find that power now equals approximately .93, which is certainly

sufficient for our purposes.
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My sample sizes were unequal, but not seriously so. When we have quite unequal

sample sizes, and they are unavoidable, the smaller group should be as large as possible

relative to the larger group. You should never throw away subjects to make sample sizes

equal. This is just throwing away power.2

8.5 Power Calculations for Matched-Sample t

When we want to test the difference between two matched samples, the problem becomes

a bit more difficult and an additional parameter must be considered. For this reason, the

analysis of power for this case is frequently impractical. However, the general solution to

the problem illustrates an important principle of experimental design, and thus justifies

close examination.

With a matched-sample t test we define d as

where represents the expected difference in the means of the two populations of

observations (the expected mean of the difference scores). The problem arises because

is the standard deviation not of the populations of and , but of difference

scores drawn from these populations. Although we might be able to make an intelligent

guess at or , we probably have no idea about .

All is not lost, however; it is possible to calculate on the basis of a few assump-

tions. The variance sum law (discussed in Chapter 7, p. 204) gives the variance for a sum

or difference of two variables. Specifically,

If we make the general assumption of homogeneity of variance , for the

difference of two variables we have

where (rho) is the correlation in the population between and and can take on values

between 1 and 21. It is positive for almost all situations in which we are likely to want a

matched-sample t.
Assuming for the moment that we can estimate , the rest of the procedure is the same

as that for the one-sample t. We define

and

We then estimate as , and refer the value of d to the tables.

As an example, assume that I want to use the Aronson study of stereotype threat in

class, but this time I want to run it as a matched-sample design. I have 30 male subjects
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available, and I can first administer the test without saying anything about Asian students

typically performing better, and then I can readminister it in the next week’s lab with the

threatening instructions. (You might do well to consider how this study could be improved

to minimize carryover effects and other contaminants.) Let’s assume that we expect the

scores to go down in the threatening condition, but that because of the fact that the test was

previously given to these same people in the first week, the drop will be from 9.58 down to

only 7.55. Assume that the standard deviation will stay the same at 3.10. To solve for the

standard error of the difference between means we need the correlation between the two

sets of exam scores, but here we are in luck. Aronson’s math questions were taken from a

practice exam for the Graduate Record Exam, and the correlation we seek is estimated sim-

ply by the test-retest reliability of that exam. We have a pretty good idea that the reliability

of that exam will be somewhere around .92. Then

Notice that I have a smaller effect size than in my first lab exercise, because I tried to

be honest and estimate that the difference in means would be reduced because of the

experimental procedures. However, my power is far greater than it was in my original

example because of the added power of matched-sample designs.

Suppose, on the other hand, that we had used a less reliable test, for which 5 .40. We

will assume that s remains unchanged and that we are expecting a 2.03-unit difference

between the means. Then

We see that as drops, so does power. (It is still substantial in this example, but much

less than it was.) When 5 0, our two variables are not correlated and thus the matched-

sample case has been reduced to very nearly the independent-sample case. The important

point here is that for practical purposes the minimum power for the matched-sample case

occurs when 5 0 and we have independent samples. Thus, for all situations in which we

are even remotely likely to use matched samples (when we expect a positive correlation

between and ), the matched-sample design is more powerful than the corresponding

independent-groups design. This illustrates one of the main advantages of designs using

matched samples, and was my primary reason for taking you through these calculations.

Remember that we are using an approximation procedure to calculate power. Essen-

tially, we are assuming the sample sizes are sufficiently large that the t distribution is

closely approximated by z. If this is not the case, then we have to take account of the fact

that a matched-sample t has only one-half as many df as the corresponding independent-

sample t, and the power of the two designs will not be quite equal when  5 0. This is not

usually a serious problem.
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8.6 Power Calculations in More Complex Designs

In this chapter I have constrained the discussion largely to statistical procedures that we

have already covered, although I did sneak in the correlation coefficient to be discussed in

the next chapter. But there are many designs that are more complex than the ones discussed

here. In particular the one-way analysis of variance is an extension to the case of more than

two independent groups, and the factorial analysis of variance is a similar extension to the

case of more than one independent variable. In both of these situations we can apply rea-

sonably simple extensions of the calculational procedures we used with the t test. I will dis-

cuss these calculations in the appropriate chapters, but in many cases you would be wise to

use computer programs such as G*Power to make those calculations. The good thing is that

we have now covered most of the theoretical issues behind power calculations, and indeed

most of what will follow is just an extension of what we already know.

8.7 The Use of G*Power to Simplify Calculations

A program named G*Power has been available for several years, and they have recently come

out with a new version. The newer version is a bit more complicated to use, but it is excellent

and worth the effort. I urge you to download it and try. I have to admit that it isn’t always ob-

vious how to proceed—there are too many choices—but you can work things out if you take

an example to which you already know the answer (at least approximately) and reproduce it

with the program. (I’m the impatient type, so I just flail around trying different things until I

get the right answer. Reading the help files would be a much more sensible way to go.)

To illustrate the use of the software I will reproduce the example from Section 8.5 us-

ing unequal sample sizes. Figure 8.4 shows the opening screen from G*Power, though

yours may look slightly different when you first start. For the moment ignore the plot at

the top, which you probably won’t have anyway, and go to the boxes where you can select

a “Test Family” and a “Statistical test.” Select “t tests” as the test family and “Means: Dif-

ference between two independent means (two groups)” as the statistical test. Below that

select “Post hoc: Compute achieved power—given a, sample size, and effect size.” If I had

been writing this software I would not have used the phrase “Post hoc,” because it is not

necessarily reflective of what you are doing. (I discuss post hoc power in the next section.

This choice will actually calculate “a priori” power, which is the power you will have be-

fore the experiment if your estimates of means and standard deviation are correct and if

you use the sample sizes you enter.)

Now you need to specify that you want a two-tailed test, you need to enter the alpha

level you are working at (e.g., .05) and the sample sizes you plan to use. Next you need to

add the estimated effect size (d). If you have computed it by hand, you just type it in. If not,

you click on the button labeled “Determine 1” and a dialog box will open on the right. Just

enter the expected means and standard deviation and click “calculate and transfer to main

window.” Finally, go back to the main window and click on the “Calculate” button. The dis-

tributions at the top will miraculously appear. These are analogous to Figure 8.1. You will

also see that the program has calculated the noncentrality parameter (d), the critical value of

t that you would need given the degrees of freedom available, and finally the power, which

in our case is .716, which is a bit lower than I calculated as an approximation.

You can see how power increases with sample size and with the level of a by request-

ing an X-Y plot. I will let you work that out for yourself, but sample output is shown in

Figure 8.5. From this figure it is clear that high levels of power require large effects or large

samples. You could create your own plot showing how required sample size changes with

changes in effect size, but I will leave that up to you.
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8.8 Retrospective Power

In general the discussion above has focused on a priori power, which is the power that we

would calculate before the experiment is conducted. It is based on reasonable estimates of

means, variances, correlations, proportions, etc. that we believe represent the parameters

for our population or populations. This is what we generally think of when we consider

statistical power.

In recent years there has been an increased interest is what is often called retrospec-

tive (or post hoc) power. For our purposes retrospective power will be defined as power

that is calculated after an experiment has been completed, based on the results of that ex-

periment. (That is why I objected to the use of the phrase “post hoc power” in the G*Power

example—we were calculating power before the experiment was run.) For example, retro-

spective power asks the question “If the values of the population means and variances were

equal to the values found in this experiment, what would be the resulting power?”
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One reason why we might calculate retrospective power is to help in the design of

future research. Suppose that we have just completed an experiment and want to replicate

it, perhaps with a different sample size and a demographically different pool of partici-

pants. We can take the results that we just obtained, treat them as an accurate reflection of

the population means and standard deviations, and use those values to calculate the esti-

mated effect size. We can then use that effect size to make power estimates. This use of ret-

rospective power, which is, in effect, the a priori power of our next experiment, is relatively

non-controversial. Many statistical packages, including SAS and SPSS, will make these

calculations for you, and that is what I asked G*Power to do.

What is more controversial, however, is to use retrospective power calculations as an

explanation of the obtained results. A common suggestion in the literature claims that if

the study was not significant, but had high retrospective power, that result speaks to the

acceptance of the null hypothesis. This view hinges on the argument that if you had high

power, you would have been very likely to reject a false null, and thus nonsignificance

indicates that the null is either true or nearly so. That sounds pretty convincing, but as

Hoenig and Heisey (2001) point out, there is a false premise here. It is not possible to fail

to reject the null and yet have high retrospective power. In fact, a result with p exactly equal

to .05 will have a retrospective power of essentially .50, and that retrospective power will

decrease for p . .05. It is impossible to even create an example of a study that just barely

failed to reject the null hypothesis at a 5 .05 which has power of .80. It can’t happen!

The argument is sometimes made that retrospective power tells you more than you

can learn from the obtained p value. This argument is a derivative of the one in the previ-

ous paragraph. However, it is easy to show that for a given effect size and sample size,
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there is a 1:1 relationship between p and retrospective power. One can be derived from

the other. Thus retrospective power offers no additional information in terms of explain-

ing nonsignificant results.

As Hoenig and Heisey (2001) argue, rather than focus our energies on calculating

retrospective power to try to learn more about what our results have to reveal, we are bet-

ter off putting that effort into calculating confidence limits on the parameter(s) or the

effect size. If, for example, we had a t test on two independent groups with t (48) 5 1.90, 

p 5 .063, we would fail to reject the null hypothesis. When we calculate retrospective

power we find it to be .46. When we calculate the 95% confidence interval on 

we find 21.10 # # 39.1. The confidence interval tells us more about what we

are studying than does the fact that power is only .46. (Even had the difference been

slightly greater, and thus significant, the confidence interval shows that we still do not

have a very good idea of the magnitude of the difference between the population means.)

Retrospective power can be a useful tool when evaluating studies in the literature, as in

a meta-analysis, or planning future work. But retrospective power it not a useful tool for

explaining away our own non-significant results.

8.9 Writing Up the Results of a Power Analysis

We usually don’t say very much in a published study about the power of the experiment we

just ran. Perhaps that is a holdover from the fact that we didn’t even calculate power many

years ago. It is helpful, however, to add a few sentences to your Methods section that de-

scribes the power of your experiment. For example, after describing the procedures you

followed, you could say something like:

Based on the work of Jones and others (list references) we estimated that our mean dif-

ference would be approximately 8 points, with a standard deviation within each of the

groups of approximately 5. This would give us an estimated effect size of 8 11 5 .73.

We were aiming for a power estimate of .80, and to reach that level of power with our

estimated effect size, we used 30 participants in each of the two groups.
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Exercises

8.1 A large body of literature on the effect of peer pressure has shown that the mean influence

score for a scale of peer pressure is 520 with a standard deviation of 80. An investigator

would like to show that a minor change in conditions will produce scores with a mean of only

500, and he plans to run a t test to compare his sample mean with a population mean of 520.

a. What is the effect size in question?

b. What is the value of d if the size of his sample is 100?

c. What is the power of the test?

8.2 Diagram the situation described in Exercise 8.1 along the lines of Figure 8.1.

8.3 In Exercise 8.1 what sample sizes would be needed to raise power to .70, .80, and .90?
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8.4 A second investigator thinks that she can show that a quite different manipulation can raise

the mean influence score from 520 to 550.

a. What is the effect size in question?

b. What is the value of d if the size of her sample is 100?

c. What is the power of the test?

8.5 Diagram the situation described in Exercise 8.4 along the lines of Figure 8.1.

8.6 Assume that a third investigator ran both conditions described in Exercises 8.1 and 8.4, and

wanted to know the power of the combined experiment to find a difference between the two

experimental manipulations.

a. What is the effect size in question?

b. What is the value of d if the size of his sample is 50 for both groups?

c. What is the power of the test?

8.7 A physiological psychology laboratory has been studying avoidance behavior in rabbits for

several years and has published numerous papers on the topic. It is clear from this research

that the mean response latency for a particular task is 5.8 seconds with a standard deviation

of 2 seconds (based on many hundreds of rabbits). Now the investigators wish to induce le-

sions in certain areas in the rabbits’ amygdalae and then demonstrate poorer avoidance con-

ditioning in these animals (i.e., show that the rabbits will repeat a punished response

sooner). They expect latencies to decrease by about 1 second, and they plan to run a one-

sample t test (of ).

a. How many subjects do they need to have at least a 50:50 chance of success?

b. How many subjects do they need to have at least an 80:20 chance of success?

8.8 Suppose that the laboratory referred to in Exercise 8.7 decided not to run one group and

compare it against , but instead to run two groups (one with and one without le-

sions). They still expect the same degree of difference.

a. How many subjects do they need (overall) if they are to have power 5 .60?

b. How many subjects do they need (overall) if they are to have power 5 .90?

8.9 A research assistant ran the experiment described in Exercise 8.8 without first carrying out

any power calculations. He tried to run 20 subjects in each group, but he accidentally tipped

over a rack of cages and had to void 5 subjects in the experimental group. What is the power

of this experiment?

8.10 We have just conducted a study comparing cognitive development of low- and normal-

birthweight babies who have reached 1 year of age. Using a scale we devised, we found that

the sample means of the two groups were 25 and 30, respectively, with a pooled standard de-

viation of 8. Assume that we wish to replicate this experiment with 20 subjects in each group.

If we assume that the true means and standard deviations have been estimated exactly, what

is the a priori probability that we will find a significant difference in our replication?

8.11 Run the t test on the original data in Exercise 8.10. What, if anything, does your answer to

this question indicate about your answer to Exercise 8.10?

8.12 Two graduate students recently completed their dissertations. Each used a t test for two inde-

pendent groups. One found a significant t using 10 subjects per group. The other found a signif-

icant t of the same magnitude using 45 subjects per group. Which result impresses you more?

8.13 Draw a diagram (analogous to Figure 8.1) to defend your answer to Exercise 8.12.

8.14 Make up a simple two-group example to demonstrate that for a total of 30 subjects, power

increases as the sample sizes become more nearly equal.

8.15 A beleaguered Ph.D. candidate has the impression that he must find significant results if he

wants to defend his dissertation successfully. He wants to show a difference in social aware-

ness, as measured by his own scale, between a normal group and a group of ex-delinquents.

He has a problem, however. He has data to suggest that the normal group has a true mean of

38, and he has 50 of those subjects. He has access to 100 high-school graduates who have

m0 = 5.8

m0 = 5.8
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been classed as delinquent in the past. Or, he has access to 25 high-school dropouts who have

a history of delinquency. He suspects that the high-school graduates come from a population

with a mean of approximately 35, whereas the dropout group comes from a population with

a mean of approximately 30. He can use only one of these groups. Which should he use?

8.16 Use G*Power or similar software to reproduce the results found in Section 8.5.

8.17 Let’s extend Aronson’s study (discussed in Section 8.5) to include women (who, unfortu-

nately, often don’t have as strong an investment in their skills in mathematics). For women we

expect means of 8.5 and 8.0 for the Control and Threatened condition. Further assume that the

estimated standard deviation of 3.10 remains reasonable and that their sample size will be 25.

Calculate the power of this experiment to show an effect of stereotyped threat in women.

8.18 Assume that we want to test a null hypothesis about a single mean at a 5 .05, one-tailed.

Further assume that all necessary assumptions are met. Could there be a case in which we

would be more likely to reject a true than to reject a false one? (In other words, can

power ever be less than a?)

8.19 If s 5 15, n 5 25, and we are testing versus , what value of

the mean under would result in power being equal to the probability of a Type II error?

(Hint: Try sketching the two distributions; which areas are you trying to equate?)

Discussion Questions

8.20 Prentice and Miller (1992) presented an interesting argument that suggested that, while

most studies do their best to increase the effect size of whatever they are studying (e.g., by

maximizing the differences between groups), some research focuses on minimizing the

effect and still finding a difference. (For example, although it is well known that people fa-

vor members of their own group, it has been shown that even if you create groups on the ba-

sis of random assignment, the effect is still there.) Prentice and Miller then state, “In the

studies we have described, investigators have minimized the power of an operationalization

and, in so doing, have succeeded in demonstrating the power of the underlying process.”

a. Does this seem to you to be a fair statement of the situation? In other words, do you

agree that experimenters have run experiments with minimal power?

b. Does this approach seem reasonable for most studies in psychology?

c. Is it always important to find large effects? When would it be important to find even

quite small effects?

8.21 In the hypothetical study based on Aronson’s work on stereotype threat with two independ-

ent groups, I could have all male students in a given lab section take the test under the same

condition. Then male students in another lab could take the test under the other condition.

a. What is wrong with this approach?

b. What alternatives could you suggest?

c. There are many women in those labs, whom I have ignored. What do you think might

happen if I used them as well?

8.22 In the modification of Aronson’s study to use a matched-sample t test, I always gave the

Control condition first, followed by the Threat condition in the next week.

a. Why would this be a better approach than randomizing the order of conditions?

b. If I give exactly the same test each week, there should be some memory carrying over

from the first presentation. How might I get around this problem?

8.23 Why do you suppose that Exercises 8.21 and 8.22 belong in a statistics text?

8.24 Create an example in which a difference is just barely statistically significant at a 5 .05.

(Hint: Find the critical value for t, invent values for a
1

and a
2

and n
1

and n
2
, and then solve

for the required value of s.) Now calculate the retrospective power of this experiment.

H1

H1 : m0 . 100H0 : m0 = 100

H0
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IN CHAPTER 7 WE DEALT WITH TESTING HYPOTHESES concerning differences between sample

means. In this chapter we will begin examining questions concerning relationships between

variables. Although you should not make too much of the distinction between relationships

and differences (if treatments have different means, then means are related to treatments),

the distinction is useful in terms of the interests of the experimenter and the structure of the

experiment. When we are concerned with differences between means, the experiment usu-

ally consists of a few quantitative or qualitative levels of the independent variable (e.g.,

Treatment A and Treatment B) and the experimenter is interested in showing that the de-

pendent variable differs from one treatment to another. When we are concerned with rela-

tionships, however, the independent variable (X ) usually has many quantitative levels and

the experimenter is interested in showing that the dependent variable is some function of the

independent variable.

This chapter will deal with two interwoven topics: correlation and regression. Statisti-

cians commonly make a distinction between these two techniques. Although the distinction

is frequently not followed in practice, it is important enough to consider briefly. In problems

of simple correlation and regression, the data consist of two observations from each of N
subjects, one observation on each of the two variables under consideration. If we were inter-

ested in the correlation between running speed of mice in a maze (Y ) and number of trials to

reach some criterion (X) (both common measures of learning), we would obtain a running-

speed score and a trials-to-criterion score from each subject. Similarly, if we were interested

in the regression of running speed (Y) on the number of food pellets per reinforcement (X),

each subject would have scores corresponding to his speed and the number of pellets he

received. The difference between these two situations illustrates the statistical distinction

between correlation and regression. In both cases, Y (running speed) is a random variable,

beyond the experimenter’s control. We don’t know what the mouse’s running speed will be

until we carry out a trial and measure the speed. In the former case, X is also a random vari-

able, since the number of trials to criterion depends on how fast the animal learns, and this,

too, is beyond the control of the experimenter. Put another way, a replication of the experi-

ment would leave us with different values of both Y and X. In the food pellet example, how-

ever, X is a fixed variable. The number of pellets is determined by the experimenter (for

example, 0, 1, 2, or 3 pellets) and would remain constant across replications.

To most statisticians, the word regression is reserved for those situations in which the

value of X is fixed or specified by the experimenter before the data are collected. In these

situations, no sampling error is involved in X, and repeated replications of the experiment

will involve the same set of X values. The word correlation is used to describe the situation

in which both X and Y are random variables. In this case, the Xs, as well as the Ys, vary

from one replication to another and thus sampling error is involved in both variables. This

distinction is basically the distinction between what are called linear regression models

and bivariate normal models. We will consider the distinction between these two models

in more detail in Section 9.7.

The distinction between the two models, although appropriate on statistical grounds,

tends to break down in practice. We will see instances of situations in which regression

(rather than correlation) is the goal even when both variables are random. A more prag-

matic distinction relies on the interest of the experimenter. If the purpose of the research is

to allow prediction of Y on the basis of knowledge about X, we will speak of regression.

If, on the other hand, the purpose is merely to obtain a statistic expressing the degree of

relationship between the two variables, we will speak of correlation. Although it is possi-

ble to raise legitimate objections to this distinction, it has the advantage of describing the

different ways in which these two procedures are used in practice.

Having differentiated between correlation and regression, we will now proceed to treat

the two techniques together, since they are so closely related. The general problem then

becomes one of developing an equation to predict one variable from knowledge of the
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other (regression) and of obtaining a measure of the degree of this relationship (correla-

tion). The only restriction we will impose for the moment is that the relationship between

X and Y be linear. Curvilinear relationships will not be considered, although in Chapter 15

we will see how they can be handled by closely related procedures.

9.1 Scatterplot

When we collect measures on two variables for the purpose of examining the relationship

between these variables, one of the most useful techniques for gaining insight into this

relationship is a scatterplot (also called a scatter diagram). In a scatterplot, each experi-

mental subject in the study is represented by a point in two-dimensional space. The coordi-

nates of this point ( , ) are the individual’s (or object’s) scores on variables X and Y,

respectively. Examples of three such plots appear in Figure 9.1.
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In a scatterplot, the predictor variable is traditionally represented on the abscissa, or 

X-axis, and the criterion variable on the ordinate, or Y-axis. If the eventual purpose of the

study is to predict one variable from knowledge of the other, the distinction is obvious; the

criterion variable is the one to be predicted, whereas the predictor variable is the one from

which the prediction is made. If the problem is simply one of obtaining a correlation coef-

ficient, the distinction may be obvious (incidence of cancer would be dependent on amount

smoked rather than the reverse, and thus incidence would appear on the ordinate), or it may

not (neither running speed nor number of trials to criterion is obviously in a dependent

position relative to the other). Where the distinction is not obvious, it is irrelevant which

variable is labeled X and which Y.

Consider the three scatter diagrams in Figure 9.1. Figure 9.1a is plotted from data re-

ported by St. Leger, Cochrane, and Moore (1978) on the relationship between infant mor-

tality, adjusted for gross national product, and the number of physicians per 10,000

population.1 Notice the fascinating result that infant mortality increases with the number

of physicians. That is certainly an unexpected result, but it is almost certainly not due to

chance. (As you look at these data and read the rest of the chapter you might think about

possible explanations for this surprising result.)

The lines superimposed on Figures 9.1a–9.1c represent those straight lines that “best

fit the data.” How we determine that line will be the subject of much of this chapter. I have

included the lines in each of these figures because they help to clarify the relationships.

These lines are what we will call the regression lines of Y predicted on X (abbreviated “Y
on X”), and they represent our best prediction of for a given value of , for the ith sub-

ject or observation. Given any specified value of X, the corresponding height of the regres-

sion line represents our best prediction of Y (designated , and read “Y hat”). In other

words, we can draw a vertical line from to the regression line and then move horizon-

tally to the y-axis and read i.

The degree to which the points cluster around the regression line (in other words, the

degree to which the actual values of Y agree with the predicted values) is related to the

correlation (r) between X and Y. Correlation coefficients range between 1 and 21. For

Figure 9.1a, the points cluster very closely about the line, indicating that there is a strong

linear relationship between the two variables. If the points fell exactly on the line, the cor-

relation would be 11.00. As it is, the correlation is actually .81, which represents a high

degree of relationship for real variables in the behavioral sciences.

In Figure 9.1b I have plotted data on the relationship between life expectancy (for

males) and per capita expenditure on health care for 23 developed (mostly European) coun-

tries. These data are found in Cochrane, St. Leger, and Moore (1978). At a time when there

is considerable discussion nationally about the cost of health care, these data give us pause.

If we were to measure the health of a nation by life expectancy (admittedly not the only,

and certainly not the best, measure), it would appear that the total amount of money we

spend on health care bears no relationship to the resultant quality of health (assuming that

different countries apportion their expenditures in similar ways). (Several hundred thou-

sand dollars spent on transplanting an organ from a baboon into a 57-year-old male, as was

done a few years ago, may increase his life expectancy by a few years, but it is not going to

make a dent in the nation’s life expectancy. A similar amount of money spent on preven-

tion efforts with young children, however, may eventually have a very substantial effect—

hence the inclusion of this example in a text primarily aimed at psychologists.) The two
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1 Some people have asked how mortality can be negative. The answer is that this is the mortality rate adjusted for
gross national product. After adjustment the rate can be negative.
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countries with the longest life expectancy (Iceland and Japan) spend nearly the same

amount of money on health care as the country with the shortest life expectancy (Portugal).

The United States has the second highest rate of expenditure but ranks near the bottom in

life expectancy. Figure 9.1b represents a situation in which there is no apparent relation-

ship between the two variables under consideration. If there were absolutely no relation-

ship between the variables, the correlation would be 0.0. As it is, the correlation is only .14,

and even that can be shown not to be reliably different from 0.0.

Finally, Figure 9.1c presents data from an article in Newsweek (1991) on the relation-

ship between breast cancer and sunshine. For those of us who love the sun, it is encourag-

ing to find that there may be at least some benefit from additional sunlight. Notice that as

the amount of solar radiation increases, the incidence of deaths from breast cancer

decreases. (It has been suggested that perhaps the higher rate of breast cancer with

decreased sunlight is attributable to a Vitamin D deficiency.2) This is a good illustration of

a negative relationship, and the correlation here is 2.76.

It is important to note that the sign of the correlation coefficient has no meaning other

than to denote the direction of the relationship. Correlations of .75 and 2.75 signify ex-

actly the same degree of relationship. It is only the direction of that relationship that is dif-

ferent. Figures 9.1a and 9.1c illustrate this, because the two correlations are nearly the

same except for their signs (.81 versus 2.76).

9.2 The Relationship Between Stress and Health

Psychologists have long been interested in the relationship between stress and health, and

have accumulated evidence to show that there are very real negative effects of stress on

both the psychological and physical health of people. Wagner, Compas, and Howell (1988)

investigated the relationship between stress and mental health in first-year college students.

Using a scale they developed to measure the frequency, perceived importance, and desir-

ability of recent life events, they created a measure of negative events weighted by the re-

ported frequency and the respondent’s subjective estimate of the impact of each event. This

served as their measure of the subject’s perceived social and environmental stress. They

also asked students to complete the Hopkins Symptom Checklist, assessing the presence or

absence of 57 psychological symptoms. The stem-and-leaf displays and Q-Q plots for the

stress and symptom measures are shown in Table 9.1.

Before we consider the relationship between these variables, we need to study the vari-

ables individually. The stem-and-leaf display for Stress shows that the distribution is uni-

modal and only slightly positively skewed. Except for a few extreme values, there is nothing

about that variable that should disturb us. However, the distribution for Symptoms (not

shown) was decidedly skewed. Because Symptoms is on an arbitrary scale anyway, there is

nothing to lose by taking a log transformation. The log
e

of Symptoms3 will pull in the upper

end of the scale more than the lower, and will tend to make the distribution more normal.

We will label this new variable lnSymptoms because most work in mathematics and statis-

tics uses “ln” to denote log
e
. The Q-Q plots in Table 9.2 illustrate that both variables are

close to normally distributed. Note that there is a fair amount of variability in each variable.

This variability is important, because if we want to show that different stress scores are associ-

ated with differences in symptoms, it is important to have these differences in the first place.
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2 A recent study (Lappe, Davies, Travers-Gustafson, and Heaney (2006) has shown a relationship between
Vitamin D levels and lower rates of several types of cancer.
3 We can use logs to any base, but work in statistics generally uses the natural logs, which are logs to the base e.
The choice of base will have no important effect on our results.
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Table 9.1 Description of data on the relationship between stress and mental health

LnSymptoms
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9.3 The Covariance

The correlation coefficient we seek to compute on the data4 in Table 9.2 is itself based on a

statistic called the covariance (cov
XY

or s
XY

). The covariance is basically a number that

reflects the degree to which two variables vary together.

4 A copy of the complete data set is available on this book’s Web site in the file named Table 9.1.dat.

covariance

(cov
XY

or s
XY

)



To define the covariance mathematically, we can write

From this equation it is apparent that the covariance is similar in form to the variance.

If we changed all the Ys in the equation to Xs, we would have ; if we changed the Xs to

Ys, we would have .

For the data on Stress and lnSymptoms we would expect that high stress scores will be

paired with high symptom scores. Thus, for a stressed participant with many problems,

both (X 2 ) and (Y 2 ) will be positive and their product will be positive. For a partici-

pant experiencing little stress and few problems, both (X 2 ) and (Y 2 ) will be nega-

tive, but their product will again be positive. Thus, the sum of (X 2 )(Y 2 ) will be large

and positive, giving us a large positive covariance.

The reverse would be expected in the case of a strong negative relationship. Here, large

positive values of (X 2 ) most likely will be paired with large negative values of (Y 2 ),

and vice versa. Thus, the sum of products of the deviations will be large and negative, indi-

cating a strong negative relationship.

Finally, consider a situation in which there is no relationship between X and Y. In this

case, a positive value of (X 2 ) will sometimes be paired with a positive value and some-

times with a negative value of (Y 2 ). The result is that the products of the deviations will

be positive about half of the time and negative about half of the time, producing a near-zero

sum and indicating no relationship between the variables.

For a given set of data, it is possible to show that will be at its positive maximum

whenever X and Y are perfectly positively correlated (r 5 1.00), and at its negative maxi-

mum whenever they are perfectly negatively correlated (r 5 21.00). When the two variables

are perfectly uncorrelated (r 5 0.00) will be zero.covXY

covXY

Y
X

YX

YX
YX

YX

s2
Y

s2
X

covXY =
g(X 2 X )(Y 2 Y )

N 2 1
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Table 9.2 Data on stress and symptoms for 10 representative

participants

Participant Stress (X ) Symptoms (Y )

1 30 4.60

2 27 4.54

3 9 4.38

4 20 4.25

5 3 4.61

6 15 4.69

7 5 4.13

8 10 4.39

9 23 4.30

10 34 4.80

o o o

N = 107

gXY = 10353.66

sY = 0.202sX = 12.492

Y = 4.483X = 21.290

gY2 = 2154.635gX2 = 65,038

gY = 479.668gX = 2278



For computational purposes, a simple expression for the covariance is given by

For the full data set represented in abbreviated form in Table 9.2, the covariance is

9.4 The Pearson Product-Moment 
Correlation Coefficient (r)

What we said about the covariance might suggest that we could use it as a measure of the

degree of relationship between two variables. An immediate difficulty arises, however, be-

cause the absolute value of is also a function of the standard deviations of X and Y.

Thus, a value of , for example, might reflect a high degree of correlation

when the standard deviations are small, but a low degree of correlation when the standard

deviations are high. To resolve this difficulty, we divide the covariance by the size of the

standard deviations and make this our estimate of correlation. Thus, we define

Since the maximum value of can be shown to be , it follows that the limits

on r are One interpretation of r, then, is that it is a measure of the degree to which

the covariance approaches its maximum.

From Table 9.2 and subsequent calculations, we know that and ,

and Then the correlation between X and Y is given by

This coefficient must be interpreted cautiously; do not attribute meaning to it that it

does not possess. Specifically, r 5 .53 should not be interpreted to mean that there is 53%

of a relationship (whatever that might mean) between stress and symptoms. The correla-

tion coefficient is simply a point on the scale between 21 and 1, and the closer it is to ei-

ther of those limits, the stronger is the relationship between the two variables. For a more

specific interpretation, we can speak in terms of , which will be discussed shortly. It is

important to emphasize again that the sign of the correlation merely reflects the direction

of the relationship and, possibly, the arbitrary nature of the scale. Changing a variable from

“number of items correct” to “number of items incorrect” would reverse the sign of a cor-

relation, but it would have no effect on its absolute value.

Adjusted r

Although the correlation we have just computed is the one we normally report, it is not an

unbiased estimate of the correlation coefficient in the population, denoted (r) rho. To

see why this would be the case, imagine two randomly selected pairs of points—for example,

r 2

r =
1.336

(12.290)(0.202)
= .529

r =
covXY

sXsY

covXY = 1.336.

sY = 0.202sX = 12.492

61.00.

6sXsYcovXY

r =
covXY

sXsY

covXY = 1.336

covXY

covXY =

10353.66 2
(2278)(479.668)

107

106
=

10353.66 2 10211.997

106
= 1.336

covXY =
aXY 2

gXgY

N

N 2 1
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(23, 18) and (40, 66). (I pulled those numbers out of the air.) If you plot these points and fit

a line to them, the line will fit perfectly, because, as you most likely learned in elementary

school, two points determine a straight line. Since the line fits perfectly, the correlation will

be 1.00, even though the points were chosen at random. Clearly, that correlation of 1.00

does not mean that the correlation in the population from which those points were drawn is

1.00 or anywhere near it. When the number of observations is small, the sample correlation

will be a biased estimate of the population correlation coefficient. To correct for this we

can compute what is known as the adjusted correlation coefficient (r
adj

):

This is a relatively unbiased estimate of the population correlation coefficient.

In the example we have been using, the sample size is reasonably large (N 5 107).

Therefore we would not expect a great difference between r and .

which is very close to r 5 .529. This agreement will not be the case, however, for very

small samples.

When we discuss multiple regression, which involves multiple predictors of Y, in

Chapter 15, we will see that this equation for the adjusted correlation will continue to hold.

The only difference will be that the denominator will be N 2 p 2 1, where p stands for the

number of predictors. (That is where the N 2 2 came from in this equation.)

We could draw a parallel between the adjusted r and the way we calculate a sample

variance. As I explained earlier, in calculating the variance we divide the sum of squared

deviations by N – 1 to create an unbiased estimate of the population variance. That is com-

parable to what we do when we compute an adjusted r. The odd thing is that no one would

seriously consider reporting anything but the unbiased estimate of the population vari-

ance, whereas we think nothing of reporting a biased estimate of the population correla-

tion coefficient. I don’t know why we behave inconsistently like that—we just do. The

only reason I even discuss the adjusted value is that most computer software presents both

statistics, and students are likely to wonder about the difference and which one they

should care about.

9.5 The Regression Line

We have just seen that there is a reasonable degree of positive relationship between stress

and psychological symptoms (r 5 .529). We can obtain a better idea of what this relation-

ship is by looking at a scatterplot of the two variables and the regression line for predict-

ing symptoms (Y ) on the basis of stress (X ). The scatterplot is shown in Figure 9.2, where

the best-fitting line for predicting Y on the basis of X has been superimposed. We will see

shortly where this line came from, but notice first the way in which the log of symptom

scores increase linearly with increases in stress scores. Our correlation coefficient told us

that such a relationship existed, but it is easier to appreciate just what it means when you

see it presented graphically. Notice also that the degree of scatter of points about the

regression line remains about the same as you move from low values of stress to high val-

ues, although, with a correlation of approximately .50, the scatter is fairly wide. We will

discuss scatter in more detail when we consider the assumptions on which our procedures

are based.

radj = B1 2
(1 2 .5292)(106)

105
= .522

radj

radj = B1 2
(1 2 r2)(N 2 1)

N 2 2
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As you may remember from high school, the equation of a straight line is an equation

of the form Y 5 bX 1 a. For our purposes, we will write the equation as

where

5 the predicted value of Y
b 5 the slope of the regression line (the amount of difference in associated with a

one-unit difference in X)

a 5 the intercept (the value of when X 5 0)

X 5 the value of the predictor variable

Our task will be to solve for those values of a and b that will produce the best-fitting lin-

ear function. In other words, we want to use our existing data to solve for the values of a and

b such that the regression line (the values of for different values of X) will come as close

as possible to the actual obtained values of Y. But how are we to define the phrase “best-

fitting”? A logical way would be in terms of errors of prediction—that is, in terms of the 

(Y 2 ) deviations. Since is the value of the symptoms variable (lnSymptoms) that our

equation would predict for a given level of stress, and Y is a value that we actually obtained, 

(Y 2 ) is the error of prediction, usually called the residual. We want to find the line (the

set of s) that minimizes such errors. We cannot just minimize the sum of the errors, how-

ever, because for an infinite variety of lines—any line that goes through the point ( )—

that sum will always be zero. (We will overshoot some and undershoot others.) Instead, we

will look for that line that minimizes the sum of the squared errors—that minimizes

. (Note that I said much the same thing in Chapter 2 when I was discussing the

variance. There I was discussing deviations from the mean, and here I am discussing devia-

tions from the regression line—sort of a floating or changing mean. These two concepts—

errors of prediction and variance—have much in common, as we shall see.)5

The optimal values of a and b can be obtained by solving for those values of a and b
that minimize . The solution is not difficult, and those who wish can find it ing(Y 2 YN )2

g(Y 2 YN )2

X, Y
YN
YN

YNYN

YN

YN

YN
Y
N

Y
N
=  bX 1  a

YN = 0.009 Stress 1 4.300
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Figure 9.2 Scatterplot of log(symptoms) as a function of stress

5 For those who are interested, Rousseeuw and Leroy (1987) present a good discussion of alternative criteria that
could be minimized, often to good advantage.
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earlier editions of this book or in Draper and Smith (1981, p. 13). The solution to the problem

yields what are often called the normal equations:

We now have equations for a and b6 that will minimize . To indicate that our

solution was designed to minimize errors in predicting Y from X (rather than the other way

around), the constants are sometimes denoted and . When no confusion would

arise, the subscripts are usually omitted. (When your purpose is to predict X on the basis of

Y [i.e., X on Y ], then you can simply reverse X and Y in the previous equations.) 

As an example of the calculation of regression coefficients, consider the data in Table 9.2.

From that table we know that and We also know that

Thus,

We have already seen the scatter diagram with the regression line for Y on X superimposed

in Figure 9.2. This is the equation of that line.7

A word about actually plotting the regression line is in order here. To plot the line, you

can simply take any two values of X (preferably at opposite ends of the scale), calculate 

for each, mark these coordinates on the figure, and connect them with a straight line. For

our data, we have

When 

and when 

The line then passes through the points (X 5 0, Y 5 4.300) and (X 5 50, Y 5 4.730), as

shown in Figure 9.2. The regression line will also pass through the points (0, a) and ( ),

which provides a quick check on accuracy.

If you calculate both regression lines (Y on X and X on Y), it will be apparent that the

two are not coincident. They do intersect at the point ( ), but they have different slopes.

The fact that they are different lines reflects the fact that they were designed for different

purposes—one minimizes and the other minimizes . They both go

through the point ( , ) because a person who is average on one variable would be ex-

pected to be average on the other, but only when the correlation between the two variables

is 61.00 will the lines be coincident.

YX
g(X 2 XN )2g(Y 2 YN )2

X, Y

X, Y

YNi = (0.0086)(50) 1 4.300 = 4.730

Xi = 50,

YNi = (0.0086)(0) 1 4.300 = 4.300

Xi = 0,

YNi = (0.0086)(Xi) 1 4.300

YN

YN = bX 1 a = (0.0086)(X) 1 4.300

a = Y 2 bX = 4.483 2 (0.0086)(21.290) = 4.300

b =
covXY

s2
X

=
1.336

12.4922
= 0.0086

covXY = 1.336.

sX = 12.492.X = 21.290, Y = 4.483,

bY #XaY #X

g(Y 2 YN )2

b =
covXY

s2
X

a = Y 2 bX
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6 An interesting alternative formula for b can be written as . This shows explicitly the relationship be-
tween the correlation coefficient and the slope of the regression line. Note that when , b will equal r. (This
will happen when both variables have a standard deviation of 1, which occurs when the variables are standardized.)
7 An excellent Java applet that allows you to enter individual data points and see their effect on the regression line
is available at http://www.math.csusb.edu/faculty/stanton/m262/regress/regress.html.
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Interpretations of Regression

In certain situations the regression line is useful in its own right. For example, a college

admissions officer might be interested in an equation for predicting college performance

on the basis of high-school grade point average (although she would most likely want to

include multiple predictors in ways to be discussed in Chapter 15). Similarly, a neuropsy-

chologist might be interested in predicting a patient’s response rate based on one or more

indicator variables. If the actual rate is well below expectation, we might start to worry

about the patient’s health (See Crawford, Garthwaite, Howell, & Venneri, 2003). But these

examples are somewhat unusual. In most applications of regression in psychology, we are

not particularly interested in making an actual prediction. Although we might be interested

in knowing the relationship between family income and educational achievement, it is un-

likely that we would take any particular child’s family-income measure and use that to

predict his educational achievement. We are usually much more interested in general prin-

ciples than in individual predictions. A regression equation, however, can in fact tell us

something meaningful about these general principles, even though we may never actually

use it to form a prediction for a specific case. (You will see a dramatic example of this later

in the chapter.)

Intercept

We have defined the intercept as that value of when X equals zero. As such, it has mean-

ing in some situations and not in others, primarily depending on whether or not X 5 0 has

meaning and is near or within the range of values of X used to derive the estimate of the

intercept. If, for example, we took a group of overweight people and looked at the relation-

ship between self-esteem (Y) and weight loss (X) (assuming that it is linear), the intercept

would tell us what level of self-esteem to expect for an individual who lost 0 pounds.

Often, however, there is no meaningful interpretation of the intercept other than a mathe-

matical one. If we are looking at the relationship between self-esteem (Y) and actual weight

(X) for adults, it is obviously foolish to ask what someone’s self-esteem would be if he

weighed 0 pounds. The intercept would appear to tell us this, but it represents such an

extreme extrapolation from available data as to be meaningless. (In this case, a nonzero in-

tercept would suggest a lack of linearity over the wider range of weight from 0 to 300

pounds, but we probably are not interested in nonlinearity in the extremes anyway.) In

many situations it is useful to “center” your data at the mean by subtracting the mean of X
from every X value. If you do this, an X value of 0 now represents the mean X and the in-

tercept is now the value predicted for Y when X is at its mean.

Slope

We have defined the slope as the change in for a one-unit change in X. As such it is a

measure of the predicted rate of change in Y. By definition, then, the slope is often a mean-

ingful measure. If we are looking at the regression of income on years of schooling, the

slope will tell us how much of a difference in income would be associated with each addi-

tional year of school. Similarly, if an engineer knows that the slope relating fuel economy

in miles per gallon (mpg) to weight of the automobile is 0.01, and if she can assume a

causal relationship between mpg and weight, then she knows that for every pound that she

can reduce the weight of the car she will increase its fuel economy by 0.01 mpg. Thus, if

the manufacturer replaces a 30-pound spare tire with one of those annoying 20-pound

temporary ones, the car will gain 0.1 mpg.

YN

YN
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Standardized Regression Coefficients

Although we rarely work with standardized data (data that have been transformed so as to

have a mean of zero and a standard deviation of one on each variable), it is worth consider-

ing what b would represent if the data for each variable were standardized separately. In

that case, a difference of one unit in X or Y would represent a difference of one standard

deviation. Thus, if the slope were 0.75, for standardized data, we would be able to say that

a one standard deviation increase in X will be reflected in three-quarters of a standard devi-

ation increase in . When speaking of the slope coefficient for standardized data, we often

refer to the standardized regression coefficient as b (beta) to differentiate it from the co-

efficient for nonstandardized data (b). We will return to the idea of standardized variables

when we discuss multiple regression in Chapter 15. (What would the intercept be if the

variables were standardized?)

Correlation and Beta

What we have just seen with respect to the slope for standardized variables is directly

applicable to the correlation coefficient. Recall that r is defined as , whereas b is

defined as . If the data are standardized, and the slope and the

correlation coefficient will be equal. Thus, one interpretation of the correlation coefficient

is that it is equal to what the slope would be if the variables were standardized. That sug-

gests that a derivative interpretation of r 5 .80, for example, is that one standard deviation

difference in X is associated on the average with an eight-tenths of a standard deviation dif-

ference in Y. In some situations such an interpretation can be meaningfully applied.

A Note of Caution

What has just been said about the interpretation of b and r must be tempered with a bit of

caution. To say that a one-unit difference in family income is associated with 0.75 units dif-

ference in academic achievement is not to be interpreted to mean that raising family income

for Mary Smith will automatically raise her academic achievement. In other words, we are

not speaking about cause and effect. We can say that people who score higher on the income

variable also score higher on the achievement variable without in any way implying causa-

tion or suggesting what would happen to a given individual if her family income were to in-

crease. Family income is associated (in a correlational sense) with a host of other variables

(e.g., attitudes toward education, number of books in the home, access to a variety of envi-

ronments) and there is no reason to expect all of these to change merely because income

changes. Those who argue that eradicating poverty will lead to a wide variety of changes in

people’s lives often fall into such a cause-and-effect trap. Eradicating poverty is certainly a

worthwhile and important goal, one which I strongly support, but the correlation between

income and educational achievement may be totally irrelevant to the issue.

9.6 Other Ways of Fitting a Line to Data

While it is common to fit straight lines to data in a scatter plot, and while that is a very use-

ful way to try to understand what is going on, there are other alternatives. Suppose that the

relationship is somewhat curvilinear—perhaps it increases nicely for a while and then lev-

els off. In this situation a curved line might best fit the data. There are a number of ways of

fitting lines to data and many of them fall under the heading of scatterplot smoothers. The

different smoothing techniques are often found under headings like splines and loess, and

sX = sY = s2
X = 1covXY>s2

X

covXY>sXsY

YN
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are discussed in many more specialized texts. In general, smoothing takes place by the

averaging of Y values close to the target value of the predictor. In other words we move

across the graph computing lines as we go (Everitt, 2005). An example of a smoothed plot

is shown in Figure 9.3. This plot was produced using R, but similar plots can be produced

using SPSS and clicking on the Fit panel as you define the scatterplot you want. The ad-

vantage of using smoothed lines is that it gives you a better idea about the overall form of

the relationship. Given the amount of variability that we see in our data, it is difficult to tell

whether the smoothed plot fits significantly better than a straight line, but it is reasonable

to assume that symptoms would increase with the level of stress, but that this increase

would start to level off at some point.

9.7 The Accuracy of Prediction

The fact that we can fit a regression line to a set of data does not mean that our problems

are solved. On the contrary, they have only begun. The important point is not whether a

straight line can be drawn through the data (you can always do that) but whether that line

represents a reasonable fit to the data—in other words, whether our effort was worthwhile.

In beginning a discussion of errors of prediction, it is instructive to consider the situa-

tion in which we wish to predict Y without any knowledge of the value of X.

The Standard Deviation as a Measure of Error

As mentioned earlier, the data plotted in Figure 9.2 represent the log of the number of

symptoms shown by students (Y ) as a function of the number of stressful life events (X ).

Assume that you are now given the task of predicting the number of symptoms that will be

shown by a particular individual, but that you have no knowledge of the number of stress-

ful life events he or she has experienced. Your best prediction in this case would be the

mean value of lnSymptoms8 ( ) (averaged across all subjects), and the error associatedY
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Figure 9.3 A scatterplot of lnSymptoms as a function of Stress with a smoothed

regression line superimposed

8 Rather than constantly repeating “log of symptoms,” I will refer to symptoms with the understanding that I am
referring to the log transformed values.



with your prediction would be the standard deviation of Y (i.e., ), since your prediction is

the mean and deals with deviations around the mean. We know that is defined as

or, in terms of the variance,

The numerator is the sum of squared deviations from (the point you would have pre-

dicted in this example) and is what we will refer to as the sum of squares of Y (SS
Y
). The

denominator is simply the degrees of freedom. Thus, we can write

The Standard Error of Estimate

Now suppose we wish to make a prediction about symptoms for a student who has a speci-

fied number of stressful life events. If we had an infinitely large sample of data, our predic-

tion for symptoms would be the mean of those values of symptoms (Y) that were obtained

by all students who had that particular value of stress. In other words, it would be a condi-

tional mean—conditioned on that value of X. We do not have an infinite sample, however,

so we will use the regression line. (If all of the assumptions that we will discuss shortly are

met, the expected value of the Y scores associated with each specific value of X would lie

on the regression line.) In our case, we know the relevant value of X and the regression

equation, and our best prediction would be . In line with our previous measure of error

(the standard deviation), the error associated with the present prediction will again be a

function of the deviations of Y about the predicted point, but in this case the predicted point

is rather than . Specifically, a measure of error can now be defined as

and again the sum of squared deviations is taken about the prediction ( ). The sum of

squared deviations about is often denoted because it represents variability that

remains after we use X to predict Y.9 The statistic is called the standard error of

estimate. It is denoted as to indicate that it is the standard deviation of Y predicted

from X. It is the most common (although not always the best) measure of the error of pre-

diction. Its square, , is called the residual variance or error variance, and it can be

shown to be an unbiased estimate of the corresponding parameter ( ) in the population. We

have N 2 2 df because we lost two degrees of freedom in estimating our regression line.

(Both a and b were estimated from sample data.)

I have suggested that if we had an infinite number of observations, our prediction for a

given value of X would be the mean of the Ys associated with that value of X. This idea

helps us appreciate what is. If we had the infinite sample and calculated the variances

for the Ys at each value of X, the average of those variances would be the residual variance,

and its square root would be . The set of Ys corresponding to a specific X is called asY #X

sY #X

s2
Y #X

s2
Y #X

sY #X

sY #X

SSresidualYN
YN

SY #X = Da (Y 2 YN )2

N 2 2
= BSSresidual

df

YYN

YN

s2
Y =

SSY

df

Y

s2
Y =
g(Y 2 Y)2

N 2 1

sY = Bg(Y 2 Y)2

N 2 1

sYsY

sY
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conditional distribution of Y because it is the distribution of Y scores for those cases that

meet a certain condition with respect to X. We say that these standard deviations are condi-

tional on X because we calculate them from Y values corresponding to specific values of X.

On the other hand, our usual standard deviation of is not conditional on X because we

calculate it using all values of Y, regardless of their corresponding X values.

One way to obtain the standard error of estimate would be to calculate for each ob-

servation and then to find directly, as has been done in Table 9.3. Finding the standard

error using this technique is hardly the most enjoyable way to spend a winter evening. For-

tunately, a much simpler procedure exists. It not only provides a way of obtaining the stan-

dard error of estimate, but also leads directly into even more important matters.

r2 and the Standard Error of Estimate

In much of what follows, we will abandon the term variance in favor of sums of squares

(SS). As you should recall, a variance is a sum of squared deviations from the mean (gener-

ally known as a sum of squares) divided by the degrees of freedom. The problem with vari-

ances is that they are not additive unless they are based on the same df. Sums of squares are

additive regardless of the degrees of freedom and thus are much easier measures to use.10

We earlier defined the residual or error variance as

With considerable algebraic manipulation, it is possible to show

sY #X = sYB(1 2 r2)
N 2 1

N 2 2

s2
Y #X =

a (Y 2 YN )2

N 2 2
=

SSresidual

N 2 2

sY #X

YN

Y(sY)
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Table 9.3 Direct calculation of the standard error of estimate

Subject Stress (X) lnSymptoms (Y ) Y – 

1 30 4.60 4.557 0.038

2 27 4.54 4.532 0.012

3 9 4.38 4.378 0.004

4 20 4.25 4.472 20.223

5 3 4.61 4.326 0.279

6 15 4.69 4.429 0.262

7 5 4.13 4.343 20.216

8 10 4.39 4.386 0.008

9 23 4.30 4.498 20.193

10 34 4.80 4.592 0.204

o o o o o

sY #X = 10.030 = 0.173s2
Y #X =

g(Y 2 YN)2

N 2 2
=

3.128

105
= 0.030

g(Y 2 YN )2 = 3.128

g(Y 2 YN ) = 0

YNYN

10 Later in the book when I wish to speak about a variance-type measure but do not want to specify whether it is a
variance, a sum of squares, or something similar, I will use the vague, wishy-washy term variation.

conditional

distribution



For large samples the fraction (N 2 1) (N 2 2) is essentially 1, and we can thus write

the equation as it is often found in statistics texts:

or

Keep in mind, however, that for small samples these equations are only an approxima-

tion and will underestimate the error variance by the fraction (N 2 1) (N 2 2). For

samples of any size, however, . This particular formula is going to

play a role throughout the rest of the book, especially in Chapters 15 and 16.

Errors of Prediction as a Function of r

Now that we have obtained an expression for the standard error of estimate in terms of r, it

is instructive to consider how this error decreases as r increases. In Table 9.4, we see the

magnitude of the standard error relative to the standard deviation of Y (the error to be ex-

pected when X is unknown) for selected values of r.

The values in Table 9.4 are somewhat sobering in their implications. With a correlation

of .20, the standard error of our estimate is fully 98% of what it would be if X were un-

known. This means that if the correlation is .20, using as our prediction rather than 

(i.e., taking X into account) reduces the standard error by only 2%. Even more discourag-

ing is that if r is .50, as it is in our example, the standard error of estimate is still 87% of

the standard deviation. To reduce our error to one-half of what it would be without knowl-

edge of X requires a correlation of .866, and even a correlation of .95 reduces the error by

only about two-thirds. All of this is not to say that there is nothing to be gained by using a

regression equation as the basis of prediction, only that the predictions should be inter-

preted with a certain degree of caution. All is not lost, however, because it is often the kinds

of relationships we see, rather than their absolute magnitudes, that are of interest to us.

r2 as a Measure of Predictable Variability

From the preceding equation expressing residual error in terms of , it is possible to derive

an extremely important interpretation of the correlation coefficient. We have already seen that

Expanding and rearranging, we have

r2 =
SSY 2 SSresidual

SSY

SSresidual = SSY 2 SSY(r2)

SSresidual = SSY(1 2 r2)

r2

YYN

SSresidual = SSY(1 2 r2)

>s2
Y #X

sY #X = sY3(1 2 r2)

s2
Y #X = s2

Y(1 2 r2)

>
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Table 9.4 The standard error of estimate as a function of r

r s
Y X

r s
Y X

.00 sY .60 0.800sY

.10 0.995sY .70 0.714sY

.20 0.980sY .80 0.600sY

.30 0.954sY .866 0.500sY

.40 0.917sY .90 0.436sY

.50 0.866sY .95 0.312sY

##



In this equation, SSY, which you know to be equal to , is the sum of squares of Y
and represents the totals of

1. The part of the sum of squares of Y that is related to 

2. The part of the sum of squares of Y that is independent of X [i.e., ]

In the context of our example, we are talking about that part of the number of symptoms

people exhibited that is related to how many stressful life events they had experienced, and

that part that is related to other things. The quantity is the sum of squares of Y that is

independent of X and is a measure of the amount of error remaining even after we use X to

predict Y. These concepts can be made clearer with a second example.

Suppose we were interested in studying the relationship between amount of cigarette

smoking (X ) and age at death (Y ). As we watch people die over time, we notice several

things. First, we see that not all die at precisely the same age. There is variability in age at

death regardless of smoking behavior, and this variability is measured by

. We also notice that some people smoke more than others. This variabil-

ity in smoking regardless of age at death is measured by . We further

find that cigarette smokers tend to die earlier than nonsmokers, and heavy smokers earlier

than light smokers. Thus, we write a regression equation to predict Y from X. Since people

differ in their smoking behavior, they will also differ in their predicted life expectancy ( ),

and we will label this variability This last measure is variability in Y
that is directly attributable to variability in X, since different values of arise from differ-

ent values of X and the same values of arise from the same value of X—that is, does

not vary unless X varies.

We have one last source of variability: the variability in the life expectancy of those

people who smoke exactly the same amount. This is measured by and is the vari-

ability in Y that cannot be explained by the variability in X (since these people do not differ

in the amount they smoke). These several sources of variability (sums of squares) are sum-

marized in Table 9.5.

If we considered the absurd extreme in which all of the nonsmokers die at exactly age

72 and all of the smokers smoke precisely the same amount and die at exactly age 68, then

all of the variability in life expectancy is directly predictable from variability in smoking

behavior. If you smoke you will die at 68, and if you don’t you will die at 72. Here

, and 

As a more realistic example, assume smokers tend to die earlier than nonsmokers, but

within each group there is a certain amount of variability in life expectancy. This is a situa-

tion in which some of is attributable to smoking ( ) and some is not ( ).

What we want to be able to do is to specify what percentage of the overall variability in

SSresidualSSYNSSY

SSresidual = 0.SSYN = SSY

SSresidual

YNYN
YN

SSYN = g(YN 2 Y )2.
YN

SSX = g(X 2 X )2
SSY = g(Y 2 Y )2

SSresidual

SSresidual

X 3i.e., SSY(r2)4

g(Y 2 Y)2
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Table 9.5 Sources of variance in regression for the study of smoking and life

expectancy

SSX 5 variability in amount smoked 5

SSY 5 variability in life expectancy 5

5 variability in life expectancy directly attributable to variability in 

smoking behavior 5

SS
residual

5 variability in life expectancy that cannot be attributed to variability in 

smoking behavior 5 g(Y 2 YN )2 = SSY 2 SSYN

g (YN 2 Y )2
SSYN

g(Y 2 Y )2
g(X 2 X )2



life expectancy is attributable to variability in smoking behavior. In other words, we want a

measure that represents

As we have seen, that measure is r2. In other words,

This interpretation of r2 is extremely useful. If, for example, the correlation between

amount smoked and life expectancy were an unrealistically high .80, we could say that

of the variability in life expectancy is directly predictable from the variability in

smoking behavior. (Obviously, this is an outrageous exaggeration of the real world.) If the

correlation were a more likely r 5 .10, we would say that of the variability in life

expectancy is related to smoking behavior, whereas the other 99% is related to other factors.

Phrases such as “accounted for by,” “attributable to,” “predictable from,” and “associated

with” are not to be interpreted as statements of cause and effect. Thus, you could say, “I can

predict 10% of the variability of the weather by paying attention to twinges in the ankle that I

broke last year—when it aches we are likely to have rain, and when it feels fine the weather

is likely to be clear.” This does not imply that sore ankles cause rain, or even that rain itself

causes sore ankles. For example, it might be that your ankle hurts when it rains because low

barometric pressure, which is often associated with rain, somehow affects ankles.

From this discussion it should be apparent that r2 is easier to interpret as a measure of

correlation than is r, since it represents the degree to which the variability in one measure is

attributable to variability in the other measure. I recommend that you always square correla-

tion coefficients to get some idea of whether you are talking about anything important. In our

symptoms-and-stress example, r2 Thus, about one-quarter of the variabil-

ity in symptoms can be predicted from variability in stress. That strikes me as an impressive

level of prediction, given all the other factors that influence psychological symptoms.

There is not universal agreement that r2 is our best measure of the contribution of one

variable to the prediction of another, although that is certainly the most popular measure.

Judd and McClelland (1989) strongly endorse r2 because, when we index error in terms of

the sum of squared errors, it is the proportional reduction in error (PRE). In other

words, when we do not use X to predict Y, our error is . When we use X as the predic-

tor, the error is SS
residual

. Since

the value of 1 2 r2 can be seen to be the percentage by which error is reduced when X is

used as the predictor.11

Others, however, have suggested the proportional improvement in prediction (PIP)

as a better measure.

For large sample sizes this statistic is the reduction in the size of the standard error of

estimate (see Table 9.4). Similarly, as we shall see shortly, it is a measure of the reduction

in the width of the confidence interval on our prediction.

PIP = 1 2 3(1 2 r2)

r2 =
SSY 2 SSresidual

SSY

SSY

= .5292 = .280.

.102 = 1%

.802 = 64%

r2 = SSYN

SSY

SSYN

SSY
=

SSY 2 SSresidual

SSY
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11 It is interesting to note that (defined on p. 252) is nearly equivalent to the ratio of the variance terms corre-
sponding to the sums of squares in the equation. (Well, it is interesting to some people.)
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The choice between r2 and PIP is really dependent on how you wish to measure error.

When we focus on r2 we are focusing on measuring error in terms of sums of squares.

When we focus on PIP we are measuring error in standard deviation units.

Darlington (1990) has argued for the use of r instead of r2 as representing the magni-

tude of an effect. A strong argument in this direction was also made by Ozer (1985), whose

paper is well worth reading. In addition, Rosenthal and Rubin (1982) have shown that even

small values of r2 (or almost any other measure of the magnitude of an effect) can be asso-

ciated with powerful effects, regardless of how you measure that effect (see Chapter 10).

I have discussed r2 as an index of percentage of variation for a particular reason. There is a

very strong movement, at least in psychology, toward more frequent reporting of the magnitude

of an effect, rather than just a test statistic and a p value. As I mentioned in Chapter 7, there are

two major types of magnitude measures. One type is called effect size, often referred to as the

d-family of measures, and is represented by Cohen’s d, which is most appropriate when we have

means of two or more groups. The second type of measure, often called the r-family, is the “per-

centage of variation,” of which r2 is the most common representative. We first saw this measure

in this chapter, where we found that 25.6% of the variation in psychological symptoms is associ-

ated with variation in stress. We will see it again in Chapter 10 when we cover the point-biserial

correlation. It will come back again in the analysis of variance chapters (especially Chapters 11

and 13), where it will be disguised as eta-squared and related measures. Finally, it will appear in

important ways when we talk about multiple regression. The common thread through all of this

is that we want some measure of how much of the variation in a dependent variable is attributa-

ble to variation in an independent variable, whether that independent variable is categorical or

continuous. I am not as fond of percentage of variation measures as are some people, because I

don’t think that most of us can take much meaning from such measures. However, they are com-

monly used, and you need to be familiar with them.

9.8 Assumptions Underlying Regression 
and Correlation

We have derived the standard error of estimate and other statistics without making any as-

sumptions concerning the population(s) from which the data were drawn. Nor do we need

such assumptions to use as an unbiased estimator of . If we are to use in any

meaningful way, however, we will have to introduce certain parametric assumptions. To

understand why, consider the data plotted in Figure 9.4a. Notice the four statistics labeled

, , , and . Each represents the variance of the points around the regression line

in an array of X (the residual variance of Y conditional on a specific X). As mentioned ear-

lier, the average of these variances, weighted by the degrees of freedom for each array,

would be , the residual or error variance. If is to have any practical meaning, it

must be representative of the various terms of which it is an average. This leads us to the

assumption of homogeneity of variance in arrays, which is nothing but the assumption

that the variance of Y for each value of X is constant (in the population). This assumption

will become important when we apply tests of significance using .

One further assumption that will be necessary when we come to testing hypotheses is

that of normality in arrays. We will assume that in the population the values of Y corre-

sponding to any specified value of X—that is, the conditional array of Y for —are nor-

mally distributed around . This assumption is directly analogous to the normality

assumption we made with the t test—that each treatment population was normally distrib-

uted around its own mean—and we make it for similar reasons.

We can examine the reasonableness of these assumptions for our data on stress and

symptoms by redefining Stress into five ordered categories, or quintiles. We can then

YN
Xi

s2
Y #X

s2
Y #Xs2

Y #X

s2
Y #4s2

Y #3s2
Y #2s2

Y #1

sY #XsY #XsY #X
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display boxplots of lnSymptoms for each quintile of the Stress variable. This plot is shown

in Figure 9.4b. Given the fact that we only have about 20 data points in each quintile,

Figure 9.4b reflects the reasonableness of our assumptions quite well.

To anticipate what we will discuss in Chapter 11, note that our assumptions of homo-

geneity of variance and normality in arrays are equivalent to the assumptions of homogene-

ity of variance and normality of populations that we will make in discussing the analysis

of variance. In Chapter 11 we will assume that the treatment populations from which data

were drawn are normally distributed and all have the same variance. If you think of the

levels of X in Figure 9.4a and 9.4b as representing different experimental conditions, you

can see the relationship between the regression and analysis of variance assumptions.

The assumptions of normality and homogeneity of variance in arrays are associated

with the regression model, where we are dealing with fixed values of X. On the other hand,

when our interest is centered on the correlation between X and Y, we are dealing with the

bivariate model, in which X and Y are both random variables. In this case, we are primarily

concerned with using the sample correlation (r) as an estimate of the correlation coefficient

in the population (r). Here we will replace the regression model assumptions with the

assumption that we are sampling from a bivariate normal distribution.

The bivariate normal distribution looks roughly like the pictures you see each fall of sur-

plus wheat piled in the main street of some Midwestern town. The way the grain pile falls off

on all sides resembles a normal distribution. (If there were no correlation between X and Y,

the pile would look as though all the grain were dropped in the center of the pile and spread

out symmetrically in all directions. When X and Y are correlated the pile is elongated, as

when grain is dumped along a street and spreads out to the sides and down the ends.) An ex-

ample of a bivariate normal distribution with r 5 .90 is shown in Figure 9.5. If you were to

slice this distribution on a line corresponding to any given value of X, you would see that

the cut end is a normal distribution. You would also have a normal distribution if you sliced

the pile along a line corresponding to any given value of Y. These are called conditional

distributions because the first represents the distribution of Y given (conditional on) a spe-

cific value of X, whereas the second represents the distribution of X conditional on a specific

value of Y. If, instead, we looked at all the values of Y regardless of X (or all values of X re-

gardless of Y ), we would have what is called the marginal distribution of Y (or X ). For a

bivariate normal distribution, both the conditional and the marginal distributions will be nor-

mally distributed. (Recall that for the regression model we assumed only normality of Y in
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the arrays of X—what we now know as conditional normality of Y. For the regression

model, there is no assumption of normality of the conditional distribution of X or of the mar-

ginal distributions.)

9.9 Confidence Limits on Y

Although the standard error of estimate is useful as an overall measure of error, it is not a

good estimate of the error associated with any single prediction. When we wish to predict

a value of Y for a given subject, the error in our estimate will be smaller when X is near 

than when X is far from . (For an intuitive understanding of this, consider what would

happen to the predictions for different values of X if we rotated the regression line slightly

around the point , . There would be negligible changes near the means, but there would

be substantial changes in the extremes.) If we wish to predict Y on the basis of X for a new
member of the population (someone who was not included in the original sample), the

standard error of our prediction is given by

where is the deviation of the individual’s X score from the mean of X. This leads to

the following confidence limits on :

This equation will lead to elliptical confidence limits around the regression line, which are

narrowest for X 5 and become wider as |X 2 | increases.

To take a specific example, assume that we wanted to set confidence limits on the num-

ber of symptoms (Y) experienced by a student with a stress score of 10—a fairly low level

of stress. We know that

N = 107

t.025 = 1.984

YN = 0.0086(10) 1 4.31 = 4.386

X = 21.290

s2
X = 156.05

sY #X = 0.173

XX

CI(Y) = YN 6 (ta>2)(s¿Y #X)

YN
Xi 2 X

s¿Y #X = sY #XB1 1
1

N
1

(Xi 2 X)2

(N 2 1)s2
X

YX

X
X
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Figure 9.5 Bivariate normal distribution with r 5 .90



Then

Then

The confidence interval is 4.041 to 4.731, and the probability is .95 that an interval com-

puted in this way will include the level of symptoms reported by an individual whose

stress score is 10. That interval is wide, but it is not as large as the 95% confidence inter-

val of 3.985 5 Y 5 4.787 that we would have had if we had not used X—that is, if we had

just based our confidence interval on the obtained values of Y (and ) rather than making

it conditional on X.

I should note that confidence intervals on new predicted values of Y are not the same as

confidence intervals on our regression line. When predicted for new values we have to take

into account not only the variation around the regression line, but our uncertainty (error) in

estimating the line. In Figure 9.6 which follows, I show the confidence limits around the

sY

4.041 … Y … 4.731

= 4.386 6 .345

= 4.386 6 1.984(0.174)

CI(Y) = YN 6 (ta>2)(s¿Y #X)

= 0.17311.017 = 0.174

s¿Y #X = 0.173 B1 1
1

107
1

(10 2 21.290)2

(106)156.05

s¿Y #X = sY #X B1 1
1

N
1

(Xi 2 X)2

(N 2 1)s2
X
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Figure 9.6 Confidence limits around the regression of log(Symptoms) on Stress

4.2

0 10 20

Stress score

30 40 50 60

4.4

4.6

L
o

g
 o

f 
H

o
p

k
in

’s
 s

y
m

p
to

m
 c

h
ec

k
li

st
 s

co
re

4.8

5.0



line itself, and you can see by inspection that the interval at a value of X 5 10 is smaller

than the confidence interval we estimated in the previous equation.12

9.10 A Computer Example Showing the Role 
of Test-Taking Skills

Most of us can do reasonably well if we study a body of material and then take an exam on

that material. But how would we do if we just took the exam without even looking at the

material? (Some of you may have had that experience.) Katz, Lautenschlager, Blackburn,

and Harris (1990) examined that question by asking some students to read a passage and

then answer a series of multiple-choice questions, and asking others to answer the ques-

tions without having seen the passage. We will concentrate on the second group. The task

described here is very much like the task that North American students face when they take

the SAT exams for admission to a university. This led the researchers to suspect that stu-

dents who did well on the SAT would also do well on this task, since they both involve test-

taking skills such as eliminating unlikely alternatives.

Data with the same sample characteristics as the data obtained by Katz et al. are given

in Table 9.6. The variable Score represents the percentage of items answered correctly

when the student has not seen the passage, and the variable SATV is the student’s verbal

SAT score from his or her college application.

Exhibit 9.1 illustrates the analysis using SPSS regression. There are a number of things

here to point out. First, we must decide which is the dependent variable and which is the

independent variable. This would make no difference if we just wanted to compute the cor-

relation between the variables, but it is important in regression. In this case I have made a

relatively arbitrary decision that my interest lies primarily in seeing whether people who

do well at making intelligent guesses also do well on the SAT. Therefore, I am using SATV
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Table 9.6 Data based on Katz et al. (1990)

for the group that did not read the passage

Score SATV Score SATV

58 590 48 590

48 580 41 490

34 550 43 580

38 550 53 700

41 560 60 690

55 800 44 600

43 650 49 580

47 660 33 590

47 600 40 540

46 610 53 580

40 620 45 600

39 560 47 560

50 570 53 630

46 510 53 620

12 The standard error around the regression line is found as , which you can

see is larger than the standard error for a new prediction.

s¿Y #X = sY #XB1 1
1

N
1

(Xi 2 X)2

(N 2 1)s2
X
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Mean

598.57

46.21

SAT Verbal Score

Test Score

Std.

Deviation

61.57

6.73

N

28

28

Descriptive Statistics

Exhibit 9.1 SPSS output on Katz et al. (1990) study of test-taking behavior

(continues)
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SAT Verbal Score

Test Score

SAT Verbal Score

Test Score

SAT Verbal Score

Test Score

Pearson Correlation

Sig. (1-tailed)

N

SAT. Verbal

Score

1.000

.532

.

.002

28

28

Test Score

.532

1.000

.002

.

28

28

Correlations

R

.532a

Model

1

R Square

.283

Adjusted

R Square

.255

Std. Error

of the

Estimate

53.13

Model Summary

Sum of

Squares

28940.123

73402.734

102342.9

Model

1 Regression

Residual

Total

df

1

26

27

Mean

Square

28940.123

2823.182

F

10.251

Sig.

.004a

ANOVAb

a Predictors: (Constant), Test score
b Dependent Variable: SAT Verbal Score

a Predictors: (Constant), Test score

Coefficientsa

Model

1 (Constant)

Test score

B

373.736

4.865

Std. Error

70.938

1.520

Beta

.532

t

5.269

3.202

Sig.

.000

.004

Unstandardized

Coefficients

Standardized

Coefficients

a Dependent Variable: SAT Verbal Score

Exhibit 9.1 (continued)

as the dependent variable, even though it was actually taken prior to the experiment. The

first two panels of Exhibit 9.1 illustrate the menu selections required for SPSS. The means

and standard deviations are found in the middle of the output, and you can see that we are

dealing with a group that has high achievement scores (the mean is almost 600, with a stan-

dard deviation of about 60. This puts them about 100 points above the average for the SAT.

They also do quite well on Katz’s test, getting nearly 50% of the items correct. Below these

statistics you see the correlation between Score and SATV, which is .532. We will test this

correlation for significance in a moment.

In the section labeled Model Summary you see both R and R2. The “R” here is capital-

ized because if there were multiple predictors it would be a multiple correlation, and we



always capitalize that symbol. One thing to note is that R here is calculated as the square

root of R2, and as such it will always be positive, even if the relationship is negative. This is

a result of the fact that the procedure is applicable for multiple predictors.

The ANOVA table is a test of the null hypothesis that the correlation is .00 in the popu-

lation. We will discuss hypothesis testing next, but what is most important here is that the

test statistic is F, and that the significance level associated with that F is p 5 .004. Since p
is less than .05, we will reject the null hypothesis and conclude that the variables are not

linearly independent. In other words, there is a linear relationship between how well stu-

dents score on a test that reflects test-taking skills, and how well they perform on the SAT.

The exact nature of this relationship is shown in the next part of the printout. Here we have

a table labeled “Coefficients,” and this table gives us the intercept and the slope. The inter-

cept is labeled here as “Constant,” because it is the constant that you add to every predic-

tion. In this case it is 373.736. Technically it means that if a student answered 0 questions

correctly on Katz’s test, we would expect them to have an SAT of approximately 370. Since

a score of 0 would be so far from the scores these students actually obtained (and it is hard

to imagine anyone earning a 0 even by guessing), I would not pay very much attention to

that value.

In this table the slope is labeled by the name of the predictor variable. (All software so-

lutions do this, because if there were multiple predictors we would have to know which

variable goes with which slope. The easiest way to do this is to use the variable name as

the label.) In this case the slope is 4.865, which means that two students who differ by 1

point on Katz’s test would be predicted to differ by 4.865 on the SAT. Our regression equa-

tion would now be written as .

The standardized regression coefficient is shown as .532. This means that a one stan-

dard deviation difference in test scores is associated with approximately a one-half stan-

dard deviation difference in SAT scores. Note that, because we have only one predictor,

this standardized coefficient is equal to the correlation coefficient.

To the right of the standardized regression coefficient you will see t and p values for

tests on the significance of the slope and intercept. We will discuss the test on the slope

shortly. The test on the intercept is rarely of interest, but its interpretation should be evi-

dent from what I say about testing the slope.

9.11 Hypothesis Testing

We have seen how to calculate r as an estimate of the relationship between two variables

and how to calculate the slope (b) as a measure of the rate of change of Y as a function of

X. In addition to estimating r and b, we often wish to perform a significance test on the null

hypothesis that the corresponding population parameters equal zero. The fact that a value

of r or b calculated from a sample is not zero is not in itself evidence that the correspon-

ding parameters in the population are also nonzero.

Testing the Significance of r

The most common hypothesis that we test for a sample correlation is that the correlation be-

tween X and Y in the population, denoted r (rho), is zero. This is a meaningful test because

the null hypothesis being tested is really the hypothesis that X and Y are linearly independ-

ent. Rejection of this hypothesis leads to the conclusion that they are not independent and

that there is some linear relationship between them.

It can be shown that when r 5 0, for large N, r will be approximately normally distrib-

uted around zero.

YN = 4.865 3 Score 1 373.736
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A legitimate t test can be formed from the ratio

which is distributed as t on N 2 2 df.13 Returning to the example in Exhibit 9.1, r 5 .532

and N 5 28. Thus,

This value of t is significant at a 5 .05 (two-tailed), and we can thus conclude that

there is a significant relationship between SAT scores and scores on Katz’s test. In other

words, we can conclude that differences in SAT are associated with differences in test

scores, although this does not necessarily imply a causal association.

In Chapter 7 we saw a brief mention of the F statistic, about which we will have much more

to say in Chapters 11–16. You should know that any t statistic on d degrees of freedom can be

squared to produce an F statistic on 1 and d degrees of freedom. Many statistical packages use

the F statistic instead of t to test hypotheses. In this case you simply take the square root of that

F to obtain the t statistics we are discussing here. (From Exhibit 9.1 we find an F of 10.251. The

square root of this is 3.202, which agrees with the t we have just computed for this test.)

As a second example, if we go back to our data on stress and psychological symptoms

in Table 9.2, and the accompanying text, we find r 5 .506, and N 5 107.

Here again we will reject We will conclude that there is a significant relation-

ship between stress and symptoms. Differences in stress are associated with differences in

reported psychological symptoms.

The fact that we have an hypothesis test for the correlation coefficient does not mean

that the test is always wise. There are many situations where statistical significance, while

perhaps comforting, is not particularly meaningful. If I have established a scale that pur-

ports to predict academic success, but it correlates only r 5 .25 with success, that test is

not going to be very useful to me. It matters not whether r 5 .25 is statistically significantly

different from .00, it explains so little of the variation that it is unlikely to be of any use.

And anyone who is excited because a test-retest reliability coefficient is statistically signif-

icant hasn’t really thought about what they are doing.

Testing the Significance of b

If you think about the problem for a moment, you will realize that a test on b is equivalent to a

test on r in the one-predictor case we are discussing in this chapter. If it is true that X and Y are

related, then it must also be true that Y varies with X—that is, that the slope is nonzero. This

suggests that a test on b will produce the same answer as a test on r, and we could dispense with

a test for b altogether. However, since regression coefficients play an important role in multiple

regression, and since in multiple regression a significant correlation does not necessarily imply

a significant slope for each predictor variable, the exact form of the test will be given here.

We will represent the parametric equivalent of b (the slope we would compute if we

had X and Y measures on the whole population) as .14b*

H0 : r = 0.

t =
.529110531 2 .5292

=
.52911051.720

= 6.39

r¿ = .529

t =
.53212631 2 .5322

=
.5321261.717

= 3.202

t =
r1N 2 231 2 r2

13 This is the same Student’s t that we saw in Chapter 7.
14 Many textbooks use b instead of , but that would lead to confusion with the standardized regression coefficient.b*



It can be shown that b is normally distributed about with a standard error approxi-

mated by15

Thus, if we wish to test the hypothesis that the true slope of the regression line in the popu-

lation is zero (H0: b
* 5 0), we can simply form the ratio

which is distributed as t on N 2 2 df.
For our sample data on SAT performance and test-taking ability, b 5 4.865, ,

and 

Thus

which is the same answer we obtained when we tested r. Since and

, we will reject and conclude that our regression line has a nonzero

slope. In other words, higher levels of test-taking skills are associated with higher predicted

SAT scores.

From what we know about the sampling distribution of b, it is possible to set up confi-

dence limits on .

where is the two-tailed critical value of t on N 2 2 df.
For our data the relevant statistics can be obtained from Exhibit 9.1. The 95% confi-

dence limits are

Thus, the chances are 95 out of 100 that the limits constructed in this way will encompass

the true value of . Note that the confidence limits do not include zero. This is in line with

the results of our t test, which rejected 

Testing the Difference Between Two Independent bs

This test is less common than the test on a single slope, but the question that it is de-

signed to ask is often a very meaningful one. Suppose we have two sets of data on the re-

lationship between the amount that a person smokes and life expectancy. One set is made

up of females, and the other of males. We have two separate data sets rather than one

large one because we do not want our results to be contaminated by normal differences

H0 : b
* = 0.

b*

= 4.865 6 3.123 = 1.742 … b* … 7.988

CI(b*) = 4.865 6 2.056 c 53.127

6.73127
d

ta>2

CI(b*) = b 6 (ta>2) c (SY #X)

sX1N 2 1
d

b*

H0t.025(26) = 2.056

tobt = 3.202

t =
(4.865)(6.73)(127)

53.127
= 3.202

sY #X = 53.127.

sX = 6.73

t =
b 2 b*

sb
=

b

SY #X
sX1N 2 1

=
(b)(sX)(1N 2 1)

SY #X

sb =
sY #X

sX1N 2 1

b*
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15 There is surprising disagreement concerning the best approximation for the standard error of b. Its denominator
is variously given as sX1N, sX1N 2 1, sX1N 2 2.



in life expectancy between males and females. Suppose further that we obtained the

following data:

Males Females

b 20.40 20.20

2.10 2.30

2.50 2.80

N 101 101

It is apparent that for our data the regression line for males is steeper than the regres-

sion line for females. If this difference is significant, it means that males decrease their life

expectancy more than do females for any given increment in the amount they smoke. If this

were true, it would be an important finding, and we are therefore interested in testing the

difference between and .

The t test for differences between two independent regression coefficients is directly anal-

ogous to the test of the difference between two independent means. If is true ( ),

the sampling distribution of is normal with a mean of zero and a standard error of

This means that the ratio

is distributed as t on df. We already know that the standard error of b can be

estimated by

and therefore can write

where and are the error variances for the two samples. As was the case with

means, if we assume homogeneity of error variances, we can pool these two estimates,

weighting each by its degrees of freedom:

For our data,

Substituting this pooled estimate into the equation, we obtain

= B 4.85

(2.5)(100)
1

4.85

(2.8)(100)
= 0.192

sb12b2
= C s2

Y #X1

s2
X1

(N1 2 1)
1

s2
Y #X2

s2
X2

(N2 2 1)

s2
Y #X =

99(2.102) 1 99(2.302)

101 1 101 2 4
= 4.85

s2
Y #X =

(N1 2 2)s2
Y #X1

1 (N2 2 2)s2
Y #X2

N1 1 N2 2 4

s2
Y #X2

s2
Y #X1

sb12b2
= C s2

Y #X1

s2
X1

(N1 2 1)
1

s2
Y #X2

s2
X2

(N2 2 1)

sb =
sY #X

sX1N 2 1

N1 1 N2 2 4

t =
b1 2 b23s2

b1
1 s2

b2

sb12b2
= 3s2

b1
1 s2

b2

b1 2 b2

H0 : b
*
1 = b*

2H0

b2b1

s2
X

sY #X
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Given , we can now solve for t:

on 198 df. Since , we would fail to reject and would therefore con-

clude that we have no reason to doubt that life expectancy decreases as a function of smok-

ing at the same rate for males as for females.

It is worth noting that although is equivalent to , it does not fol-

low that is equivalent to . If you think about it for a

moment, it should be apparent that two scatter diagrams could have the same regression

line ( ) but different degrees of scatter around that line, (hence ). The re-

verse also holds—two different regression lines could fit their respective sets of data

equally well.

Testing the Difference Between Two Independent rs

When we test the difference between two independent rs, a minor difficulty arises. When

, the sampling distribution of r is not approximately normal (it becomes more and

more skewed as ), and its standard error is not easily estimated. The same

holds for the difference . This raises an obvious problem, because, as you can

imagine, we will need to know the standard error of a difference between correlations if

we are to create a t test on that difference. Fortunately, the solution was provided by 

R. A. Fisher.

Fisher (1921) showed that if we transform r to

then is approximately normally distributed around (the transformed value of r) with

standard error

(Fisher labeled his statistic “z,” but “ ” is often used to avoid confusion with the standard

normal deviate.) Because we know the standard error, we can now test the null hypothesis

that by converting each r to and solving for

Note that our test statistic is z rather than t, since our standard error does not rely on statis-

tics computed from the sample (other than N ) and is therefore a parameter.

Appendix tabulates the values of for different values of r, which eliminates the

need to solve the equation for .

To take a simple example, assume that for a sample of 53 males, the correlation be-

tween number of packs of cigarettes smoked per day and life expectancy was .50. For a

sample of 43 females, the correlation was .40. (These are unrealistically high values for r,

but they better illustrate the effects of the transformation.) The question of interest is, Are

these two coefficients significantly different, or are the differences in line with what we

would expect when sampling from the same bivariate population of X, Y pairs?

r¿
r¿r¿

z =
r¿1 2 r¿1

B 1

N1 2 3
1

1

N2 2 3

r¿r1 2 r2 = 0

r¿

sr¿ =
12N 2 3

r¿r¿

r¿ = (0.5) loge ` 1 1 r

1 2 r
`

r1 2 r2

r Q 61.00

r Z 0

r1 Z r2b*
1 = b*

2

H0 : r1 2 r2 = 0H0 : b
*
1 2 b*

2 = 0

H0 : r = 0H0 : b
* = 0

H0t0.025(198) = 61.97

t =
b1 2 b2

sb12b2

=
(-0.40) 2 (-0.20)

0.192
= -1.04

sb12b2
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Males Females

r .50 .40

r .549 .424

N 53 53

Since is less than , we fail to reject and conclude, that

with a two-tailed test at a 5 .05, we have no reason to doubt that the correlation between

smoking and life expectancy is the same for males as it is for females.

I should point out that it is surprisingly difficult to find a significant difference between

two independent rs for any meaningful comparison unless the sample size is quite large.

Certainly I can find two correlations that are significantly different, but if I restrict myself

to testing relationships that might be of theoretical or practical interest, it is usually diffi-

cult to obtain a statistically significant difference.

Testing the Hypothesis That r Equals Any Specified Value

Now that we have discussed the concept of we are in a position to test the null hypothe-

sis that r is equal to any value, not just to zero. You probably can’t think of many situations

in which you would like to do that, and neither can I. But the ability to do so allows us to

establish confidence limits on r, a more interesting procedure.

As we have seen, for any value of r, the sampling distribution of is approximately

normally distributed around (the transformed value of r) with a standard error of .

From this it follows that

is a standard normal deviate. Thus, if we want to test the null hypothesis that a sample r of

.30 (with N 5 103) came from a population where r 5 .50, we proceed as follows

Since 5 22.39 is more extreme than 5 61.96, we reject at a 5 .05 (two-

tailed) and conclude that our sample did not come from a population where r 5 .50.

Confidence Limits on r

We can move from the preceding discussion to easily establish confidence limits on r by

solving that equation for r instead of z. To do this, we first solve for confidence limits on

, and then convert to r.

z =
r¿ 2 r¿

B 1

N 2 3

r¿r¿

H0z.025zobt

z =
.310 2 .549

0.10
= -0.239>0.10 = -2.39

sr¿ = 1>1N 2 3 = 0.10N = 103

r¿ = .549r = .50

r¿ = .310r = .30

z =
r¿ 2 r¿

B 1

N 2 3

11N 2 3 r¿
r¿

r¿,

H0z.025 = 61.96zobt = 0.625

z =
.549 2 .424

B 1

53 2 3
1

1

53 2 3

=
.125

B 2

50

=
.125

1

5

= 0.625

¿



therefore

and thus

For our stress example, r 5 .529 ( 5 .590) and N 5 107, so the 95% confidence limits are

Converting from r back to r and rounding,

.380 r .654

Thus, the limits are r 5 .380 and r 5 .654. The probability is .95 that limits obtained in

this way encompass the true value of r. Note that r 5 0 is not included within our limits,

thus offering a simultaneous test of : r 5 0, should we be interested in that information.

Confidence Limits versus Tests of Significance

At least in the behavioral sciences, most textbooks, courses, and published research have

focused on tests of significance, and paid scant attention to confidence limits. In some

cases that is probably appropriate, but in other cases it leaves the reader short.

In this chapter we have repeatedly referred to an example on stress and psychological

symptoms. For the first few people who investigated this issue, it really was an important

question whether there was a significant relationship between these two variables. But now

that everyone believes it, a more appropriate question becomes how large the relationship

is. And for that question, a suitable answer is provided by a statement such as the correlation

between the two variables was .529, with a 95% confidence interval of .380 # r # .654.

(A comparable statement from the public opinion polling field would be something like 

r 5 .529 with a 95% margin of error of 6.15(approx.).16

Testing the Difference Between Two Nonindependent rs

Occasionally we come across a situation in which we wish to test the difference between

two correlations that are not independent. (In fact, I am probably asked this question a cou-

ple of times per year.) One case arises when two correlations share one variable in com-

mon. We will see such an example below. Another case arises when we correlate two

variables at Time 1 and then again at some later point (Time 2), and we want to ask whether

there has been a significant change in the correlation over time. I will not cover that case,

but a very good discussion of that particular issue can be found at http://core.ecu.edu/psyc/

wuenschk/StatHelp/ZPF.doc and in a paper by Raghunathan, Rosenthal, and Rubin (1996).

As an example of correlations which share a common variable, Reilly, Drudge, Rosen,

Loew, and Fischer (1985) administered two intelligence tests (the WISC-R and the McCarthy)

H0

……

¿

= .398 … r¿ … .782

= .590 6 1.96(0.098) = .590 6 0.192

CI(r¿) = .590 6 1.96B 1

104

r¿

CI(r¿) = r¿ 6 za>2B 1

N 2 3

B 1

N 2 3
 (6z) = r¿ 2 r¿
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16 I had to insert the label “approx.” here because the limits, as we saw above, are not exactly symmetrical around r.
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to first-grade children, and then administered the Wide Range Achievement Test (WRAT) 

to those same children 2 years later. They obtained, among other findings, the following

correlations:

WRAT WISC-R McCarthy

WRAT 1.00 .80 .72

WISC-R 1.00 .89

McCarthy 1.00

Note that the WISC-R and the McCarthy are highly correlated but that the WISC-R corre-

lates somewhat more highly with the WRAT (reading) than does the McCarthy. It is of in-

terest to ask whether this difference between the WISC-R–WRAT correlation (.80) and the

McCarthy–WRAT correlation (.72) is significant, but to answer that question requires a test

on nonindependent correlations because they both have the WRAT in common and they are

based on the same sample.

When we have two correlations that are not independent—as these are not, because the

tests were based on the same 26 children—we must take into account this lack of independ-

ence. Specifically, we must incorporate a term representing the degree to which the two tests

are themselves correlated. Hotelling (1931) proposed the traditional solution, but a better test

was devised by Williams (1959) and endorsed by Steiger (1980). This latter test takes the form

where

This ratio is distributed as t on N-3 df. In this equation, and refer to the correla-

tion coefficients whose difference is to be tested, and refers to the correlation between

the two predictors. |R| is the determinant of the 3 3 3 matrix of intercorrelations, but you

can calculate it as shown without knowing anything about determinants.

For our example, let

then

A value of 5 1.36 on 23 df is not significant. Although this does not prove the ar-

gument that the tests are equally effective in predicting third-grade children’s performance

on the reading scale of the WRAT, because you cannot prove the null hypothesis, it is con-

sistent with that argument and thus supports it.

tobt

= 1.36

t = (.80 2 .72)

Q
(25)(1 1 .89)

2a 25

23
b (.075) 1

(.80 1 .72)2

4
(1 2 .89)3

ƒR ƒ = (1 2 .802 2 .722 2 .892) 1 (2)(.80)(.72)(.89) = .075

N = 26

r23 =  correlation between the WISC-R and the McCarthy = .89

r13 =  correlation between the McCarthy and the WRAT = .72

r12 =  correlation between the WISC-R and the WRAT = .80

r23

r13r12

ƒR ƒ = (1 2 r2
12 2 r2

13 2 r2
23) 1 (2r12r13r23)

t = (r12 2 r13)

Q
(N 2 1)(1 1 r23)

2aN 2 1

N 2 3
b ƒR ƒ 1

(r12 1 r13)2

4
 (1 2 r23)3



9.12 One Final Example

I want to introduce one final example because it illustrates several important points about

correlation and regression. This example is about as far away from psychology as you can

get and really belongs to physicists and astronomers, but it is a fascinating example taken

from Todman and Dugard (2007) and it makes a very important point. We have known for

over one hundred years that the distance from the sun to the planets in our solar system fol-

lows a neat pattern. The distances are shown in the following table, which includes Pluto

even though it was recently demoted. (The fact that we’ll see how neatly it fits the pattern

of the other planets might suggest that its demotion may have been rather unfair.)

If we plot these in their original units we find a very neat graph that is woefully far

from linear. The plot is shown in Figure 9.7a. I have superimposed the linear regression

line on that plot even though the relationship is clearly not linear. In Figure 9.7b, you can

see the residuals from the previous regression plotted as a function of rank, with a spline

superimposed. The residuals show you that there is obviously something going on because

they follow a very neat pattern. This pattern would suggest that the data might better be fit

with a logarithmic transformation of distance.

In the lower left of Figure 9.7, we see the logarithm of distance plotted against the rank

distance, and we should be very impressed with our choice of variable. The relationship is

very nearly linear as you can see by how closely the points stay to the regression line. How-

ever, the pattern that you see there should make you a bit nervous about declaring the rela-

tionship to be logarithmic, and this is verified by plotting the residuals from this regression

against rank distance, as has been done in the lower right. Notice that we still have a clear

pattern to the residuals. This indicates that, even though we have done a nice job of fitting

the data, there is still systematic variation in the residuals. I am told that astronomers still

do not have an explanation for the second set of residuals, but it is obvious that an explana-

tion is needed.

I have chosen this example for several reasons. First, it illustrates the difference be-

tween psychology and physics. I can’t imagine any meaningful variable that psychologists

study that has the precision of the variables in the physical sciences. In psychology you

will never see data fit as well as this. Second, this example illustrates the importance of

looking at residuals—they basically tell you where your model is going wrong. Although it

was evident in the first plot in the upper left that there was something very systematic, and

nonlinear going on, that continued to be the case when we plotted log(distance) against

rank distance. There the residuals made it clear that there was still more to be explained.

Finally, this example nicely illustrates the interaction between regression analyses and the-

ory. No one in their right mind would be likely to be excited about using regression to pre-
dict the distance of each planet from the sun. We already know those distances. What is

important is that identifying just what that relationship is we can add to or confirm theory.

Presumably it is obvious to a physicist what it means to say that the relationship is loga-

rithmic. (I would assume it relates to the fact that gravity varies as a function of the square

of the distance, but what do I know.) But even after we explain the logarithmic relationship

we can see that there is more that needs explaining. Psychologists use regression for the
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Table 9.7 Distance from the sun in astronomical units 

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

Rank 1 2 3 4 5 6 7 8 9

Distance 0.39 0.72 1 1.52 5.20 9.54 19.18 30.06 39.44
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same purposes, although our variables contain enough random error that it is difficult to

make such precise statements. When we come to multiple regression in Chapter 14, you

will see again that the role of regression analysis is theory building.

9.13 The Role of Assumptions in Correlation 
and Regression

There is considerable confusion in the literature concerning the assumptions underlying

the use of correlation and regression techniques. Much of the confusion stems from the fact

that the correlation and regression models, although they lead to many of the same results,

are based on different assumptions. Confusion also arises because statisticians tend to

make all their assumptions at the beginning and fail to point out that some of these assump-

tions are not required for certain purposes.

The major assumption that underlies both the linear-regression and bivariate-normal

models and all our interpretations is that of linearity of regression. We assume that what-

ever the relationship between X and Y, it is a linear one—meaning that the line that best fits

the data is a straight one. We will later refer to measures of curvilinear (nonlinear) rela-

tionships, but standard discussions of correlation and regression assume linearity unless
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otherwise stated. (We do occasionally fit straight lines to curvilinear data, but we do so on

the assumption that the line will be sufficiently accurate for our purpose—although the

standard error of prediction might be poorly estimated. There are other forms of regression

besides linear regression, but we will not discuss them here.)

As mentioned earlier, whether or not we make various assumptions depends on what

we wish to do. If our purpose is simply to describe data, no assumptions are necessary. The

regression line and r best describe the data at hand, without the necessity of any assump-

tions about the population from which the data were sampled.

If our purpose is to assess the degree to which variance in Y is linearly attributable to

variance in X, we again need make no assumptions. This is true because and are

both unbiased estimators of their corresponding parameters, independent of any underly-

ing assumptions, and

is algebraically equivalent to .

If we want to set confidence limits on b or Y, or if we want to test hypotheses about ,

we will need to make the conditional assumptions of homogeneity of variance and normality

in arrays of Y. The assumption of homogeneity of variance is necessary to ensure that is

representative of the variance of each array, and the assumption of normality is necessary

because we use the standard normal distribution.

If we want to use r to test the hypothesis that r 5 0, or if we wish to establish confi-

dence limits on r, we will have to assume that the (X, Y ) pairs are a random sample from a

bivariate-normal distribution, but keep in mind that for many studies the significance of r
is not particularly an issue, nor do we often want to set confidence limits on r.

9.14 Factors That Affect the Correlation

The correlation coefficient can be substantially affected by characteristics of the sample.

Two such characteristics are the restriction of the range (or variance) of X and/or Y and the

use of heterogeneous subsamples.

The Effect of Range Restrictions

A common problem concerns restrictions on the range over which X and Y vary. The effect

of such range restrictions is to alter the correlation between X and Y from what it would

have been if the range had not been so restricted. Depending on the nature of the data, the

correlation may either rise or fall as a result of such restriction, although most commonly r
is reduced.

With the exception of very unusual circumstances, restricting the range of X will in-

crease r only when the restriction results in eliminating some curvilinear relationship. For

example, if we correlated reading ability with age, where age ran from 0 to 70 years, the

data would be decidedly curvilinear (flat to about age 4, rising to about 17 years of age and

then leveling off) and the correlation, which measures linear relationships, would be rela-

tively low. If, however, we restricted the range of ages to 5 to 17 years, the correlation

would be quite high, since we would have eliminated those values of Y that were not vary-

ing linearly as a function of X.

The more usual effect of restricting the range of X or Y is to reduce the correlation. This prob-

lem is especially pertinent in the area of test construction, since here criterion measures (Y ) may

be available for only the higher values of X. Consider the hypothetical data in Figure 9.8. This

s2
Y #X

b*

r2

SSY 2 SSresidual

SSY

s2
Y #Xs2

Y
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figure represents the relation between college GPAs and scores on some standard achievement

test (such as the SAT) for a hypothetical sample of students. In the ideal world of the test con-

structor, all people who took the exam would then be sent on to college and earn a GPA, and the

correlation between achievement test scores and GPAs would be computed. As can be seen from

Figure 9.8, this correlation would be reasonably high. In the real world, however, not everyone is

admitted to college. Colleges take only the more able students, whether this classification be

based on achievement test scores, high school performance, or whatever. This means that GPAs

are available mainly for students who had relatively high scores on the standardized test. Sup-

pose that this has the effect of allowing us to evaluate the relationship between X and Y for only

those values of X that are greater than 400. For the data in Figure 9.8, the correlation will be rela-

tively low, not because the test is worthless, but because the range has been restricted. In other

words, when we use the entire sample of points in Figure 9.8, the correlation is .65. However,

when we restrict the sample to those students having test scores of at least 400, the correlation

drops to only .43. (This is easier to see if you cover up all data points for X , 400.) 

We must take into account the effect of range restrictions whenever we see a correla-

tion coefficient based on a restricted sample. The coefficient might be inappropriate for the

question at hand. Essentially, what we have done is to ask how well a standardized test pre-

dicts a person’s suitability for college, but we have answered that question by referring

only to those people who were actually admitted to college.

Dunning and Friedman (2008), using an example similar to this one, make the point

that restricting the range, while it can have severe effects on the value of r, may leave the

underlying regression line relatively unaffected. (You can illustrate this by fitting regres-

sion lines to the full and then the truncated data shown in Figure 9.8.) However the effect

hinges on the assumption that the data points that we have not collected are related in the

same way as points that we have collected.

The Effect of Heterogeneous Subsamples

Another important consideration in evaluating the results of correlational analyses deals

with heterogeneous subsamples. This point can be illustrated with a simple example in-

volving the relationship between height and weight in male and female subjects. These vari-

ables may appear to have little to do with psychology, but considering the important role

both variables play in the development of people’s images of themselves, the example is not

as far afield as you might expect. The data plotted in Figure 9.9, using Minitab, come from
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Figure 9.9 Relationship between height and weight for males and females combined

(dashed line 5 female, solid line 5 male, dotted line 5 combined)

sample data from the Minitab manual (Ryan et al., 1985). These are actual data from 92 col-

lege students who were asked to report height, weight, gender, and several other variables.

(Keep in mind that these are self-report data, and there may be systematic reporting biases.)

When we combine the data from both males and females, the relationship is strikingly

good, with a correlation of .78. When you look at the data from the two genders separately,

however, the correlations fall to .60 for males and .49 for females. (Males and females have

been plotted using different symbols, with data from females primarily in the lower left.)

The important point is that the high correlation we found when we combined genders is

not due purely to the relation between height and weight. It is also due largely to the fact

that men are, on average, taller and heavier than women. In fact, a little doodling on a sheet

of paper will show that you could create artificial, and improbable, data where within each

gender’s weight is negatively related to height, while the relationship is positive when 

you collapse across gender. (The regression equations for males is 

and for females is .) The point I

am making here is that experimenters must be careful when they combine data from sev-

eral sources. The relationship between two variables may be obscured or enhanced by the

presence of a third variable. Such a finding is important in its own right.

A second example of heterogeneous subsamples that makes a similar point is the rela-

tionship between cholesterol consumption and cardiovascular disease in men and women.

If you collapse across both genders, the relationship is not impressive. But when you sepa-

rate the data by male and female, there is a distinct trend for cardiovascular disease to

increase with increased consumption of cholesterol. This relationship is obscured in the

combined data because men, regardless of cholesterol level, have an elevated level of

cardiovascular disease compared to women.

9.15 Power Calculation for Pearson’s r

Consider the problem of the individual who wishes to demonstrate a relationship between

television violence and aggressive behavior. Assume that he has surmounted all the very

real problems associated with designing this study and has devised a way to obtain a corre-

lation between the two variables. He believes that the correlation coefficient in the popula-

tion (r) is approximately .30. (This correlation may seem small, but it is impressive when

YN female = 2.58 Heightfemale 2 44.86Heightmale 2 149.93

YN male = 4.36
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you consider all the variables involved in aggressive behavior. This value is in line with the

correlation obtained in a study by Huesmann, Moise-Titus, Podolski, & Eron [2003], al-

though the strength of the relationship has been disputed by Block & Crain [2007].) Our

experimenter wants to conduct a study to find such a correlation but wants to know some-

thing about the power of his study before proceeding. Power calculations are easy to make

in this situation.

As you should recall, when we calculate power we first define an effect size (d). We

then introduce the sample size and compute d, and finally we use d to compute the power

of our design from Appendix Power.

We begin by defining

where is the correlation in the population defined by —in this case, .30. We next

define

For a sample of size 50,

From Appendix Power, for d 5 2.1 and a 5 .05 (two-tailed), power 5 .56.

A power coefficient of .56 does not please the experimenter, so he casts around for a

way to increase power. He wants power 5 .80. From Appendix Power, we see that this will

require d 5 2.8. Therefore,

Squaring both sides,

Thus, to obtain power 5 .80, the experimenter will have to collect data on nearly 90 partic-

ipants. (Most studies of the effects of violence on television are based on many more sub-

jects than that.)

a2.8

.30
b

2

1 1 = N = 88

2.82 = .302(N 2 1)

2.8 = .301N 2 1

d = r11N 2 1

d = .30250–1 = 2.1

d = d1N 2 1 = r11N 2 1

H1r1

d = r1 2 r0 = r1 2 0 = r1

Key Terms

Relationships (Introduction)

Differences (Introduction)

Correlation (Introduction)

Regression (Introduction)

Random variable (Introduction)

Fixed variable (Introduction)

Linear regression models (Introduction)

Bivariate normal models (Introduction)

Prediction (Introduction)

Scatterplot (9.1)

Scatter diagram (9.1)

Predictor (9.1)

Criterion (9.1)

Regression lines (9.1)

Correlation (r) (9.1)

Covariance ( or ) (9.3)

Correlation coefficient in the population

r (rho) (9.4)

Adjusted correlation coefficient ( ) (9.4)

Slope (9.5)

Intercept (9.5)

Errors of prediction (9.5)

Residual (9.5)

Normal equations (9.5)

Standardized regression coefficient 

b (beta) (9.5)

Scatterplot smoothers (9.6)

radj

sXYcovXY



Exercises 285

Exercises

9.1 The State of Vermont is divided into 10 Health Planning Districts, which correspond roughly

to counties. The following data for 1980 represent the percentage of births of babies under

2500 grams (Y ), the fertility rate for females younger than 18 or older than 34 years of age

( ), and the percentage of births to unmarried mothers ( ) for each district.17

District Y X
1

X
2

1 6.1 43.0 9.2

2 7.1 55.3 12.0

3 7.4 48.5 10.4

4 6.3 38.8 9.8

5 6.5 46.2 9.8

6 5.7 39.9 7.7

7 6.6 43.1 10.9

8 8.1 48.5 9.5

9 6.3 40.0 11.6

10 6.9 56.7 11.6

a. Make a scatter diagram of Y and .

b. Draw on your scatter diagram (by eye) the line that appears to best fit the data.

9.2 Calculate the correlation between Y and in Exercise 9.1.

9.3 Calculate the correlation between Y and in Exercise 9.1.

9.4 Use a t test to test : r 5 0 for the answers to Exercises 9.2 and 9.3.

9.5 Draw scatter diagrams for the following sets of data. Note that the same values of X and Y
are involved in each set. 

1 2 3

X Y X Y X Y

2 2 2 4 2 8

3 4 3 2 3 6

5 6 5 8 5 4

6 8 6 6 6 2

9.6 Calculate the covariance for each set in Exercise 9.5.

9.7 Calculate the correlation for each data set in Exercise 9.5. How can the values of Y in

Exercise 9.5 be rearranged to produce the smallest possible positive correlation?

H0

X2

X1

X1

X2X1

Splines (9.6)

Loess (9.6)

Sum of squares of Y ( ) (9.7)

Standard error of estimate (9.7)

Residual variance (9.7)

Error variance (9.7)

Conditional distribution (9.7)

Proportional reduction in error 

(PRE) (9.7)

Proportional improvement in prediction

(PIP) (9.7)

Array (9.8)

Homogeneity of variance in arrays (9.8)

Normality in arrays (9.8)

Conditional array (9.8)

Conditional distributions (9.8)

Marginal distribution (9.8)

Linearity of regression (9.13)

Curvilinear (9.13)

Range restrictions (9.14)

Heterogeneous subsamples (9.14)

SSY

17 Both and are known to be risk factors for low birthweight.X2X1



286 Chapter 9 Correlation and Regression

9.8 Assume that a set of data contains a slightly curvilinear relationship between X and Y (the

best-fitting line is slightly curved). Would it ever be appropriate to calculate r on these data?

9.9 An important developmental question concerns the relationship between severity of cere-

bral hemorrhage in low-birthweight infants and cognitive deficit in the same children at age

5 years.

a. Suppose we expect a correlation of .20 and are planning to use 25 infants. How much

power does this study have?

b. How many infants would be required for power to be .80?

9.10 From the data in Exercise 9.1, compute the regression equation for predicting the percent-

age of births of infants under 2500 grams (Y) on the basis of fertility rate for females

younger than 18 or older than 34 years of age ( ). ( is known as the “high-risk fertility

rate.”)

9.11 Calculate the standard error of estimate for the regression equation from Exercise 9.10.

9.12 Calculate confidence limits on for Exercise 9.10.

9.13 If as a result of ongoing changes in the role of women in society, the age at which women

tend to bear children rose such that the high-risk fertility rate defined in Exercise 9.10

jumped to 70, what would you predict for incidence of babies with birthweights less than

2500 grams? (Note: The relationship between maternal age and low birthweight is particu-

larly strong in disadvantaged populations.)

9.14 Should you feel uncomfortable making a prediction if the rate in Exercise 9.13 were 70?

Why or why not?

9.15 Using the information in Table 9.2 and the computed coefficients, predict the score for

log(symptoms) for a stress score of 8.

9.16 The mean stress score for the data in Table 9.3 was 21.467. What would your prediction for

log(symptoms) be for someone who had that stress score? How does this compare to ?

9.17 Calculate an equation for the 95% confidence interval in for predicting psychological

symptoms—you can overlay the confidence limits on Figure 9.2.

9.18 Within a group of 200 faculty members who have been at a well-known university for less

than 15 years (i.e., since before the salary curve levels off) the equation relating salary (in

thousands of dollars) to years of service is 5 0.9X 1 15. For 100 administrative staff at

the same university, the equation is 5 1.5X 1 10. Assuming that all differences are signif-

icant, interpret these equations. How many years must pass before an administrator and a

faculty member earn roughly the same salary?

9.19 In 1886, Sir Francis Galton, an English scientist, spoke about “regression toward medioc-

rity,” which we more charitably refer to today as regression toward the mean. The basic

principle is that those people at the ends of any continuum (e.g., height, IQ, or musical abil-

ity) tend to have children who are closer to the mean than they are. Use the concept of r as

the regression coefficient (slope) with standardized data to explain Galton’s idea.

9.20 You want to demonstrate a relationship between the amount of money school districts spend

on education, and the performance of students on a standardized test such as the SAT. You

are interested in finding such a correlation only if the true correlation is at least .40. What

are your chances of finding a significant sample correlation if you have 30 school districts?

9.21 In Exercise 9.20 how many districts would you need for power 5 .80?

9.22 Guber (1999) actually assembled the data to address the basic question referred to in Exer-

cises 9.20 and 9.21. She obtained the data for all 50 states on several variables associated

with school performance, including expenditures for education, SAT performance, percent-

age of students taking the SAT, and other variables. We will look more extensively at these

data later, but the following table contains the SPSS computer printout for Guber’s data.

YN
YN

YN
Y

b*

X1X1
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These data do not really reveal the pattern that we would expect. What do they show? 

(In Chapter 15 we will see that the expected pattern actually is there if we control for other

variables.)

9.23 In the study by Katz, Lautenschlager, Blackburn, and Harris (1990) used in this chapter and

in Exercises 7.13 and 7.29, we saw that students who were answering reading comprehen-

sion questions on the SAT without first reading the passages performed at better-than-

chance levels. This does not necessarily mean that the SAT is not a useful test. Katz et al.

went on to calculate the correlation between the actual SAT Verbal scores on their partici-

pants’ admissions applications and performance on the 100-item test. For those participants

who had read the passage, the correlation was .68 (N 5 17). For those who had not read the

passage, the correlation was .53 (N 5 28), as we have seen.

a. Were these correlations significantly different?

b. What would you conclude from these data?

9.24 Katz et al. replicated their experiment using subjects whose SAT Verbal scores showed con-

siderably more within-group variance than those in the first study. In this case the correla-

tion for the group that read the passage was .88 (N 5 52), whereas for the nonreading group

it was .72 (N 5 74). Were these correlations significantly different?

9.25 What conclusions can you draw from the difference between the correlations in Exercises

9.23 and 9.24?

R

.453a

Model

1

R Square
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Adjusted

R Square

.188

Std. Error
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Estimate
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Model Summaryb
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9.26 Make up your own example along the lines of the “smoking versus life expectancy” exam-

ple given on pp. 262–263 to illustrate the relationship between and accountable variation.

9.27 Moore and McCabe (1989) found some interesting data on the consumption of alcohol and

tobacco that illustrate an important statistical concept. Their data, taken from the Family

Expenditure Survey of the British Department of Employment, follow. The dependent vari-

ables are the average weekly household expenditures for alcohol and tobacco in 11 regions

of Great Britain.

Region Alcohol Tobacco

North 6.47 4.03

Yorkshire 6.13 3.76

Northeast 6.19 3.77

East Midlands 4.89 3.34

West Midlands 5.63 3.47

East Anglia 4.52 2.92

Southeast 5.89 3.20

Southwest 4.79 2.71

Wales 5.27 3.53

Scotland 6.08 4.51

Northern Ireland 4.02 4.56

a. What is the relationship between these two variables?

b. Popular stereotypes have the Irish as heavy drinkers. Do the data support that belief?

c. What effect does the inclusion of Northern Ireland have on our results? (A scatterplot

would be helpful.)

9.28 Using the data from Mireault (1990) in the file Mireault.dat, at http://www.uvm.edu/~dhowell/

methods7//DataFiles/DataSets.html is there a relationship between how well a student per-

forms in college (as assessed by GPA) and that student’s psychological symptoms (as

assessed by GSIT)?

9.29 Using the data referred to in Exercise 9.28,

a. Calculate the correlations among all of the Brief Symptom Inventory subscales. (Hint:

Virtually all statistical programs are able to calculate these correlations in one state-

ment. You don’t have to calculate each one individually.)

b. What does the answer to (a) tell us about the relationships among the separate scales?

9.30 One of the assumptions lying behind our use of regression is the assumption of homogene-

ity of variance in arrays. One way to examine the data for violations of this assumption is to

calculate predicted values of Y and the corresponding residuals (Y 2 ). If you plot the

residuals against the predicted values, you should see a more or less random collection of

points. The vertical dispersion should not increase or decrease systematically as you move

from right to left, nor should there be any other apparent pattern. Create the scatterplot for

the data from Cancer.dat at the Web site for this book. Most computer packages let you re-

quest this plot. If not, you can easily generate the appropriate variables by first determining

the regression equation and then feeding that equation back into the program in a “compute

statement” (e.g., “set Pred 5 0.256*GSIT 1 4.65,” and “set Resid 5 TotBPT 2 Pred”).

9.31 The following data represent the actual heights and weights referred to earlier for male col-

lege students.

a. Make a scatterplot of the data.

b. Calculate the regression equation of weight predicted from height for these data. Interpret

the slope and the intercept.

YN

r2
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c. What is the correlation coefficient for these data?

d. Are the correlation coefficient and the slope significantly different from zero? 

Height Weight Height Weight

70 150 73 170

67 140 74 180

72 180 66 135

75 190 71 170

68 145 70 157

69 150 70 130

71.5 164 75 185

71 140 74 190

72 142 71 155

69 136 69 170

67 123 70 155

68 155 72 215

66 140 67 150

72 145 69 145

73.5 160 73 155

73 190 73 155

69 155 71 150

73 165 68 155

72 150 69.5 150

74 190 73 180

72 195 75 160

71 138 66 135

74 160 69 160

72 155 66 130

70 153 73 155

67 145 68 150

71 170 74 148

72 175 73.5 155

69 175 

9.32 The following data are the actual heights and weights, referred to in this chapter, of female

college students.

a. Make a scatterplot of the data.

b. Calculate the regression coefficients for these data. Interpret the slope and the intercept.

c. What is the correlation coefficient for these data? Is the slope significantly different

from zero? 

Height Weight Height Weight 

61 140 65 135 

66 120 66 125 

68 130 65 118 

68 138 65 122 

63 121 65 115 

70 125 64 102 

68 116 67 115 

69 145 69 150 

69 150 68 110 

67 150 63 116 

(continues)
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Height Weight Height Weight

68 125 62 108 

66 130 63 95 

65.5 120 64 125 

66 130 68 133 

62 131 62 110 

62 120 61.75 108 

63 118 62.75 112 

67 125

9.33 Using your own height and the appropriate regression equation from Exercise 9.31 or 9.32,

predict your own weight. (If you are uncomfortable reporting your own weight, predict

mine—I am 5 8 and weigh 146 pounds.)

a. How much is your actual weight greater than or less than your predicted weight? (You

have just calculated a residual.)

b. What effect will biased reporting on the part of the students who produced the data play

in your prediction of your own weight?

9.34 Use your scatterplot of the data for students of your own gender and observe the size of the

residuals. (Hint: You can see the residuals in the vertical distance of points from the line.)

What is the largest residual for your scatterplot?

9.35 Given a male and a female student who are both 5 6 , how much would they be expected to

differ in weight? (Hint: Calculate a predicted weight for each of them using the regression

equation specific to their gender.)

9.36 The slope (b) used to predict the weights of males from their heights is greater than the

slope for females. Is this significant, and what would it mean if it were?

9.37 In Chapter 2, I presented data on the speed of deciding whether a briefly presented digit was

part of a comparison set and gave data from trials on which the comparison set had con-

tained one, three, or five digits. Eventually, I would like to compare the three conditions

(using only the data from trials on which the stimulus digit had in fact been a part of that

set), but I worry that the trials are not independent. If the subject (myself) was improving as

the task went along, he would do better on later trials, and how he did would in some way

be related to the number of the trial. If so, we would not be able to say that the responses

were independent. Using only the data from the trials labeled Y in the condition in which

there were five digits in the comparison set, obtain the regression of response on trial num-

ber. Was performance improving significantly over trials? Can we assume that there is no

systematic linear trend over time?

Discussion Questions

9.38 In a recent e-mail query, someone asked about how they should compare two air pollution

monitors that sit side by side and collect data all day. They had the average reading per mon-

itor for each of 50 days and wanted to compare the two monitors; their first thought was to

run a t test between the means of the readings of the two monitors. This question would ap-

ply equally well to psychologists and other behavioral scientists if we simply substitute two

measures of Extraversion for two measures of air pollution and collect data using both

measures on the same 50 subjects. How would you go about comparing the monitors (or

measures)? What kind of results would lead you to conclude that they are measuring equiv-

alently or differently? This is a much more involved question than it might first appear, so

don’t just say you would run a t test or obtain a correlation coefficient. Sample data that

–¿

–¿
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might have come from such a study are to be found on the Web site in a file named

AirQual.dat in case you want to play with data.

9.39 In 2005 an object was discovered out beyond Pluto that was (unofficially) named Xena and

now is called Eris. It is larger than Pluto but is not considered a planet—the new title is

“plutoid.” It is 96.7 astronomical units from the sun. How does such an object fit with the

data in Table 9.7.

9.40 In 1801 a celestial object named Ceres was discovered by Giuseppi Piazzi at 2.767 astro-

nomical units from the sun. It was called a dwarf planet, but those are now plutoids. If it

were classed as a planet, how would this fit with the other planets we know as shown in

Table 9.7?
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THE PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENT (r) is only one of many avail-

able correlation coefficients. It generally applies to those situations in which the relation-

ship between two variables is basically linear, where both variables are measured on a more

or less continuous scale, and where some sort of normality and homogeneity of variance

assumptions can be made. As this chapter will point out, r can be meaningfully interpreted

in other situations as well, although for those cases it is given a different name and it is

often not recognized for what it actually is.

In this chapter we will discuss a variety of coefficients that apply to different kinds of

data. For example, the data might represent rankings, one or both of the variables might be

dichotomous, or the data might be categorical. Depending on the assumptions we are will-

ing to make about the underlying nature of our data, different coefficients will be appropri-

ate in different situations. Some of these coefficients will turn out to be calculated as if they

were Pearson rs, and some will not. The important point is that they all represent attempts

to obtain some measure of the relationship between two variables and fall under the gen-

eral heading of correlation rather than regression.

When we speak of relationships between two variables without any restriction on the

nature of these variables, we have to distinguish between correlational measures and

measures of association. When at least some sort of order can be assigned to the levels of

each variable, such that higher scores represent more (or less) of some quantity, then it makes

sense to speak of correlation. We can speak meaningfully of increases in one variable being

associated with increases in another variable. In many situations, however, different levels of a

variable do not represent an orderly increase or decrease in some quantity. For example, we

could sort people on the basis of their membership in different campus organizations, and then

on the basis of their views on some issue. We might then find that there is in fact an associa-

tion between people’s views and their membership in organizations, and yet neither of these

variables represents an ordered continuum. In cases such as this, the coefficient we will com-

pute is not a correlation coefficient. We will instead speak of it as a measure of association.

There are three basic reasons we might be interested in calculating any type of coefficient

of correlation. The most obvious, but not necessarily the most important, reason is to obtain

an estimate of , the correlation in the population. Thus, someone interested in the validity of

a test actually cares about the true correlation between his test and some criterion, and ap-

proaches the calculation of a coefficient with this purpose in mind. This use is the one for

which the alternative techniques are least satisfactory, although they can serve this purpose.

A second use of correlation coefficients occurs with such techniques as multiple regres-

sion and factor analysis. In this situation, the coefficient is not in itself an end product;

rather, it enters into the calculation of further statistics. For these purposes, several of the

coefficients to be discussed are satisfactory.

The final reason for calculating a correlation coefficient is to use its square as a meas-

ure of the variation in one variable accountable for by variation in the other variable. This

is a measure of effect size (from the r-family of measures), and is often useful as a way of

conveying the magnitude of the effect that we found. Here again, the coefficients to be dis-

cussed are in many cases satisfactory for this purpose. I will specifically discuss the cre-

ation of r-family effect size measures in what follows.

10.1 Point-Biserial Correlation and Phi: Pearson
Correlations by Another Name

In the previous chapter I discussed the standard Pearson product-moment correlation coef-

ficient (r) in terms of variables that are relatively continuous on both measures. However,

that same formula also applies to a pair of variables that are dichotomous (having two

r
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levels) on one or both measures. We may need to be somewhat cautious in our interpreta-

tion, and there are some interesting relationships between those correlations and other sta-

tistics we have discussed, but the same basic procedure is used for these special cases as

we used for the more general case.

Point-Biserial Correlation ( )

Frequently, variables are measured in the form of a dichotomy, such as male-female, pass-

fail, Experimental group-Control group, and so on. Ignoring for the moment that these vari-

ables are seldom measured numerically (a minor problem), it is also quite apparent that

they are not measured continuously. There is no way we can assume that a continuous dis-

tribution, such as the normal distribution, for example, will represent the obtained scores

on the dichotomous variable male-female. If we wish to use r as a measure of relationship

between variables, we obviously have a problem, because for r to have certain desirable

properties as an estimate of , we need to assume at least an approximation of normality in

the joint (bivariate) population of X and Y.

The difficulty over the numerical measurement of X turns out to be trivial for dichoto-

mous variables. If X represents married versus unmarried, for example, then we can legiti-

mately score married as 0 and unmarried as 1, or vice versa. (In fact any two values will

do. Thus all married subjects could be given a score of 7 on X, while all unmarried subjects

could receive a score of 18, without affecting the correlation in the least. We use 0 and 1,

or sometimes 1 and 2, for the simple reason that this makes the arithmetic easier.) Given

such a system of quantification, it should be apparent that the sign of the correlation will

depend solely on the arbitrary way in which we choose to assign 0 and 1, and is therefore

meaningless for most purposes.

If we set aside until the end of the chapter the problem of r as an estimate of , things

begin to look brighter. For any other purpose, we can proceed as usual to calculate the stan-

dard Pearson correlation coefficient (r), although we will label it the point-biserial coeffi-

cient ( ). Thus, algebraically, , where one variable is dichotomous and the other

is roughly continuous and more or less normally distributed in arrays.1 There are special

formulae that we could use, but there is nothing to be gained by doing so and it is just

something additional to learn and remember.

Calculating 

One of the more common questions among statistical discussion groups on the Internet is

“Does anyone know of a program that will calculate a point-biserial correlation?” The an-

swer is very simple—any statistical package I know of will calculate the point-biserial cor-

relation, because it is simply Pearson’s r applied to a special kind of data.

As an example of the calculation of the point-biserial correlation, we will use the data

in Table 10.1. These are the first 12 cases of male (Sex 5 0) weights and the first 15 cases

of female (Sex 5 1) weights from Exercises 9.31 and 9.32 in Chapter 9. I have chosen un-

equal numbers of males and females just to show that it is possible to do so. Keep in mind

that these are actual self-report data from real subjects.

The scatterplot for these data is given in Figure 10.1, with the regression line superim-

posed. There are fewer than 27 data points here simply because some points overlap.

Notice that the regression line passes through the mean of each array. Thus, when X 5 0, 

is the intercept and equals the mean weight for males, and when X 5 1, is the meanYNYN

rpb

rpb = rrpb

r

r

rpb
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Table 10.1 Calculation of point-biserial correlation for

weights of males and females

Sex Weight Sex Weight

0 150 1 130

0 140 1 138

0 180 1 121

0 190 1 125

0 145 1 116

0 150 1 145

0 164 1 150

0 140 1 150

0 142 1 125

0 136 1 130

0 123 1 120

0 155 1 130

1 140 1 131

1 120

a = Y 2 bX = 151.25

b =
covXY

s2
X

=
25.090

(0.506)2
= 219.85

r =
covXY

sXsY
=

-5.090

(0.506)(17.792)
= -.565

covXY = -5.090

sweight = 17.792

Meanweight = 140.222

smale = 18.869

Meanmale = 151.25

ssex = 0.506

Meansex = 0.556

sfemale = 10.979

Meanfemale = 131.4
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Figure 10.1 Weight as a function of Sex



weight for females. These values are shown in Table 10.1, along with the correlation coef-

ficient. The slope of the line is negative because we have set “female” 5 1 and therefore

plotted females to the right of males. If we had reversed the scoring the slope would have

been positive. The fact that the regression line passes through the two Y means assumes

particular relevance when we later consider eta squared ( 2) in Chapter 11, where the re-

gression line is deliberately drawn to pass through several array means.

From Table 10.1 you can see that the correlation between weight and sex is 2.565. As

noted, we can ignore the sign of this correlation, since the decision about coding sex is ar-

bitrary. A negative coefficient indicates that the mean of the group coded 1 is less than the

mean of the group coded 0, whereas a positive correlation indicates the reverse. We can still

interpret as usual, however, and say that of the variability in weight can

be accounted for by sex. We are not speaking here of cause and effect. One of the more im-

mediate causes of weight is the additional height of males, which is certainly related to sex,

but there are a lot of other sex-linked characteristics that enter the picture.

Another interesting fact illustrated in Figure 10.1 concerns the equation for the regres-

sion line. Recall that the intercept is the value of when X 5 0. In this case, X 5 0 for

males and 5 151.25. In other words, the mean weight of the group coded 0 is the inter-

cept. Moreover, the slope of the regression line is defined as the change in for a one-unit

change in X. Since a one-unit change in X corresponds to a change from male to female,

and the predicted value ( ) changes from the mean weight of males to the mean weight of

females, the slope (–19.85) will represent the difference in the two means. We will return

to this idea in Chapter 16, but it is important to notice it here in a simple context.

The Relationship Between and t

The relationship between and t is very important. It can be shown, although the proof

will not be given here, that

where t is obtained from the t test of the difference of means (for example, between the

mean weights of males and females) and df 5 the degrees of freedom for t, namely

. For example, if we were to run a t test on the difference in mean weight be-

tween male and female subjects, using a t for two independent groups with unequal sample

sizes,

 =
19.85

5.799
= 3.42

 =
151.25 2 131.4

B224.159

12
1

224.159

15

 t =
X1 2 X2

B s2
p

N1

1
s2

p

N2

 =
11(18.8692) 1 14(10.9792)

12 1 15 2 2
= 224.159

 s2
p =

(N1 2 1)s2
1 1 (N2 2 1)s2

2

N1 1 N2 2 2

N1 1 N2 2 2

r2
pb =

t2

t2 1 df

rpb

rpb

YN

YN
YN

YN

-.5652 = 32%r2

h
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With 25 df, the difference between the two groups is significant. We now calculate

which, with the exception of the arbitrary sign of the coefficient, agrees with the more

direct calculation.

What is important about the equation linking and t is that it demonstrates that the

distinction between relationships and differences is not as definitive as you might at first

think. More important, we can use and t together to obtain a rough estimate of the prac-

tical, as well as the statistical, significance of a difference. Thus a t 5 3.42 is evidence in

favor of the experimental hypothesis that the two sexes differ in weight. At the same time,

(which is a function of t) tells us that gender accounts for 32% of the variation in

weight. Finally, the equation shows us how to calculate r from the research literature when

only t is given, and vice versa.

Testing the Significance of 

A test of against the null hypothesis : 5 0 is simple to construct. Since is a Pearson

product-moment coefficient, it can be tested in the same way What is important about the

equation linking and t is that it demonstrates that the distinction between relationships

and differences is not as definitive as you might at first think. More important, we can use

and t together to obtain a rough estimate of the practical, as well as the statistical, signif-

icance of a difference. Thus a t 5 3.42 is evidence in favor of the experimental hypothesis

that the two sexes differ in weight. At the same time, (which is a function of t) tells us

that gender accounts for 32% of the variation in weight. Finally, the equation shows us how

to calculate r from the research literature when only t is given, and vice versa.

Testing the Significance of 

A test of against the null hypothesis is simple to construct. Since is a 

Pearson product-moment coefficient, it can be tested in the same way as r. Namely,

on N 2 2 df. Furthermore, since this equation can be derived directly from the definition of ,

the t 5 3.42 obtained here is the same (except possibly for the sign) as a t test between the two

levels of the dichotomous variable. This makes sense when you realize that a statement that

males and females differ in weight is the same as the statement that weight varies with sex.

and Effect Size

There is one more important step that we can take. Elsewhere we have considered a meas-

ure of effect size put forth by Cohen (1988), who defined

as a measure of the effect of one treatment compared to another. We have to be a bit careful

here, because Cohen originally expressed effect size in terms of parameters (i.e., in terms of

d =
m1 2 m2

s

r2pb

r2
pb

t =
rpb2N 2 2

31 2 r2
pb

rpbH0: r = 0rpb

r2pb

r2
pb

r2
pb

r2
pb

rpbrH0rpb

r2pb

r2
pb

r2
pb

r2
pb

rpb = 1.319 = .565

r2
pb =

t2

t2 1 df
=

3.422

3.422 1 25
= .319
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population means and standard deviations). Others (Glass [1976] and Hedges [1981])

expressed their statistics ( and g, respectively) in terms of sample statistics, where

Hedges used the pooled estimate of the population variance as the denominator (see

Chapter 7 for the pooled estimate). The nice thing about any of these effect size measures

is that they express the difference between means in terms of the size of a standard devia-

tion. While it is nice to be correct, it is also nice, and sometimes clearer, to be consistent.

As I have done elsewhere, I am going to continue to refer to our effect size measure as d,

with apologies to Hedges and Glass.

There is a direct relationship between the squared point-biserial correlation coefficient

and d.

For our data on weights of males and females, we have

We can now conclude that the difference between the average weights of males and

females is about 1 1/3 standard deviations. To me, that is more meaningful than saying that

sex accounts for about 32% of the variation in weight.2

An important point here is to see that these statistics are related in meaningful ways.

We can go from to d, and vice versa, depending on which seems to be a more meaning-

ful statistic. With the increased emphasis on the reporting of effect sizes and similar meas-

ures, it is important to recognize these relationships.

The Phi Coefficient (f)

The point-biserial correlation coefficient deals with the situation in which one of the variables

is a dichotomy. When both variables are dichotomies, we will want a different statistic. For

example, we might be interested in the relationship between gender and employment,

where individuals are scored as either male or female and as employed or unemployed.

Similarly we might be interested in the relationship between employment status (em-

ployed-unemployed) and whether an individual has been arrested for drunken driving. As a

final example, we might wish to know the correlation between smoking (smokers versus

nonsmokers) and death by cancer (versus death by other causes). Unless we are willing to

make special assumptions concerning the underlying continuity of our variables, the most

appropriate correlation coefficient is the f (phi) coefficient. This is the same that we

considered briefly in Chapter 6.

Calculating f

Table 10.2 contains a small portion of the data from Gibson and Leitenberg (2000)

(referred to in Exercise 6.33) on the relationship between sexual abuse training in school,

(which some of you may remember as “stranger danger” or “good touch-bad touch”) and

f

r2
pb

=
151.25 2 131.4

14.972
= 1.33 = B25(12 1 15)(-.565)2

12 3 5(1 -.5652)
= 21.758 = 1.33

d =
X1 2 X2

spooled
= Bdf (n1 1 n2)r2

pb

n1n2(1 2 r2
pb)

d =
X1 2 X2

spooled
= Bdf (n1 1 n2)r2

pb

n1n2(1 2 r2
pb)

g¿
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subsequent sexual abuse. Both variables have been scored as 0, 1 variables—an individual

received instruction, or she did not, and she was either abused, or she was not.

The appropriate correlation coefficient is the coefficient, which is equivalent to

Pearson’s r calculated on these data. Again, special formulae exist for those people who

can be bothered to remember them, but they will not be considered here.

From Table 10.2 we can see that the correlation between whether a student receives in-

struction on how to avoid sexual abuse in school, and whether he or she is subsequently

abused, is 2.1094, with a 2 5 .012. The correlation is in the right direction, but it does

not look terribly impressive. But that may be misleading. (I chose to use these data pre-

cisely because what looks like a very small effect from one angle, looks like a much larger

effect from another angle.) We will come back to this issue shortly.

Significance of f

Having calculated , we are likely to want to test it for statistical significance. The appro-

priate test of against : 5 0 is a chi-square test, since is distributed as on 1 df.
For our data,

which, on one df, is clearly significant. We would therefore conclude that we have convinc-

ing evidence of a relationship between sexual abuse training and subsequent abuse.

The Relationship Between f and x2

The data that form the basis of Table 10.2 could be recast in another form, as shown in

Table 10.3. The two tables (10.2 and 10.3) contain the same information; they merely dis-

play it differently. You will immediately recognize Table 10.3 as a contingency table. From

it, you could compute a value of to test the null hypothesis that the variables are inde-

pendent. In doing so, you would obtain a of 9.79—which, on 1 df, is significant. It is

also the same value for that we computed in the previous subsection.x2
x2

x2

x2 = Nf2 = 818(2.10942) = 9.79

x2Nf2rH0f

f

f

f
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Table 10.2 Calculation of f for Gibson’s data

X: 0 5 Instruction 

1 5 No Instruction

Y: 0 5 Sexual Abuse

1 5 No Sexual Abuse

Partial data:

X: 0 0 0 1 0 1 0 0 0 1 0 0 1 0

Y: 0 0 1 0 1 0 0 1 1 0 0 1 0 0

Calculations (based on full data set):

5 0.3888 sX 5 0.4878 covXY 5 20.0169

5 0.8863 sY 5 0.3176 N 5 818

f2 = .012

f = r =
covXY

sXsY
=

-0.0169

(.4878)(.3176)
= -.1094

Y

X



It should be apparent that in calculating and , we have been asking the same ques-

tion in two different ways. Not surprisingly, we have come to the same conclusion. When

we calculated and tested it for significance, we were asking whether there was any cor-

relation (relationship) between X and Y. When we ran a chi-square test on Table 10.3, we

were also asking whether the variables are related (correlated). Since these questions are

the same, we would hope that we would come to the same answer, which we did. On the

one hand, relates to the statistical significance of a relationship. On the other, meas-

ures the degree or magnitude of that relationship.

It will come as no great surprise that there is a linear relationship between 2 and . 

From the fact that , we can deduce that

For our example,

(again, with a bit of correction for rounding) which agrees with our previous calculation.

f2 as a Measure of the Practical Significance of x2

The fact that we can go from to means that we have one way of evaluating the practi-

cal significance (importance) of the relationship between two dichotomous variables. We

have already seen that for Gibson’s data the conversion from to 2 showed that our 

of 9.79 accounted for about 1.2% of the variation. As I said, that does not look very

impressive, even if it is significant.

Rosenthal and Rubin (1982) have argued that psychologists and others in the “softer

sciences” are too ready to look at a small value of or , and label an effect as unimpor-

tant. They maintain that very small values of can in fact be associated with important

effects. It is easiest to state their case with respect to , which is why their work is dis-

cussed here.

Rosenthal and Rubin pointed to a large-scale evaluation (called a meta-analysis) of over

400 studies of the efficacy of psychotherapy. The authors, Smith and Glass (1977), reported

f

r2
f2r2

x2fx2

fx2

f = B9.79

818
= 10.0120 = .1095

f = Bx2

N

x2 = N
f2

1N

x2f

fx2

f

x2f
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Table 10.3 Calculation of for Gibson’s data on sexual abuse ( is shown as

“approximate” simply because of the effect of rounding error in the table)

Training No Training

Abused 43 (56.85) 50 (36.15) 93

Not Abused 457 (443.15) 268 (281.85) 725

500 318 818

= 9.79 (approx.)

 x2 =
(43 2 56.85)2

56.85
1

(50 2 36.15)2

36.15
1

(457 2 443.15)2

443.15
1

(268 2 281.85)2

281.85

x2x2



an effect equivalent to a correlation of .32 between presence or absence of psychotherapy

and presence or absence of improvement, by whatever measure. A reviewer subsequently

squared this correlation ( 5 .1024) and deplored the fact that psychotherapy accounted for

only 10% of the variability in outcome. Rosenthal and Rubin were not impressed by the re-

viewer’s perspicacity. They pointed out that if we took 100 people in a control group and

100 people in a treatment group, and dichotomized them as improved or not improved, a

correlation of 5 .32 would correspond to 5 20.48. This can be seen by computing

The interesting fact is that such a would result from a contingency table in which 66

of the 100 subjects in the treatment group improved whereas only 34 of the 100 subjects in

the control group improved. (You can easily demonstrate this for yourself by computing 

on such a table.) That is a dramatic difference in improvement rates.

But I have two more examples. Rosenthal (1990) pointed to a well-known study of

(male) physicians who took a daily dose of either aspirin or a placebo to reduce the inci-

dence of heart attacks. (We considered this study briefly in earlier chapters, but for a differ-

ent purpose.) This study was terminated early because the review panel considered the

results so clearly in favor of the aspirin group that it would have been unethical to continue

to give the control group a placebo. But, said Rosenthal, what was the correlation between

aspirin and heart attacks that was so dramatic as to cut short such a study? Would you be-

lieve 5 .034 ( 5 .001)?

I include Rosenthal’s work to make the point that one does not require large values of

(or ) to have an important effect. Small values in certain cases can be quite impres-

sive. For further examples, see Rosenthal (1990).

To return to what appears to be a small effect in Gibson’s sexual abuse data, we will

take an approach adopted in Chapter 6 with odds ratios. In Gibson’s data 50 out of 318

children who received no instruction were subsequently abused, which makes the odds of

abuse for this group to be 50/268 5 0.187. On the other hand 43 out of 500 children who

received training were subsequently abused, for odds of 43/457 5 0.094. This gives us an

odds ratio (the ratio of the two calculated odds) of 0.187/0.094 5 1.98. A child who does

not receive sexual abuse training in school is nearly twice as likely to be subsequently

abused as one who does. That looks quite a bit different from a squared correlation of only

.012, which illustrates why we must be careful in the statistic we select. (The relative risk

in this case is RR 5 .157/.086 5 1.83.)

At this point perhaps you are thoroughly confused. I began by showing that you can cal-

culate a correlation between two dichotomous variables. I then showed that this correlation

could either be calculated as a Pearson correlation coefficient, or it could be derived directly

from a chi-square test on the corresponding contingency table, because there is a nice rela-

tionship between and . I argued that or 2 can be used to provide an r-family effect

size measure (a measure of variation accounted for) of the effectiveness of the independent

variable. But then I went a step further and said that when you calculate 2 you may be sur-

prised by how small it is. In that context, I pointed to the work of Rosenthal and Rubin, and

to Gibson’s data, showing in two different ways that accounting for only small amounts of

the variation can still be impressive and important. I am mixing different kinds of measures

of “importance” (statistical significance, percentage of accountable variation, effect sizes

[d], and odds ratios), and, while that may be confusing, it is the nature of the problem.

f

ffx2f

f2r2

f2f

x2

x2

 x2 = 20.48

 .1024 = x2>200

 f2 = x2>N
 f = 3x2>N

x2f

r2
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Statistical significance is a good thing, but it certainly isn’t everything. Percentage of vari-

ation is an important kind of measure, but it is not very intuitive and may be small in im-

portant situations. The d-family measures of effect sizes have the advantage of presenting a

difference in concrete terms (distance between means in terms of standard deviations).

Odds ratios and risk ratios are very useful when you have a 2 3 2 table, but less so with

more complex or with simpler situations.

10.2 Biserial and Tetrachoric Correlation: 
Non-Pearson Correlation Coefficients

In considering the point-biserial and phi coefficients, we were looking at data where one or

both variables were measured as a dichotomy. We might even call this a “true dichotomy”

because we often think of those variables as “either-or” variables. A person is a male or a

female, not halfway in between. Those are the coefficients we will almost always calculate

with dichotomous data, and nearly all computer software will calculate those coefficients

by default.

Two other coefficients, to which you are likely to see reference, but are most unlikely

to use, are the biserial correlation and the tetrachoric correlation. In earlier editions of

this book I showed how to calculate those coefficients, but there does not seem to be much

point in doing so anymore. I will simply explain how they differ from the coefficients I

have discussed.

As I have said, we usually treat people as male or female, as if they pass or they fail a

test, or as if they are abused or not abused. But we know that those dichotomies, especially

the last two, are somewhat arbitrary. People fail miserably, or barely fail, or barely pass,

and so on. People suffer varying degrees of sexual abuse, and although all abuse is bad,

some is worse than others. If we are willing to take this underlying continuity into account,

we can make an estimate of what the correlation would have been if the variable (or

variables) had been normally distributed instead of dichotomously distributed.

The biserial correlation is the direct analog of the point-biserial correlation, except that

the biserial assumes underlying normality in the dichotomous variable. The tetrachoric cor-

relation is the direct analog of , where we assume underlying normality on both variables.

That is all you really need to know about these two coefficients.

10.3 Correlation Coefficients for Ranked Data

In some experiments, the data naturally occur in the form of ranks. For example, we might

ask judges to rank objects in order of preference under two different conditions, and wish

to know the correlation between the two sets of rankings. Cities are frequently ranked in

terms of livability, and we might want to correlate those rankings with rankings given

10 years later. Usually we are most interested in these correlations when we wish to assess

the reliability of some ranking procedure, though in the case of the city ranking example,

we are interested in the stability of rankings.

A related procedure, which has frequently been recommended in the past, is to rank

sets of measurement data when we have serious reservations about the nature of the under-

lying scale of measurement. In this case, we are substituting ranks for raw scores. Although

we could seriously question the necessity of ranking measurement data (for reasons men-

tioned in the discussion of measurement scales in Section 1.3 of Chapter 1), this is

nonetheless a fairly common procedure.

f
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Ranking Data

Students occasionally experience difficulty in ranking a set of measurement data, and this

section is intended to present the method briefly. Assume we have the following set of data,

which have been arranged in increasing order:

5, 8, 9, 12, 12, 15, 16, 16, 16, 17

The lowest value (5) is given the rank of 1. The next two values (8 and 9) are then as-

signed ranks 2 and 3. We then have two tied values (12) that must be ranked. If they were

untied, they would be given ranks 4 and 5, so we split the difference and rank them both

4.5. The sixth number (15) is now given rank 6. Three values (16) are tied for ranks 7, 8,

and 9; the mean of these ranks is 8. Thus, all are given ranks of 8. The last value is 17,

which has rank 10. The data and their corresponding ranks are given below.

X: 5 8 9 12 12 15 16 16 16 17

Ranks: 1 2 3 4.5 4.5 6 8 8 8 10

Spearman’s Correlation Coefficient for Ranked Data ( )

Whether data naturally occur in the form of ranks (as, for example, when we are looking at

the rankings of 20 cities on two different occasions) or whether ranks have been substituted

for raw scores, an appropriate correlation is Spearman’s correlation coefficient for

ranked data (r
s
). (This statistic is sometimes referred to as Spearman’s rho.)

Calculating 

The easiest way to calculate is to apply Pearson’s original formula to the ranked data.

Alternative formulae do exist, but they have been designed to give exactly the same answer

as Pearson’s formula as long as there are no ties in the data. When there are ties, the alter-

native formula lead to a wrong answer unless a correction factor is applied. Since that cor-

rection factor brings you back to where you would have been had you used Pearson’s

formula to begin with, why bother with alternative formulae?

The Significance of 

Recall that in Chapter 9 we imposed normality and homogeneity assumptions in order to

provide a test on the significance of r (or to set confidence limits). With ranks, the data

clearly cannot be normally distributed. There is no generally accepted method for calculat-

ing the standard error of for small samples. As a result, computing confidence limits on 

is not practical. Numerous textbooks contain tables of critical values of , but for N 28

these tables are themselves based on approximations. Keep in mind in this connection that a

typical judge has difficulty ranking a large number of items, and therefore in practice N is

usually small when we are using .

Kendall’s Tau Coefficient (t)

A serious competitor to Spearman’s is Kendall’s t. Whereas Spearman treated the ranks

as scores and calculated the correlation between the two sets of ranks, Kendall based his

statistic on the number of inversions in the rankings.

We will take as our example a dataset from the Data and Story Library (DASL)

Web site, found at http://lib.stat.cmu.edu/DASL/Stories/AlcoholandTobacco.html. These

rs

rs

Úrs

rsrs

rs

rs

rs

rs
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are data on the average weekly spending on alcohol and tobacco in 11 regions of Great

Britain. (We saw these data in Exercise 9.27.) The data follow, and I have organized the

rows to correspond to increasing expenditures on Alcohol. Though it is not apparent from

looking at either the Alcohol or Tobacco variable alone, in a bivariate plot it is clear that

Northern Ireland is a major outlier. Similarly the distribution of Alcohol expenditures is

decidedly nonnormal, whereas the ranked data on alcohol, like all ranks, are rectangularly

distributed.
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Region Alcohol Tobacco RankA RankT Inversions

Northern Ireland 4.02 4.56 1 11 10

East Anglia 4.52 2.92 2 2 1

Southwest 4.79 2.71 3 1 0

East Midlands 4.89 3.34 4 4 1

Wales 5.27 3.53 5 6 2

West Midlands 5.63 3.47 6 5 1

Southeast 5.89 3.20 7 3 0

Scotland 6.08 4.51 8 10 3

Yorkshire 6.13 3.76 9 7 0

Northeast 6.19 3.77 10 8 0

North 6.47 4.03 11 9 0

Notice that when the entries are listed in the order of rankings given by Alcohol, there

are reversals (or inversions) of the ranks given by Tobacco (rank 11 of tobacco comes be-

fore all lower ranks, while rank 10 of tobacco comes before 3 lower ranks). I can count the

number of inversions just by going down the Tobacco column and counting the number of

times a ranking further down the table is lower than one further up the table. For instance,

looking at tobacco expenditures, row 1 has 10 inversions because all 10 values below it are

higher. Row 2 has only one inversion because only the rank of “1” is lower than a rank 

of 2, and so on.

If there were a perfect ordinal relationship between these two sets of ranks, we would

not expect to find any inversions. The region that spent the most money on alcohol would

spend the most on tobacco, the region with the next highest expenditures on alcohol would

be second highest on tobacco, and so on. Inversions of this form are the basis for Kendall’s

statistic.

Calculating t

There are n(n 2 1) 2 5 11(10) 2 5 55 pairs of rankings. Eighteen of those rankings are

inversions (often referred to as “discordant”). This is found as the sum of the right-most

column), and 37 of those pairs are not inversions (“concordant”) and this is simply the total

number of pairs (55) minus the number of discordant pairs (18).

We will let C stand for the number of concordant pairs and D for the number of discor-

dant pairs. The difference between C and D is represented by S.

D 5 18 5 Inversions 

C 5 37

S 5 C 2 D 5 19

>>



Kendall defined

It is well known that the number of pairs of N objects is given by N(N 2 1) 2.

For our data

Thus, as a measure of the agreement between rankings on Alcohol and Tobacco, Kendall’s

t 5 .345.

The interpretation of is more straightforward than would be the interpretation of 

calculated on the same data (0.37). If t 5 .345, we can state that if a pair of objects is sam-

pled at random, the probability that the two regions will be ranked in the same order is .345

higher than the probability that they will be ranked in the reverse order.

When there are tied rankings, the calculation of must be modified. For the appropri-

ate correction for ties, see Hays (1981, p. 602 ff).

Significance of t

Unlike Spearman’s rs, there is an accepted method for estimation of the standard error of

Kendall’s t.

Moreover, t is approximately normally distributed for N $ 10. This allows us to approxi-

mate the sampling distribution of Kendall’s t using the normal approximation.

For a two-tailed test p 5 .139, which is not statistically significant. 

With a standard error of 0.2335, the confidence limits on Kendall’s t, assuming nor-

mality of t, would be

For our example this would produce confidence limits of 2.11 # t # .80.

Kendall’s t has generally been given preference of Spearman’s rS because it is a better

estimate of the corresponding population parameter, and its standard error is known.

Although there is evidence that Kendall’s holds up better than Pearson’s r to nonnor-

mality in the data, that seems to be true only at quite extreme levels. In general, Pearson’s r
on the raw data has been, and remains, the coefficient of choice. (For this data set the Pearson

correlation between the original cost values is r 5 .22, p 5 .509.)

10.4 Analysis of Contingency Tables 
with Ordered Variables

In Chapter 6 on chi-square, I referred to the problem that arises when the independent vari-

ables are ordinal variables. The traditional chi-square analysis does not take this ordering

into account, but it is important for a proper analysis. As I said in Chapter 6, this section

t

CI = t 6 1.96st = t 6 1.96 ¢B2(2N 1 5)

9N(N 2 1)
≤ = t 6 1.96(.2335)

z =
t
st

=
t

B 2(2N 1 5)

9N (N 2 1)

=
.345

B 2(27)

9(11)(10)

=
.345

.2335
= 1.48

st = B2(2N 1 5)

9N(N 2 1)

t

rst

t = 1 2
2(Number of inversions)

Number of pairs of objects
= 1 2

2(18)

55
= .345

>

t = 1 2
2(Number of inversions)

Number of pairs of objects
 or 

2S

N(N 2 1)
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was motivated by a question sent to me by Jennifer Mahon at the University of Leicester,

England, who has graciously allowed me to use her data for this example. Ms Mahon was

interested in the question of whether the likelihood of dropping out of a study on eating

disorders was related to the number of traumatic events the participants had experienced in

childhood.

The data from this study are shown below. I have taken the liberty of altering them very

slightly so that I don’t have to deal with the problem of small expected frequencies at the

same time that I am trying to show how to make use of the ordinal nature of the data. The

altered data are still a faithful representation of the effects that she found.

Number of Traumatic Events

0 1 2 3 41 Total

Dropout 25 13 9 10 6 63

Remain 31 21 6 2 3 63

Total 56 34 15 12 9 126

At first glance we might be tempted to apply a standard chi-square test to these data,

testing the null hypothesis that dropping out of treatment is independent of the number of

traumatic events the person experienced during childhood. If we do that we find a chi-

square of 9.459 on 4 df, which has an associated probability of .051. Strictly speaking, this

result does not allow us to reject the null hypothesis, and we might conclude that traumatic

events are not associated with dropping out of treatment. However, that answer is a bit too

simplistic.

Notice that Trauma represents an ordered variable. Four traumatic events are more than

3, 3 traumatic events are more than 2, and so on. If we look at the percentage of partici-

pants who dropped out of treatment as a function of the number of traumatic events they

had experienced as children, we see that there is a general, though not a monotonic,

increase in dropouts as we increase the number of traumatic events. However, this trend

was not allowed to play any role in our calculated chi-square. What we want is a statistic

that does take order into account.

A Correlational Approach

There are several ways we can accomplish what we want, but they all come down to as-

signing some kind of ordered metric to our independent variables. Dropout is not a prob-

lem because it is a dichotomy. We could code dropout as 1 and remain as 2, or dropout as 1

and remain as 0, or any other two values we like. The result will not be affected by our

choice of values. When it comes to the number of traumatic events, we could simply use

the numbers 0, 1, 2, 3, and 4. Alternatively, if we thought that 3 or 4 traumatic events would

be much more important than 1 or 2, we might use 0, 1, 2, 4, 6. In practice, as long as we

chose numbers that are monotonically increasing, and are not very extreme, the result will

not change much as a function of our choice. I will choose to use 0, 1, 2, 3, and 4.

Now that we have established a metric for each independent variable, there are several

different ways that we could go. We’ll start with one that has good intuitive appeal. We will

simply correlate our two variables.3 Each participant will have a score of 0 or 1 on Dropout,

and a score between 0 and 4 on Trauma. The standard Pearson correlation between those
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two measures is .215, which has an associated probability under the null of .016. This

correlation is significant, and we can reject the null hypothesis of independence.

Some people may be concerned about the use of Pearson’s r in this situation because

“number of traumatic events” is such a discrete variable. In fact that is not a problem for

Pearson’s r and no less an authority than Agresti (2002) recommends that approach. Perhaps

you are unhappy with the idea of specifying a particular metric for Trauma, although you

do agree that it is an ordered variable. If so, you could calculate Kendall’s tau instead of

Pearson’s r. Tau would be the same for any set of values you assign to the levels of Trauma,

assuming that they increased across the levels of that variable. For our data tau would be

.169, with a probability of .04. So the relationship would still be significant even if we are

only confident about the order of the independent variable(s). (The appeal to Kendall’s tau

as a possible replacement for Pearson’s r is the reason why I included this material here

rather than in Chapter 9. Agresti, however, has pointed out that if the cell frequencies are

very different, there are negative consequences to using either Kendall’s tau or Spearman’s rs.

I recommend strongly that you simply use r.)

Agresti (2002, p. 87) presents the approach that we have just adopted and shows that

we can compute a chi-square statistic from the correlation. He gives

M2 5 (N 2 1)r2

where M 2 is a chi-square statistic on 1 degree of freedom, r is the Pearson correlation be-

tween Dropout and Trauma, and N is the sample size. For our example this becomes

which has an associated probability under the null hypothesis of .016.

The probability value was already given by the test on the correlation, so that is noth-

ing new. But we can go one step further. We know that the overall Pearson chi-square on

4 df is 9.459. We also know that we have just calculated a chi-square of 5.757 on 1 df that

is associated with the linear relationship between the two variables. That linear relation-

ship is part of the total chi-square, and if we subtract the linear component from the overall

chi-square we obtain

df Chi-square

Pearson 4 9.459

Linear 1 5.757

Deviation from linear 3 3.702

The departure from linearity is itself a chi-square equal to 3.702 on 3 df, which has a

probability under the null of .295. Thus we do not have any evidence that there is anything

other than a linear trend underlying these data. The relationship between Trauma and

Dropout is basically linear, as can be seen in Figure 10.2.

Agresti (1996, 2002) has an excellent discussion of the approach taken here, and he

makes the interesting point that for small to medium sample sizes, the standard Pearson

chi-square is more sensitive to the negative effects of small sample size than is the ordinal

chi-square that we calculated. In other words, although some of the cells in the contingency

table are small, I am more confident of the ordinal (linear) chi-square value of 5.757 than I

can be of the Pearson chi-square of 9.459.

You can calculate the chi-square for linearity using SPSS. If you request the chi-square

statistic from the statistics dialog box, your output will include the Pearson chi-square, the

Likelihood Ratio chi square, and Linear-by-Linear Association. The SPSS printout of the

x2(1) = 125(0.2152) = 5.757

M2 = x2(1) = (N 2 1)r2

308 Chapter 10 Alternative Correlational Techniques



results for Mahon’s data is shown below. You will see that the Linear-by-Linear Association

measure of 5.757 is the same as the that we calculated using (N 2 1) r2.

Chi-Square Tests

Asymp. Sig.

Value df (2-sided)

Pearson Chi-Square 9.459a 4 .051

Likelihood Ratio 9.990 4 .041

Linear-by-Linear 

Association 5.757 1 .016

N of Valid Cases 126

a 2 cells (20.0%) have expected count less than 5. The

minimum expected count is 4.50.

There are a number of other ways to approach the problem of ordinal variables in a

contingency table. In some cases only one of the variables is ordinal and the other is nomi-

nal. (Remember that dichotomous variables can always be treated as ordinal without af-

fecting the analysis.) In other cases one of the variables is clearly an independent variable

while the other is a dependent variable. An excellent discussion of some of these methods

can be found in Agresti, 1996 and 2002.

10.5 Kendall’s Coefficient of Concordance (W )

All of the statistics we have been concerned with in this chapter have dealt with the rela-

tionship between two sets of scores (X and Y). But suppose that instead of having two

judges rank a set of objects, we had six judges doing the ranking. What we need is some

measure of the degree to which the six judges agree. Such a measure is afforded by

Kendall’s coefficient of concordance (W).

Suppose, as an example, that we asked six judges to rank order the pleasantness of

eight colored patches, and obtained the data in Table 10.4. If all of the judges had agreed

that Patch B was the most pleasant, they would all have assigned it a rank of 1, and the col-

umn total for that patch across six judges would have been 6. Similarly, if A had been

ranked second by everyone, its total would have been 12. Finally, if every judge assigned

the highest rank to Patch H, its total would have been 48. In other words, the column totals

would have shown considerable variability.

x2
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Table 10.4 Judge’s rankings of pleasantness of colored patches

Colored Patches

Judges A B C D E F G H

1 1 2 3 4 5 6 7 8

2 2 1 5 4 3 8 7 6

3 1 3 2 7 5 6 8 4

4 2 1 3 5 4 7 8 6

5 3 1 2 4 6 5 7 8

6 2 1 3 6 5 4 8 7

11 9 18 30 28 36 45 39g
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On the other hand, if the judges showed no agreement, each column would have had

some high ranks and some low ranks assigned to it, and the column totals would have been

roughly equal. Thus, the variability of the column totals, given disagreement (or random

behavior) among judges, would be low.

Kendall used the variability of the column totals in deriving his statistic. He defined W
as the ratio of the variability among columns to the maximum possible variability.

Since we are dealing with ranks, we know what the maximum variance of the totals

will be. With a bit of algebra, we can define

where represents the column totals, N 5 the number of items to be ranked, and k 5 the

number of judges doing the ranking. For the data in Table 10.4,

As you can see from the definition of W, it is not a standard correlation coefficient. It

does have an interpretation in terms of a familiar statistic. However, it can be viewed as a

function of the average Spearman correlation computed on the rankings of all possible

pairs of judges. Specifically,

For our data,

Thus, if we took all possible pairs of rankings and computed for each, the average 

would be .768.

rsrs

rs =
kW 2 1

k 2 1
=

6(.807) 2 1

5
= .768
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kW 2 1

k 2 1
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Hays (1981) recommends reporting W but converting to for interpretation. Indeed, it

is hard to disagree with that recommendation, since no intuitive meaning attaches to W
itself. W does have the advantage of being bounded by zero and one, whereas does not,

but it is difficult to attach much practical meaning to the statement that the variance of col-

umn totals is 80.7% of the maximum possible variance. Whatever its faults, seems

preferable.

A test on the null hypothesis that there is no agreement among judges is possible under

certain conditions. If k $ 7, the quantity

is approximately distributed as on N 2 1 degrees of freedom. Such a test is seldom used,

however, because W is usually calculated in those situations in which we seek a level of

agreement substantially above the minimum level required for significance, and we rarely

have seven or more judges.

x2

x2
(N21) = k(N 2 1)W

rs

rs

rs

Exercises 311

Key Terms

Correlational measures (Introduction)

Measures of association (Introduction)

Validity (Introduction)

Dichotomy (10.1)

Point-biserial coefficient ( ) (10.1)

f (phi) coefficient (10.1)

Biserial correlation coefficient ( ) (10.2)

Tetrachoric correlation coefficient ( )

(10.2)

Ranking (10.3)

Spearman’s correlation coefficient for

Ranked data (rs) (10.3)

Spearman’s rho (10.3)

Kendall’s t (10.3)

Kendall’s coefficient of 

concordance (W) (10.5)

rt

rb

rpb

Exercises

10.1 Some people think that they do their best work in the morning, whereas others claim that

they do their best work at night. We have dichotomized 20 office workers into morning or

evening people (0 5 morning, 1 5 evening) and have obtained independent estimates of

the quality of work they produced on some specified morning. The ratings were based on

a 100-point scale and appear below.

Peak time of day: 0 0 0 0 0 0 0 0 0 0

Performance rating: 65 80 55 60 55 70 60 70 55 70

Peak time of day: 0 0 0 1 1 1 1 1 1 1

Performance rating: 40 70 50 40 60 50 40 50 40 60

a. Plot these data and fit a regression line.

b. Calculate and test it for significance.

c. Interpret the results.

10.2 Because of a fortunate change in work schedules, we were able to reevaluate the subjects

referred to in Exercise 10.1 for performance on the same tasks in the evening. The data are

given below.

Peak time of day: 0 0 0 0 0 0 0 0 0 0

Performance rating: 40 60 40 50 30 40 50 50 20 30

Peak time of day: 0 0 0 1 1 1 1 1 1 1

Performance rating: 40 50 30 30 50 50 40 50 40 60 

rpb
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a. Plot these data and fit a regression line.

b. Calculate and test it for significance.

c. Interpret the results.

10.3 Compare the results you obtained in Exercises 10.1 and 10.2. What can you conclude?

10.4 Why would it not make sense to calculate a biserial correlation on the data in Exercises 10.1

and 10.2?

10.5 Perform a t test on the data in Exercise 10.1 and show the relationship between this value

of t and .

10.6 A graduate-school admissions committee is concerned about the relationship between an

applicant’s GPA in college and whether or not the individual eventually completes the

requirements for a doctoral degree. They first looked at the data on 25 randomly selected

students who entered the program 7 years ago, assigning a score of 1 to those who

completed the Ph.D. program, and of 0 to those who did not. The data follow.

GPA: 2.0 3.5 2.75 3.0 3.5 2.75 2.0 2.5 3.0 2.5

Ph.D.: 0 0 0 0 0 0 0 0 1 1

GPA: 3.5 3.25 3.0 3.0 2.75 3.25 3.0 3.33 2.5 2.75

Ph.D.: 1 1 1 1 1 1 1 1 1 1

GPA: 2.0 4.0 3.0 3.25 2.5

Ph.D.: 1 1 1 1 1

a. Plot these data.

b. Calculate .

c. Calculate .

d. Is it reasonable to look at in this situation? Why or why not?

10.7 Compute the regression equation for the data in Exercise 10.6. Show that the line defined

by this equation passes through the means of the two groups.

10.8 What do the slope and the intercept obtained in Exercise 10.7 represent?

10.9 Assume that the committee in Exercise 10.6 decided that a GPA-score cutoff of 3.00

would be appropriate. In other words, they classed everyone with a GPA of 3.00 or higher

as acceptable and those with a GPA below 3.00 as unacceptable. They then correlated this

with completion of the Ph.D. program.

a. Rescore the data in Exercise 10.6 as indicated.

b. Run the correlation.

c. Test this correlation for significance.

10.10 Visualize the data in Exercise 10.9 as fitting into a contingency table.

a. Compute the chi-square on this table.

b. Show the relationship between chi-square and .f

rb

rb

rpb
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rpb



Exercises 313

10.11 An investigator is interested in the relationship between alcoholism and a childhood his-

tory of attention deficit disorder (ADD). He has collected the following data, where a 1

represents the presence of the relevant problem.

ADD: 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1

Alcoholism: 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1

ADD: 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

Alcoholism: 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0

a. What is the correlation between these two variables?

b. Is the relationship significant?

10.12 An investigator wants to arrange the 15 items on her scale of language impairment on the

basis of the order in which language skills appear in development. Not being entirely

confident that she has selected the correct ordering of skills, she asks another professional

to rank the items from 1 to 15 in terms of the order in which he thinks they should appear.

The data are given below.

Investigator: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consultant: 1 3 2 4 7 5 6 8 10 9 11 12 15 13 14

a. Use Pearson’s formula (r) to calculate Spearman’s .

b. Discuss what the results tell you about the ordering process.

10.13. For the data in Exercise 10.12,

a. Compute Kendall’s .

b. Test for significance.

10.14 In a study of diagnostic processes, entering clinical graduate students are shown a 

20-minute videotape of children’s behavior and asked to rank order 10 behavioral events

on the tape in the order of the importance each has for a behavioral assessment (1 5 most

important). The data are then averaged to produce an average rank ordering for the entire

class. The same thing was then done using experienced clinicians. The data follow.

Events: 1 2 3 4 5 6 7 8 9 10

Experienced clinicians: 1 3 2 7 5 4 8 6 9 10

New students: 2 4 1 6 5 3 10 8 7 9

Use Spearman’s to measure the agreement between experienced and novice clinicians.

10.15 Rerun the analysis on Exercise 10.14 using Kendall’s t.

10.16 Assume in Exercise 10.14 that there were five entering clinical students. They produced

the following data:

Student 1: 1 4 2 6 5 3 9 10 7 8

Student 2: 4 3 2 5 7 1 10 8 6 9

Student 3: 1 5 2 6 4 3 8 10 7 9

Student 4: 2 5 1 7 4 3 10 8 6 9

Student 5: 2 5 1 4 6 3 9 7 8 10

Calculate Kendall’s W and for these data as a measure of agreement. Interpret your results.rs

rs

t

t

rs
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10.17 On page 302 I noted that Rosenthal and Rubin showed that an of .1024 actually repre-

sented a pretty impressive effect. They demonstrated that this would correspond to a of

20.48, and with 100 subjects in each of two groups, the 2 3 2 contingency table would

have a 34:66 split for one row and a 66:34 split for the other row.

a. Verify this calculation with your own 2 3 2 table.

b. What would that 2 3 2 table look like if there were 100 subjects in each group, but if

the were .0512? (This may require some trial and error in generating 2 3 2 tables

and computing on each.)

10.18 Using Mireault’s data on this book’s Web site (Mireault.dat), calculate the point-biserial

correlation between Gender and the Depression T score. Compare the relevant aspects of

this question to the results you obtained in Exercise 7.46. (See “The Relationship Between

and t” within Section 10.1.)

10.19 In Exercise 7.48 using Mireault.dat, we compared the responses of students who had lost

a parent and students who had not lost a parent in terms of their responses on the Global

Symptom Index T score (GSIT), among other variables. An alternative analysis would be

to use a clinically meaningful cutoff on the GSIT, classifying anyone over that score as a

clinical case (showing a clinically significant level of symptoms) and everyone below that

score as a noncase. Derogatis (1983) has suggested a score of 63 as the cutoff (e.g., if

GSIT . 63 then ClinCase 5 1; else ClinCase 5 0).

a. Use any statistical package to create the variable of ClinCase, as defined by Derogatis.

Then cross-tabulate ClinCase against Group. Compute chi-square and Cramér’s C.

b. How does the answer to part (a) compare to the answers obtained in Chapter 7?

c. Why might we prefer this approach (looking at case versus noncase) over the proce-

dure adopted in Chapter 7?

(Hint: SAS will require Proc Freq; and SPSS will use CrossTabs. The appropriate manu-

als will help you set up the commands.)

10.20 Repeat the analysis shown in Exercise 10.19, but this time cross-tabulate ClinCase

against Gender.

a. Compare this answer with the results of Exercise 10.18.

b. How does this analysis differ from the one in Exercise 10.18 on roughly the same

question?

f
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Discussion Questions

10.21 Rosenthal and others (cited earlier) have argued that small effects, as indexed by a small

, for example, can be important in certain situations. We would probably all agree that

small effects could be trivial in other situations.

a. Can an effect that is not statistically significant ever be important if it has a large

enough ?

b. How will the sample size contribute to the question of the importance of an effect?

r2

r2
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CHAPTER 11

Simple Analysis 

of Variance

Object ives

To introduce the analysis of variance as a procedure for testing differences

among two or more means.
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THE ANALYSIS OF VARIANCE (ANOVA) has long enjoyed the status of being the most used

(some would say abused) statistical technique in psychological research. The popularity

and usefulness of this technique can be attributed to two sources. First, the analysis of vari-

ance, like t, deals with differences between or among sample means; unlike t, it imposes

no restriction on the number of means. Instead of asking whether two means differ, we can

ask whether three, four, five, or k means differ. The analysis of variance also allows us to

deal with two or more independent variables simultaneously, asking not only about the in-

dividual effects of each variable separately but also about the interacting effects of two or

more variables.

This chapter will be concerned with the underlying logic of the analysis of variance and

the analysis of results of experiments employing only one independent variable. We will

also examine a number of related topics that are most easily understood in the context of a

one-way (one-variable) analysis of variance. Subsequent chapters will deal with compar-

isons among individual sample means, with the analysis of experiments involving two or

more independent variables, and with designs in which repeated measurements are made

on each subject.

11.1 An Example

Many features of the analysis of variance can be best illustrated by a simple example, so we

will begin with a study by M. W. Eysenck (1974) on recall of verbal material as a function

of the level of processing. The data we will use have the same group means and standard de-

viations as those reported by Eysenck, but the individual observations are fictional. The

study may be an old one, but it still has important things to tell us and is still widely cited.

Craik and Lockhart (1972) proposed as a model of memory that the degree to which

verbal material is remembered by the subject is a function of the degree to which it was

processed when it was initially presented. Thus, for example, if you were trying to memo-

rize a list of words, repeating a word to yourself (a low level of processing) would not lead

to as good recall as thinking about the word and trying to form associations between that

word and some other word. Eysenck (1974) was interested in testing this model and, more

important, in looking to see whether it could help to explain reported differences between

young and old subjects in their ability to recall verbal material. An examination of

Eysenck’s data on age differences will be postponed until Chapter 13; we will concentrate

here on differences due to the level of processing.

Eysenck randomly assigned 50 subjects between the ages of 55 and 65 years to one of

five groups—four incidental-learning groups and one intentional-learning group. (Inciden-

tal learning is learning in the absence of the expectation that the material will later need to

be recalled.) The Counting group was asked to read through a list of words and simply

count the number of letters in each word. This involved the lowest level of processing, be-

cause subjects did not need to deal with each word as anything more than a collection of

letters. The Rhyming group was asked to read each word and think of a word that rhymed

with it. This task involved considering the sound of each word, but not its meaning. The

Adjective group had to process the words to the extent of giving an adjective that could rea-

sonably be used to modify each word on the list. The Imagery group was instructed to try

to form vivid images of each word. This was assumed to require the deepest level of pro-

cessing of the four incidental conditions. None of these four groups were told that they

would later be asked for recall of the items. Finally, the Intentional group was told to read

through the list and to memorize the words for later recall. After subjects had gone through

the list of 27 items three times, they were given a sheet of paper and asked to write down all

of the words they could remember. If learning involves nothing more than being exposed to
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the material (the way most of us read a newspaper or, heaven forbid, a class assignment),

then the five groups should have shown equal recall—after all, they all saw all of the

words. If the level of processing of the material is important, then there should have been

noticeable differences among the group means. The data are presented in Table 11.1.

11.2 The Underlying Model

The analysis of variance, as all statistical procedures, is built on an underlying model. I am

not going to beat the model to death and discuss all of its ramifications, but a general un-

derstanding of that model is important for understanding what the analysis of variance is

all about and for understanding more complex models that follow in subsequent chapters.

To start with an example that has a clear physical referent, suppose that the average

height of all American adults is 5'7" and that adult males tend to be about 2 inches taller

than adults in general. Suppose further that you are an adult male. I could break your height

into three components, one of which is the mean height of all American adults, one of

which is a component due to your sex, and one of which is your own unique contribution.

Thus I could specify that your height is 5'7" plus 2 inches extra for being a male, plus or

minus a couple of inches to account for the fact that there is variability in height for males.

(We could make this model even more complicated by allowing for height differences

among different nationalities, but we won’t do that here.) We can write this model as

Height 5 5'7" 1 2" 1 uniqueness

where “uniqueness” represents your deviation from the average for males. Another way to

write it would be

Height 5 grand mean 1 gender component 1 uniqueness

If we want to represent the above statement in more general terms, we can let m stand

for the mean height of the population of all American adults, stand for the extra com-

ponent due to being a male ( ), and be your unique contribution to

the model. Then our model becomes

Xij = m 1 tmale 1 ´you

´youtmale = mmale 2 m

tmale
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Table 11.1 Number of words recalled as a function of level of processing

Counting Rhyming Adjective Imagery Intentional Total

9 7 11 12 10

8 9 13 11 19

6 6 8 16 14

8 6 6 11 5

10 6 14 9 10

4 11 11 23 11

6 6 13 12 14

5 3 13 10 15

7 8 10 19 11

7 7 11 11 11

Mean 7.00 6.90 11.00 13.40 12.00 10.06

St. Dev. 1.83 2.13 2.49 4.50 3.74 4.01

Variance 3.33 4.54 6.22 20.27 14.00 16.058



Now let’s move from our physical model of height to one that more directly underlies

our example. We will look at this model in terms of Eysenck’s experiment on the recall of

verbal material. Here represents the score of in (e.g., represents

the third person in the Rhyming condition). We let m represent the mean of all subjects who

could theoretically be run in Eysenck’s experiment, regardless of condition. The symbol 

represents the population mean of (e.g., is the mean of the Rhyming condi-

tion), and is the degree to which the mean of deviates from the grand mean

( ). Finally, is the amount by which in deviates from the

mean of his or her group ( ). Imagine that you were a subject in the memory

study by Eysenck that was just described. We can specify your score on that retention test

as a function of these components.

This is the structural model that underlies the analysis of variance. In future chapters

we will extend the model to more complex situations, but the basic idea will remain the

same. Of course we do not know the values of the various parameters in this structural

model, but that doesn’t stop us from positing such a model.

Assumptions

As we know, Eysenck was interested in studying the level of recall under the five condi-

tions. We can represent these conditions in Figure 11.1, where and represent the

mean and variance of whole populations of scores that would be obtained under each of

these conditions. The analysis of variance is based on certain assumptions about these pop-

ulations and their parameters. In this figure the fact that one distribution is to the right of

another does not say anything about whether or not its mean is different from others.

Homogeneity of Variance

A basic assumption underlying the analysis of variance is that each of our populations has

the same variance. In other words,

where the notation is used to indicate the common value held by the five population

variances. This assumption is called the assumption of homogeneity of variance, or, if you

like long words, homoscedasticity.

The subscript “e” stands for error, and this variance is the error variance—the vari-

ance unrelated to any treatment differences, which is variability of scores within the same

condition. Homogeneity of variance would be expected to occur if the effect of a treatment

is to add a constant to everyone’s score—if, for example, everyone who thought of adjec-

tives in Eysenck’s study recalled five more words than they would otherwise have recalled.

s2
e

s2
1 = s2

2 = s2
3 = s2

4 = s2
5 = s2

e

s2
jmj

= m 1 tj 1 íj

Xij = m 1 (mj 2 m) 1 íj

íj = Xij 2 mj

ConditionjPersoniíjtj = mj 2 m

Conditionjtj

m2Conditionj

mj

X32ConditionjPersoniXij
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As we will see later, under certain conditions the assumption of homogeneity of

variance can be relaxed without substantially damaging the test, though it might alter the

meaning of the result. However, there are cases where heterogeneity of variance, or

“heteroscedasticity” (populations having different variances), is a problem.

Normality

A second assumption of the analysis of variance is that the recall scores for each condition

are normally distributed around their mean. In other words, each of the distributions in

Figure 11.1 is normal. Since represents the variability of each person’s score around the

mean of that condition, our assumption really boils down to saying that error is normally

distributed within conditions. Thus you will often see the assumption stated in terms of

“the normal distribution of error.” Moderate departures from normality are not usually

fatal. We said much the same thing when looking at the t test for two independent samples,

which is really just a special case of the analysis of variance.

Independence of Observations

Our third important assumption is that the observations are independent of one another.

(Technically, this assumption really states that the error components [ ] are independent, but

that amounts to the same thing here.) Thus for any two observations within an experimental

treatment, we assume that knowing how one of these observations stands relative to the treat-

ment (or population) mean tells us nothing about the other observation. This is one of the im-

portant reasons why subjects are randomly assigned to groups. Violation of the independence

assumption can have serious consequences for an analysis (see Kenny & Judd, 1986).

The Null Hypothesis

As we know, Eysenck was interested in testing the research hypothesis that the level of

recall varies with the level of processing. Support for such a hypothesis would come from

rejection of the standard null hypothesis

The null hypothesis could be false in a number of ways (e.g., all means could be differ-

ent from each other, the first two could be equal to each other but different from the last

three, and so on), but for now we are going to be concerned only with whether the null hy-

pothesis is completely true or is false. In Chapter 12 we will deal with the problem of

whether subsets of means are equal or unequal.

11.3 The Logic of the Analysis of Variance

The logic underlying the analysis of variance is really very simple, and once you under-

stand it the rest of the discussion will make considerably more sense. Consider for a mo-

ment the effect of our three major assumptions—normality, homogeneity of variance, and

the independence of observations. By making the first two of these assumptions we have

said that the five distributions represented in Figure 11.1 have the same shape and disper-

sion. As a result, the only way left for them to differ is in terms of their means. (Recall that

the normal distribution depends only on two parameters, m and s.)

We will begin by making no assumption concerning —it may be true or false. For

any one treatment, the variance of the 10 scores in that group would be an estimate of the

H0

H0 : m1 = m2 = m3 = m4 = m5

eij

eij
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variance of the population from which the scores were drawn. Because we have assumed

that all populations have the same variance, it is also one estimate of the common popula-

tion variance . If you prefer, you can think of

, , , 

where is read as “is estimated by.” Because of our homogeneity assumption, all these

are estimates of . For the sake of increased reliability, we can pool the five estimates by

taking their mean, if , and thus

where k 5 the number of treatments (in this case, five).1 This gives us one estimate of the

population variance that we will later refer to as MS
error

(read “mean square error”), or,

sometimes, MS
within

. It is important to note that this estimate does not depend on the truth

or falsity of , because is calculated on each sample separately. For the data from

Eysenck’s study, our pooled estimate of will be

Now let us assume that is true. If this is the case, then our five samples of 10 cases

can be thought of as five independent samples from the same population (or, equivalently,

from five identical populations), and we can produce another possible estimate of . Re-

call from Chapter 7 that the central limit theorem states that the variance of means drawn

from the same population equals the variance of the population divided by the sample size.

If is true, the sample means have been drawn from the same population (or identical

ones, which amounts to the same thing), and therefore the variance of our five sample

means estimates .

where n is the size of each sample. Thus, we can reverse the usual order of things and cal-

culate the variance of our sample means ( ) to obtain the second estimate of :

This term is referred to as MS
treatment

often abbreviated as ; we will return to it shortly.

We now have two estimates of the population variance ( ). One of these estimates

( ) is independent of the truth or falsity of . The other ( ) is an estimate

of only as long as is true (only as long as the conditions of the central limit theorem

are met; namely, that the means are drawn from one population or several identical popula-

tions). Thus, if the two estimates agree, we will have support for the truth of , and if they

disagree, we will have support for the falsity of .2

From the preceding discussion, we can concisely state the logic of the analysis of

variance. To test , we calculate two estimates of the population variance—one that is

independent of the truth or falsity of , and another that is dependent on . If the twoH0H0

H0

H0

H0

H0s2
e
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1 If the sample sizes were not equal, we would still average the five estimates, but in this case we would weight
each estimate by the number of degrees of freedom for each sample—just as we did in Chapter 7.
2 Students often have trouble with the statement that “means are drawn from the same population” when we know
in fact that they are often drawn from logically distinct populations. It seems silly to speak of means of males and
females as coming from one population when we know that these are really two different populations of people.
However, if the population of scores for females is exactly the same as the population of scores for males, then we
can legitimately speak of these as being the identical (or the same) population of scores, and we can behave
accordingly.
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estimates agree, we have no reason to reject . If they disagree sufficiently, we conclude

that underlying treatment differences must have contributed to our second estimate, inflat-

ing it and causing it to differ from the first. Therefore, we reject .

Variance Estimation

It might be helpful at this point to state without proof the two values that we are really esti-

mating. We will first define the treatment effect, denoted , as ( ), the difference

between the mean of ( ) and the grand mean (m), and we will define as the

variation of the true populations’ means ( ).3

In addition, recall that we defined the expected value of a statistic [written E()] as its

long-range average—the average value that statistic would assume over repeated sam-

pling, and thus our best guess as to its value on any particular trial. With these two con-

cepts we can state

where is the variance within each population and is the variation4 of the population

means ( ).

Now, if is true and , then the population means don’t

vary and 5 0,

and

and thus

Keep in mind that these are expected values; rarely in practice will the two sample-

based mean squares be numerically equal.

If is false, however, the will not be zero, but some positive number. In this case,

because will contain a nonzero term representing the true differences among the .mjMStreat

E(MSerror) 6 E(MStreat)

u2
tH0

E(MSerror) = E(MStreat)

E(MStreat) = s2
e 1 n(0) = s2

e

E(MSerror) = s2
e

u2
t

m1 = m2 = Á = m5 = mH0

mj

u2
ts2

e

= s2
e 1 nu2

t

E(MStreat) = s2
e 1

na t2
j

k 2 1

E(MSerror) = s2
e

u2
t =

a (mj 2 m)2

k 2 1
=
a t2

j

k 2 1

m1, m2, . . . , m5

u2
tmjtreatmentj

mj 2 mtj

H0

H0

Section 11.3 The Logic of the Analysis of Variance 323

3 Technically, is not actually a variance, because, having the actual parameter ( ), we should be dividing by k
instead of k 2 1. Nonetheless, we lose very little by thinking of it as a variance, as long as we keep in mind pre-
cisely what we have done. Many texts, including previous editions of this one, represent as to indicate that it
is very much like a variance. But in this edition I have decided to be honest and use .
4 I use the wishy-washy word “variation” here because I don’t really want to call it a “variance,” which it isn’t, but
want to keep the concept of variance.

ut
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11.4 Calculations in the Analysis of Variance

At this point we will use the example from Eysenck to illustrate the calculations used in

the analysis of variance. Even though you may think that you will always use computer

software to run analyses of variance, it is very important to understand how you would

carry out the calculations using a calculator. First of all, it helps you to understand the 

basic procedure. In addition, it makes it much easier to understand some of the controver-

sies and alternative analyses that are proposed. Finally, no computer program will do

everything you want it to do, and you must occasionally resort to direct calculations. So

bear with me on the calculations, even if you think that I am wasting my time.

Sum of Squares

In the analysis of variance much of our computation deals with sums of squares. As we

saw in Chapter 9, a sum of squares is merely the sum of the squared deviations about the

mean or, more often, some multiple of that. When we first defined the sam-

ple variance, we saw that

Here, the numerator is the sum of squares of X and the denominator is the degrees of free-

dom. Sums of squares have the advantage of being additive, whereas mean squares and vari-

ances are additive only if they happen to be based on the same number of degrees of freedom.

The Data

The data are reproduced in Table 11.2, along with a boxplot of the data in Figure 11.2 and

the calculations in Table 11.3. We will discuss the calculations and the results in detail.

Because these actual data points are fictitious (although the means and variances are not),

there is little to be gained by examining the distribution of observations within individual

s2
X =

a (X 2 X)2

n 2 1
=
aX2 2 AaXB2>n

n 2 1

Ca (X 2 X)2 D
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Table 11.2 Data for example from Eysenck (1974)

Counting Rhyming Adjective Imagery Intentional Total

9 7 11 12 10

8 9 13 11 19

6 6 8 16 14

8 6 6 11 5

10 6 14 9 10

4 11 11 23 11

6 6 13 12 14

5 3 13 10 15

7 8 10 19 11

7 7 11 11 11

Mean 7.00 6.90 11.00 13.40 12.00 10.06

St. Dev. 1.83 2.13 2.49 4.50 3.74 4.01

Variance 3.33 4.54 6.22 20.27 14.00 16.058

sums of squares



groups—the data were actually drawn from a normally distributed population. With real

data, however, it is important to examine these distributions first to make sure that they are

not seriously skewed or bimodal and, even more important, that they are not skewed in dif-

ferent directions. Even for this example, it is useful to examine the individual group vari-

ances as a check on the assumption of homogeneity of variance. Although the variances are

not as similar as we might like (the variance for Imagery is noticeably larger than the oth-

ers), they do not appear to be so drastically different as to cause concern. As we will see

later, the analysis of variance is robust against violations of assumptions, especially when

we have the same number of observations in each group.

Table 11.3 shows the calculations required to perform a one-way analysis of variance.

These calculations require some elaboration.
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Table 11.3 Computations for Data in Table 11.2

Summary Table

Source df SS MS F

Treatments 4 351.52 87.88 9.08

Error 45 435.30 9.67

Total 49 786.82

SSerror = SStotal 2 SStreat = 786.82 2 351.52 = 435.30

= 10(35.152) = 351.52

SStreat = na (Xj 2 X..)
2 = 10((7 2 10.06)2 1 (6.90 2 10.06)2 1  . . . 1 (12 2 10.06)2)

= 786.82

SStotal = a (Xij 2 X..)
2 = (9 2 10.06)2 1 (8 2 10.06)2 1 . . . 1 (11 2 10.06)2

Figure 11.2 Boxplot of Eysenck’s data on recall as a function of level of processing



SS
total

The SS
total

(read “sum of squares total”) represents the sum of squares of all the observa-

tions, regardless of which treatment produced them. Letting represent the grand mean,

the definitional formula is

This is a term we saw much earlier when we were calculating the variance of a set of

numbers, and is the numerator for the variance. (The denominator was the degrees of free-

dom.) This formula, like the ones that follow, is probably not the formula we would use if

we were to do the hand calculations for this problem. The formulae are very susceptible to

the effects of rounding error. However, they are perfectly correct formulae, and represent

the way that we normally think about the analysis. For those who prefer more traditional

hand-calculation formulae, they can be found in earlier editions of this book.

SS
treat

The definitional formula for SS
treat

is framed in the context of deviations of group means

from the grand mean. Here we have

You can see that SS
treat

is just the sum of squared deviations of the treatment means around

the grand mean, multiplied by n later to give us an estimate of the population variance.

SS
error

In practice, SS
error

is obtained by subtraction. Since it can be easily shown that

then it must also be true that

This is the procedure presented in Table 11.3, and it makes our calculations easier.

To present SS
error

in terms of deviations from means, we can write

Here you can see that SS
error

is simply the sum over groups of the sums of squared de-

viation of scores around their group’s mean. This approach is illustrated in the following,

where I have calculated the sum of squares within each of the groups. Notice that for each

group there is absolutely no influence of data from other groups, and therefore the truth or

falsity of the null hypothesis is irrelevant to the calculations.

SSerror =    435.30

SSwithin International = a 1(10 2 12.00)2 1 (19 2 12.00)2 1 . . . 1 (11 2 12.00)22 = 126.00

SSwithin Imagery = a 1(12 2 13.4)2 1 (11 2 13.4)2 1 . . . 1 (11 2 13.4)22  = 182.40

SSwithin Adjective = a 1(11 2 11.00)2 1 (13 2 11.00)2 1 . . . 1 (11 2 11.00)22 = 56.00

SSwithin Rhyming = a 1(7 2 6.90)2 1 (9 2 6.90)2 1 . . . 1 (7 2 6.90)22   = 40.90

SSwithin Counting = a 1(9 2 7.00)2 1 (8 2 7.00)2 1 . . . 1 (7 2 7.00)22   = 30.00

SSerror = a (Xij 2 Xj)
2

SSerror = SStotal 2 SStreat

SStotal = SStreat 1 SSerror

SStreat = na (Xj 2 X..)
2

SStotal = a (Xij 2 X..)
2

X..
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SS
total

SS
treat

SS
error



When we sum these individual terms, we obtain 435.30, which agrees with the answer we

obtained in Table 11.3.

The Summary Table

Table 11.3 also shows the summary table for the analysis of variance. It is called a

summary table for the rather obvious reason that it summarizes a series of calculations,

making it possible to tell at a glance what the data have to offer. In older journals you

will often find the complete summary table displayed. More recently, primarily to save

space, usually just the resulting Fs (to be defined) and the degrees of freedom are

presented.

Sources of Variation

The first column of the summary table contains the sources of variation—the word “variation”

being synonymous with the phrase “sum of squares.” As can be seen from the table, there are

three sources of variation: the variation due to treatments (variation among treatment means),

the variation due to error (variation within the treatments), and the total variation. These

sources reflect the fact that we have partitioned the total sum of squares into two portions, one

representing variability within the individual groups and the other representing variability

among the several group means.

Degrees of Freedom

The degrees of freedom column in Table 11.3 represents the allocation of the total

number of degrees of freedom between the two sources of variation. With 49 df overall

(i.e., N 2 1), four of these are associated with differences among treatment means and

the remaining 45 are associated with variability within the treatment groups. The cal-

culation of df is probably the easiest part of our task. The total number of degrees of

freedom (df
total

) is always N21, where N is the total number of observations. The num-

ber of degrees of freedom between treatments (df
treat

) is always k 2 1, where k is the

number of treatments. The number of degrees of freedom for error (df
error

) is most eas-

ily thought of as what is left over and is obtained by subtracting from .

However, df
error

can be calculated more directly as the sum of the degrees of freedom

within each treatment.

To put this in a slightly different form, the total variability is based on N scores and there-

fore has N 2 1 df. The variability of treatment means is based on k means and therefore has

k 2 1 df. The variability within any one treatment is based on n scores, and thus has n 2 1 df,
but since we sum k of these within-treatment terms, we will have k times n 2 1 or k(n 2 1) df.

Mean Squares

We will now go to the MS column in Table 11.3. (There is little to be said about

the column labeled SS; it simply contains the sums of squares obtained in the section

on calculations.) The column of mean squares contains our two estimates of . These

values are obtained by dividing the sums of squares by their corresponding df. Thus,

351.52/4 5 87.88 and 435.30/45 5 9.67. We typically do not calculate , because

we have no need for it. If we were to do so, this term would equal 786.82/49 5 16.058,

which, as you can see from Table 11.3, is the variance of all N observations, regardless

of treatment. Although it is true that mean squares are variance estimates, it is impor-

tant to keep in mind what variances these terms are estimating. Thus, is anMSerror

MStotal

s2
e

dftotaldftreat
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dftotal



estimate of the population variance ( ), regardless of the truth or falsity of , and is

actually the average of the variances within each group when the sample sizes are

equal:

5 (3.33 1 4.54 1 6.22 1 20.27 1 14.00)/5 5 9.67

However, is not the variance of treatment means but rather is the variance of

those means corrected by n to produce a second estimate of the population variance ( ).

The F Statistic

The last column in Table 11.3, labeled F, is the most important one in terms of testing the

null hypothesis. F is obtained by dividing by . There is a precise way and a

sloppy way to explain why this ratio makes sense, and we will start with the latter. As said

earlier, is an estimate of the population variance ( ). Moreover is an esti-

mate of the population variance ( ) if is true, but not if it is false. If is true, then

and are both estimating the same thing, and as such they should be approxi-

mately equal. If this is the case, the ratio of one to the other will be approximately 1, give

or take a certain amount for sampling error. Thus, all we have to do is to compute the ratio

and determine whether it is close enough to 1 to indicate support for the null hypothesis.

So much for the informal way of looking at F. A more precise approach starts with the

expected mean squares for error and treatments. From earlier in the chapter, we know

We now form the ratio

The only time this ratio would have an expectation of 1 is when 5 0—that is, when 

is true and .5 When . 0, the expectation will be greater than 1.

The question that remains, however, is, How large a ratio will we accept without reject-

ing when we use not expected values but obtained mean squares, which are computed

from data and are therefore subject to sampling error? The answer to this question lies in

the fact that we can show that the ratio

is distributed as F on k 2 1 and k(n 2 1) df. This is the same F distribution discussed ear-

lier in conjunction with testing the ratio of two variance estimates (which in fact is what

we are doing here). Note that the degrees of freedom represent the df associated with the

numerator and denominator, respectively.

For our example, F 5 9.08. We have 4 df for the numerator and 45 df for the denomi-

nator, and can enter the F table (Appendix F) with these values. Appendix F, a portion of

which is shown in Table 11.4, gives the critical values for a 5 .05 and a 5 .01. For our

particular case we have 4 and 45 df and, with linear interpolation, . Thus,

if we have chosen to work at a 5 .05, we would reject and conclude that there are sig-

nificant differences among the treatment means.

H0

F.05(4,45) = 2.58

F = MStreat>MSerror

H0

u2
tm1 = Á = m5

H0u2
t

E(MStreat)

E(MSerror)
=

s2
e 1 nu2

t

s2
e

E(MStreat) = s2
e 1 nu2

t

E(MSerror) = s2
e

MStreatMSerror

H0H0s2
e

MStreats2
eMSerror

MSerrorMStreat

s2
e

MStreat

MSerror

H0s2
e
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5 As an aside, note that the expected value of F is not precisely 1 under although 

To be exact, under, 

For all practical purposes, nothing is sacrificed by thinking of F as having an expectation of 1 under and
greater than 1 under the alternative hypothesis).H1

H0

E(F ) =
df

error

dferror 2 2H0,
E(MS

treat
)

E(MSerror)
= 1 if ut

2 = 0.

H0,



Conclusions

On the basis of a significant value of F, we have rejected the null hypothesis that the treat-

ment means in the population are equal. Strictly speaking, this conclusion indicates that at

least one of the population means is different from at least one other mean, but we don’t

know exactly which means are different from which other means. We will pursue that topic

in Chapter 12. It is evident from an examination of the boxplot in Figure 11.2, however,

that increased processing of the material is associated with increased levels of recall. For

example, a strategy that involves associating images with items to be recalled leads to

nearly twice the level of recall as does merely counting the letters in the items. Results such

as these give us important hints about how to go about learning any material, and highlight
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Table 11.4 Abbreviated version of Appendix F, Critical Values of the F Distribution

where a 5 .05

Degrees of Freedom for Numerator

df

denom. 1 2 3 4 5 6 7 8 9 10

1 161.4 199.5 215.8 224.8 230.0 233.8 236.5 238.6 240.1 242.1

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91

200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88

500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85

1000 3.85 3.01 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84



the poor recall to be expected from passive studying. Good recall, whether it be lists of

words or of complex statistical concepts, requires active and “deep” processing of the ma-

terial, which is in turn facilitated by noting associations between the to-be-learned material

and other material that you already know. You have probably noticed that sitting in class

and dutifully recording everything that the instructor says doesn’t usually lead to the grades

that you think such effort deserves. Now you know a bit about why.

11.5 Writing Up the Results

Reporting results for an analysis of variance is somewhat more complicated than reporting

the results of a t test. This is because we not only want to indicate whether the overall F is

significant, but we probably also want to make statements about the differences between

individual means. We won’t discuss tests on individual means until the next chapter, so this

example will be incomplete. We will come back to it in Chapter 12. An abbreviated version

of a statement about the results follows.

In a test of the hypothesis that memory depends upon the level of processing of the ma-

terial to be recalled, participants were divided into five groups of ten participants each.

The groups differed in the amount of processing of verbal material required by the in-

structions, varying from simply counting the letters in the words to be recalled to form-

ing mental images evoked by each word. After going through the list of 27 words three

times, participants were asked to recall as many items on the list as possible. A one-

way analysis of variance revealed that there were significant differences among the

means of the five groups (F(4,45) 5 9.08, p , .05).Visual inspection of the group

means revealed that the level of recall generally increased with the level of processing

required, as predicted by the theory. (Note: Further discussion of these differences will

have to wait until Chapter 12.)

11.6 Computer Solutions

Most analyses of variance are now done using standard computer software, and Exhibit 11.1

contains examples of output from SPSS. Other statistical software will produce similar results.

In producing the SPSS printout that follows, I used the One-Way selection from the

Compare Means menu.
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Exhibit 11.1 SPSS One-Way Printout (continues)
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Estimated Marginal Means of RECALL

Group

IntentionalImageryAdjectiveRhymingCounting
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14

12

10

8

6

N

10

10

10

10

10

50

Counting

Rhyming

Adjective

Imagery

Intentional

Total

Mean

7.00

6.90

11.00

13.40

12.00

10.06

Std.

Deviation

1.83

2.13

2.49

4.50

3.74

4.01

Std. 

Error

.58

.67

.79

1.42

1.18

.57

Lower

Bound

5.69

5.38

9.22

10.18

9.32

8.92

Upper

Bound

8.31

8.42

12.78

16.62

14.68

11.20

Minimum

4

3

6

9

5

3

Maximum

10

11

14

23

19

23

Descriptives

RECALL

95% Confidence
Interval for Mean

ANOVA

RECALL

Sum of

Squares
Between Groups

Within Groups

Total

df

4

45

49

Mean

Square

87.880

9.673

F

9.085

Sig.

.000

Exhibit 11.1 (continued)

351.520

435.300

786.820



The output here looks like what we computed. You would get the same general results

if you had selected Analyze/General Linear Model/Univariate from the menus, although

the summary table would contain additional lines of information that I won’t discuss until

the end of this chapter.

11.7 Unequal Sample Sizes

Most experiments are originally designed with the idea of collecting the same number of

observations in each treatment. (Such designs are generally known as balanced designs.)

Frequently, however, things do not work out that way. Subjects fail to arrive for testing, or

are eliminated because they fail to follow instructions. Animals occasionally become ill

during an experiment from causes that have nothing to do with the treatment. I still recall

an example first seen in graduate school in which an animal was eliminated from the study

for repeatedly biting the experimenter (Sgro & Weinstock, 1963). Moreover, studies con-

ducted on intact groups, such as school classes, have to contend with the fact that such

groups nearly always vary in size.

If the sample sizes are not equal, the analysis discussed earlier needs to be modified. For

the case of one independent variable, however, this modification is relatively minor.

(A much more complete discussion of the treatment of missing data for a variety of analysis

of variance and regression designs can be found in Howell (2008), or, in slightly simpler

form, at http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/Missing.html)

Earlier we defined

We were able to multiply the deviations by n, because n was common to all treatments. If

the sample sizes differ, however, and we define as the number of subjects in the jth treatment

, we can rewrite the expression as

which, when all are equal, reduces to the original equation. This expression shows us

that with unequal ns, the deviation of each treatment mean from the grand mean is

weighted by the sample size. Thus, the larger the size of one sample relative to the others,

the more it will contribute to , all other things being equal.

Effective Therapies for Anorexia

The following example is taken from a study by Everitt that compared the effects of two

therapy conditions and a control condition on weight gain in anorexic girls. The data are

reported in Hand et al., 1994. Everitt used a control condition that received no intervention,

a cognitive-behavioral treatment condition, and a family therapy condition. The dependent

variable analyzed here was the gain in weight over a fixed period of time. The data are

given in Table 11.5 and plotted in Figure 11.3. Although there is some tendency for the

Cognitive-behavior therapy group to be bimodal, that tendency is probably not sufficient to

distort our results. (A nonparametric test [see Chapter 18] that is not influenced by that bi-

modality produces similar results.)

The computation of the analysis of variance follows, and you can see that the change

required by the presence of unequal sample sizes is minor. I should hasten to point out that

unequal sample sizes will not be so easily dismissed when we come to more complex designs,

but there is no particular difficulty with the one-way design.

SStreat

nj

SStreat = a 3nj(Xj 2 X..)
24

Aanj = NB
nj

SStreat = na (Xj 2 X..)
2
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= 3910.742

SSerror = SStotal 2 SStreat = 4525.386 2 614.644

= 614.644

= 26 * (-0.45 2 2.76)2 1 29 * (3.01 2 2.76)2 1 (17 * (7.26 2 2.76)2)

SStreat = anj(Xj 2 X..)
2

= 4525.386

SStotal = a (Xij 2 X..)
2 = 3( -0.5 2 2.76)2 1 (-9.3 2 2.76)2 1 . . . 1 (10.7 2 2.76)24
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Table 11.5 Data from Everitt on the treatment of anorexia 

in young girls

Cognitive-

Behavior Family

Control Therapy Therapy Total

−.5 1.7 11.4

−9.3 .7 11.0

−5.4 −.1 5.5

12.3 −.7 9.4

−2.0 −3.5 13.6

−10.2 14.9 −2.9

−12.2 3.5 −.1

11.6 17.1 7.4

−7.1 −7.6 21.5

6.2 1.6 −5.3

−.2 11.7 −3.8

−9.2 6.1 13.4

8.3 1.1 13.1

3.3 −4.0 9.0

11.3 20.9 3.9

.0 −9.1 5.7

−1.0 2.1 10.7

−10.6 −1.4

−4.6 1.4

−6.7 −.3

2.8 −3.7

.3 −.8

1.8 2.4

3.7 12.6

15.9 1.9

−10.2 3.9

.1

15.4

−.7

Mean −0.45 3.01 7.26 2.76

St. Dev. 7.989 7.308 7.157 7.984

Variance 63.819 53.414 51.229 63.738

n 26 29 17 72
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Figure 11.3 Weight gain in Everitt’s three groups

Source df SS MS F

Treatments 2 614.644 307.322 5.422*

Error 69 3910.742 56.677

Total 71 4525.386

* p , .05

From the summary table you can see that there is a significant effect due to treatment.

The presence of this effect is clear in Figure 11.3, where the control group showed no ap-

preciable weight gain, whereas the other two groups showed substantial gain. We do not

yet know whether the Cognitive-behavior group and the Family therapy group were signif-

icantly different, nor whether they both differed from the Control group, but we will re-

serve that problem until the next chapter.

11.8 Violations of Assumptions

As we have seen, the analysis of variance is based on the assumptions of normality and

homogeneity of variance. In practice, however, the analysis of variance is a robust sta-

tistical procedure, and the assumptions frequently can be violated with relatively minor

effects. This is especially true for the normality assumption. For studies dealing with

this problem, see Box (1953, 1954a, 1954b), Boneau (1960), Bradley (1964), and

Grissom (2000). The latter reference is somewhat more pessimistic than the others, but

there is still reason to believe that normality is not a crucial assumption and that the

homogeneity of variance assumption can be violated without terrible consequences, es-

pecially when we focus on the overall null hypothesis rather than on specific group

comparisons.

In general, if the populations can be assumed to be symmetric, or at least similar in

shape (e.g., all negatively skewed), and if the largest variance is no more than four times

the smallest, the analysis of variance is most likely to be valid. It is important to note, how-

ever, that heterogeneity of variance and unequal sample sizes do not mix. If you have reason

to anticipate unequal variances, make every effort to keep your sample sizes as equal as

possible. This is a serious issue, and people tend to forget that noticeably unequal sample

sizes make the test appreciably less robust to heterogeneity of variance.

The summary table for this analysis follows.



In Chapter 7 we considered the Levene (1960) test for heterogeneity of variance, and

I mentioned a similar test by O’Brien (1981). The Levene test is essentially a t test on the

deviations (absolute or squared) of observations from their sample mean or median. If one

group has a larger variance than another, then the deviations of scores from the mean or

median will also, on average, be larger than for a group with a smaller variance. Thus, a

significant t test on the absolute values of the deviations represents a test on group vari-

ances. Both Levene’s test and O’Brien’s test can be readily extended to the case of more

than two groups in obvious ways. The only difference is that with multiple groups the t test

on the deviations would be replaced by an analysis of variance on those deviations. There

is evidence to suggest that the Levene test is the weaker of the two, but it is the one tradi-

tionally reported by most statistical software. Wilcox (1987b) reports that this test appears

to be conservative.

If you are not willing to ignore the existence of heterogeneity or nonnormality in your

data, there are alternative ways of handling the problems that result. Many years ago Box

(1954a) showed that with unequal variances the appropriate F distribution against which to

compare is a regular F with altered degrees of freedom. If we define the true critical

value of F (adjusted for heterogeneity of variance) as , then Box has proven that

In other words, the true critical value of F lies somewhere between the critical value of

F on 1 and (n 2 1) df and the critical value of F on (k 2 1) and k(n 2 1) df. This latter limit

is the critical value we would use if we met the assumptions of normality and homogeneity

of variance. Box suggested a conservative test by comparing to . If this

leads to a significant result, then the means are significantly different regardless of the

equality, or inequality, of variances. (For those of you who raised your eyebrows when I

cavalierly declared the variances in Eysenck’s study to be “close enough,” it is comforting

to know that even Box’s conservative approach would lead to the conclusion that the

groups are significantly different: , whereas our obtained F was 9.08.)

The only difficulty with Box’s approach is that it is extremely conservative. A different

approach is one proposed by Welch (1951), which we will consider in the next section, and

which is implemented by much of the statistical software that we use.

Wilcox (1987b) has argued that, in practice, variances frequently differ by more than a

factor of four, which is often considered a reasonable limit on heterogeneity. He has some

strong opinions concerning the consequences of heterogeneity of variance. He recom-

mends Welch’s procedure with samples having different variances, especially when the

sample sizes are unequal. Tomarken and Serlin (1986) have investigated the robustness and

power of Welch’s procedure and the procedure proposed by Brown and Forsythe (1974).

They have shown Welch’s test to perform well under several conditions. The Brown and

Forsythe test also has advantages in certain situations. The Tomarken and Serlin paper is a

good reference for those concerned with heterogeneity of variance.

The Welch Procedure

Kohr and Games (1974) and Keselman, Games, and Rogan (1979) have investigated al-

ternative approaches to the treatment of samples with heterogeneous variances (including

the one suggested by Box) and have shown that the procedure proposed by Welch (1951)

has considerable advantages in terms of both power and protection against Type I errors,

at least when sampling from normal populations. The formulae and calculations are some-

what awkward, but not particularly difficult, and you should use them whenever a test,

such as Levene’s, indicates heterogeneity of variance—especially when you have unequal

sample sizes.

F.05(1, 9) = 5.12

Fa(1, n 2 1)Fobt

Fa(1, n 2 1) Ú F ¿a Ú Fa3k 2 1, k(n 2 1)4
F¿a

Fobt
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Define

Then

This statistic ( ) is approximately distributed as F on k – 1 and degrees of freedom,

where

Obviously these formulae are messy, but they are not impossible to use. If you collect

all of the terms (such as ) first and then work systematically through the problem, you

should have no difficulty. (Formulae like this are actually very easy to implement if you

have access to any spreadsheet program.) When you have only two groups, it is probably

easier to fall back on a t test with heterogeneous variances, using the approach (also attrib-

utable to Welch) taken in Chapter 7.

But!

I have shown how one can deal with heterogeneous variances so as to make an analysis of

variance test on group means robust to violations of homogeneity assumptions. However,

I must reiterate a point I made in Chapter 7. The fact that we have tests such as that by

Welch does not make the heterogeneous variances go away—it just protects the analysis of

variance on the means. Heterogeneity of variance is itself a legitimate finding. In this par-

ticular case it would appear that there are a group of people for whom cognitive/behavior

therapy is unusually effective, causing the gains in that group to become somewhat bi-

modal. That is important to notice. But even for the rest of that group the therapy is at least

reasonably effective. If we were to truncate the data for weight gains greater than 10

pounds, thus removing those participants who scored unusually well under cognitive/

behavior therapy, the resulting F would still be significant (F (2, 52) 5 4.71, p , .05).

A description of these results would be incomplete without at least some mention of the

unusually large variance in the cognitive/behavior therapy condition.

11.9 Transformations

In the preceding section we considered one approach to the problem of heterogeneity of

variance—calculate on the heterogeneous data and evaluate it against the usual F distri-

bution on an adjusted number of degrees of freedom. This procedure has been shown to

work well when samples are drawn from normal populations. But little is known about its

behavior with nonnormal populations. An alternative approach is to transform the data to a

form that yields homogeneous variances and then run a standard analysis of variance on
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the transformed values. We did something similar in Chapter 9 with the Symptom score in

the study of stress.

Most people find it difficult to accept the idea of transforming data. It somehow seems

dishonest to decide that you do not like the data you have and therefore to change them

into data you like better or, even worse, to throw out some of them and pretend they were

never collected. When you think about it, however, there is really nothing unusual about

transforming data. We frequently transform data. We sometimes measure the time it takes

a rat to run down an alley, but then look for group differences in running speed, which is

the reciprocal of time (a nonlinear transformation). We measure sound in terms of physi-

cal energy, but then report it in terms of decibels, which represents a logarithmic transfor-

mation. We ask a subject to adjust the size of a test stimulus to match the size of a

comparison stimulus, and then take the radius of the test patch setting as our dependent

variable—but the radius is a function of the square root of the area of the patch, and we

could just as legitimately use area as our dependent variable. On some tests, we calculate

the number of items that a student answered correctly, but then report scores in percentiles—

a decidedly nonlinear transformation. Who is to say that speed is a “better” measure than

time, that decibels are better than energy levels, that radius is better than area, or that a

percentile is better than the number correct? Consider a study by Conti and Musty (1984)

on the effects of THC (the most psychoactive ingredient in marijuana) on locomotor ac-

tivity in rats. Conti and Musty measured activity by reading the motion of the cage from a

transducer that represented that motion in voltage terms. In what way could their electri-

cally transduced measure of test-chamber vibration be called the “natural” measure of ac-

tivity? More important, they took postinjection activity as a percentage of preinjection

activity as their dependent variable, but would you leap out of your chair and cry “Foul!”

because they had used a transformation? Of course you wouldn’t—but it was a transfor-

mation nonetheless.

As pointed out earlier in this book, our dependent variables are only convenient and

imperfect indicators of the underlying variables we wish to study. No sensible experi-

menter ever started out with the serious intention of studying, for example, the “number of

stressful life events” that a subject reports. The real purpose of such experiments has

always been to study stress, and the number of reported events is merely a convenient

measure of stress. In fact, stress probably does not vary in a linear fashion with number of

events. It is quite possible that it varies exponentially—you can take a few stressful events

in stride, but once you have a few on your plate, additional ones start having greater and

greater effects. If this is true, the number of events raised to some power—for example,

—might be a more appropriate variable.

The point of this fairly extended, but necessary, digression is to encourage flexibility.

You should not place blind faith in your original numbers; you must be willing to consider

possible transformations. Tukey probably had the right idea when he called these calcula-

tions “reexpressions” rather than “transformations.” You are merely reexpressing what the

data have to say in other terms.

Having said that, it is important to recognize that conclusions that you draw on trans-

formed data do not always transfer neatly to the original measurements. Grissom (2000)

reports on the fact that the means of transformed variables can occasionally reverse the dif-

ference of means of the original variables. This is disturbing, and it is important to think

about the meaning of what you are doing, but that is not, in itself, a reason to rule out the

use of transformations.

If you are willing to accept that it is permissible to transform one set of measures into

another—for example, or —then many possibilities become avail-

able for modifying our data to fit more closely the underlying assumptions of our statistical

tests. The nice thing about most of these transformations is that when we transform the data

to meet one assumption, we often come closer to meeting other assumptions as well. Thus,

Yi = 2XiYi = log(Xi)

Y = (number of events)2
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a square root transformation not only may help us equate group variances but, because it

compresses the upper end of a distribution more than it compresses the lower end, it may

also have the effect of making positively skewed distributions more nearly normal in shape.

A word is in order about reporting transformed data. Although it is legitimate and

proper to run a statistical test, such as the analysis of variance, on the transformed values,

we often report means in the units of the untransformed scale. This is especially true when

the original units are intrinsically meaningful. We would, however, need to inform our

reader that the analysis was carried out on transformed data.

One example is the salaries of baseball players from different teams. People who work

with salary figures routinely perform their analyses on log(salary). However, log(salary) is

not a meaningful measure to most of us. A better approach would be to convert all data to

logs (assuming you have chosen to use a logarithmic transformation), find the mean of

those log values, and then take the antilog to convert that mean back to the original units.

This converted mean almost certainly will not equal the mean of the original values, but it

is this converted mean that should be reported. But I would urge you to look at both the

converted and unconverted means and make sure that they are telling the same basic story.

Do not convert standard deviations—you will do serious injustice if you try that. And be

sure to indicate to your readers what you have done.

In this chapter we will consider only the most common transformations, because they

are the ones that will be most useful to you. Excellent discussions of the whole approach to

transformations can be found in Tukey (1977), Hoaglin, Mosteller, and Tukey (1985), and

Grissom (2000). Although the first two presentations are framed in the language of ex-

ploratory data analysis, you should not have much difficulty following them if you invest a

modest amount of time in learning the terminology.

Logarithmic Transformation

The logarithmic transformation is useful whenever the standard deviation is proportional to

the mean. It is also useful when the data are markedly positively skewed. The easiest

way to appreciate why both of these statements are true is to recall what logarithms do.

(Remember that a logarithm is a power— is the power to which 10 must be raised

to give 25; therefore, 5 1.39794 because .) If we take the numbers

10, 100, and 1000, their logs are 1, 2, and 3. Thus, the distance between 10 and 100, in log

units, is now equivalent to the distance between 100 and 1000. In other words, the right

side of the distribution (more positive values) will be compressed more than will the left

side by taking logarithms. (This is why the salaries of baseball players offer a good example.)

This not only means that positively skewed distributions tend toward symmetry under log-

arithmic transformations; it also means that if a set of relatively large numbers has a large

standard deviation whereas a set of small numbers has a small standard deviation, taking

logs will reduce the standard deviation of the sample with large numbers more than it will

reduce the standard deviation of the sample with small numbers.

Table 11.6 contains an example from the study by Conti and Musty (1984) on activity

levels in rats following administration of THC, the active ingredient in marijuana. I have

reported the activity units (on an arbitrary scale) for each animal over the 10-minute postin-

jection period, whereas Conti and Musty reported postinjection activity as a percentage of

baseline activity. From the data in Table 11.6a you can see that the variances are unequal:

The largest variance is nearly seven times the smallest. This is partly a function of the well-

established fact that drugs tend to increase variability as well as means. Not only are the

variances unequal, but the standard deviations appear to be proportional to the means. This

is easily seen in Figure 11.4a, where I have plotted the standard deviations on the ordinate

and the means on the abscissa. There is clearly a linear relationship between these two

101.39794 = 25log10(25)

log10(25)
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statistics (r 5 .88). This linearity suggests that a logarithmic transformation might be use-

ful. In Table 11.6b the data have been transformed to logarithms to the base 10. (I could

have used any base and still had the same effect. I chose base 10 because of its greater fa-

miliarity, though in most statistical work logs to the base e (log
e
) are preferred for technical

reasons.) Here the means and the standard deviations are no longer correlated, as can be

seen in Figure 11.4b (r 5 2 .33: nonsignificant). We have broken up the proportionality

between the mean and the standard deviation, and the largest group variance is now less

than three times the smallest.

An analysis of variance could now be run on these transformed data. In this case, we

would find F(4,42) 5 7.2, which is clearly significant. Conti and Musty chose to run their

analysis of variance on the proportion measures, as I said earlier, both for theoretical reasons
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Table 11.6 Original and transformed data from Conti and Musty (1984)

(a) Original Data

Control 0.1 mg 0.5 mg 1 mg 2 mg

130 93 510 229 144

94 444 416 475 111

225 403 154 348 217

105 192 636 276 200

92 67 396 167 84

190 170 451 151 99

32 77 376 107 44

64 353 192 235 84

69 365 384 284

93 422 293

Mean 109.40 258.60 390.56 248.50 156.00

r 5 .88

S.D. 58.50 153.32 147.68 118.74 87.65

Variance 3421.82 23,506.04 21,806.78 14,098.86 7682.22

(b) Log Data

Control 0.1 mg 0.5 mg 1 mg 2 mg

2.11 1.97 2.71 2.36 2.16

1.97 2.65 2.62 2.68 2.04

2.35 2.60 2.19 2.54 2.34

2.02 2.28 2.80 2.44 2.30

1.96 1.83 2.60 2.22 1.92

2.28 2.23 2.65 2.18 2.00

1.50 1.89 2.58 2.03 1.64

1.81 2.55 2.28 2.37 1.92

1.84 2.56 2.58 2.45

1.97 2.62 2.47

Mean 1.981 2.318 2.557 2.353 2.124

r 5 .33

S.D. 0.241 0.324 0.197 0.208 0.268

Variance 0.058 0.105 0.039 0.043 0.072



and because that is standard practice in their area of research. A case might be made, how-

ever, that a logarithmic transformation of the original units might be a more appropriate

one for future analyses, especially if problems occur with respect to either the shapes of

the distributions or heterogeneity of variance.

As I noted earlier, it makes no difference what base you use for a logarithmic transfor-

mation, and most statisticians tend to use log
e
. Regardless of the base, however, there are

problems when the original values ( ) are negative or near zero, because logs are only

defined for positive numbers. In this case, you should add a constant to make all X values

positive before taking the log. In general, when you have near-zero values, you should use

instead of . If the numbers themselves are less than –1, add whatever

constant is necessary to make them all greater than zero.

Square-Root Transformation

When the data are in the form of counts (e.g., number of bar presses), the mean is often

proportional to the variance rather than to the standard deviation. In this case, 

is sometimes useful for stabilizing variances and decreasing skewness. If the values of X
are fairly small (i.e., less than 10), then or is of-

ten better for stabilizing variances. For the Conti and Musty data, the mean correlates

nearly as well with the variance as it does with the standard deviation. Standard devia-

tions and variances are themselves highly correlated if the range of values is not large (in

this case ). In practice it is almost impossible to distinguish by eye a relation-

ship between the mean and a standard deviation and the relationship between the mean

and the variance. Therefore, you might want to investigate how a square-root transfor-

mation affects the data.

Reciprocal Transformation

When you have a distribution with very large values in the positive tail, a reciprocal trans-

formation may dramatically reduce the influence of those extreme values. For example, an-

imals in a maze or straight alley often seem to forget their job and stop to sniff at all the

photocells and such that they find along the way. Once an animal has been in the apparatus

for 30 seconds, it does not matter to us if he takes another 300 seconds to complete the run.

One approach was referred to in Chapter 2—if there are several trials per day, you might

take the daily median time as your measure. An alternative approach is to use all of the data

but to take the reciprocal of time (i.e., speed), because it has the effect of nearly equating

long times. Suppose that we collected the following times:

[10, 11, 13, 14, 15, 45, 450]

rs #s2 = .99

Y = 2X 1 2X 1 1Y = 2X 1 0.5

Y = 2X

log (Xi)log (Xi 1 1)

Xi
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The reciprocals of these times are

[0.100, 0.091, 0.077, 0.071, 0.067, 0.022, 0.002]

Notice that the differences among the longer times are much reduced from what they

were in the original units. Moreover, the outliers will have considerably less effect on the

size of the standard deviation than they had before the transformation. Similar kinds of ef-

fects are found when we apply reciprocal transformations to reaction times, where long re-

action times probably indicate less about information-processing speeds than they do about

the fact that the subject was momentarily not paying attention or missed the response key

that she was supposed to hit.

The Arcsine Transformation

In Chapter 5 we saw that for the binomial distribution, m 5 Np and . In this case,

then, because both the mean and the variance are dependent on p, the variance will be a di-

rect function of the mean. Suppose that for some experiment our dependent variable was

the proportion of items recalled correctly. Then each item can be thought of as a Bernoulli

trial with probability p of being correct (and probability 1 2 p of being incorrect), and the

whole set of items can be thought of as a series of Bernoulli trials. In other words, the re-

sults would have a binomial distribution where the variance is dependent on the mean. If

this is so, groups with different means would necessarily have different variances, and we

would have a problem. For this situation, the arcsine transformation is often helpful. The

usual form of this transformation is . In this case p is the proportion cor-

rect and Y will be twice the angle whose sine equals the square root of p.6 The arcsine

transformation can be obtained with most calculators (labeled sin21) and is presented in

any handbook of statistical tables.

Both the square-root and arcsine transformations are suitable when the variance is pro-

portional to the mean. There is, however, a difference between them. The square-root trans-

formation compresses the upper tail of the distribution, whereas the arcsine transformation

stretches out both tails relative to the middle. Normally the arcsine is more helpful when

you are dealing with proportions.

Trimmed Samples

Rather than transforming each of your raw scores to achieve homogeneity of variance or

normality, an alternative approach with heavy-tailed distributions (relatively flat distribu-

tions that have an unusual number of observations in the tails) is to use trimmed samples.

In Chapter 2 a trimmed sample was defined as a sample from which a fixed percentage of

the extreme values in each tail has been removed. Thus, with 40 cases, a 5% trimmed sam-

ple will be the sample with two of the observations in each tail eliminated. When compar-

ing several groups, as in the analysis of variance, you would trim each sample by the same

amount. Although trimmed samples have been around in statistics for a very long time,

they have recently received a lot of attention because of their usefulness in dealing with

distributions with occasional outliers. You will probably see more of them in the future.

Closely related to trimmed samples are Winsorized samples, in which the trimmed values

are replaced by the most extreme value remaining in each tail. Thus, a 10% Winsorization of

3 7 12 15 17 17 18 19 19 19

20 22 24 26 30 32 32 33 36 50

Y = 2 arcsin2p

s2 = Npq
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6 The arcsine transformation is often referred to as an “angular” transformation because of this property. When p

is close to 0 or 1, we often take , where the plus is used when p is close to 0, and the minus

when p is close to 1.

2 arcsin1p 6 1>2n
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would replace the two lowest values (3 and 7) by 12s and the two highest values (36 and

50) by 33s, leaving

12 12 12 15 17 17 18 19 19 19

20 22 24 26 30 32 32 33 33 33

[The variance and any test statistics calculated on this sample would be based on

(N2124) df, because we trimmed off four values and replaced them with pseudovalues,

and it is not really fair to pretend that those pseudovalues are real data.] Experiments

with samples containing an unusual number of outliers may profit from trimming and/or

“Winsorizing.” When you run an analysis of variance on trimmed data, however, you

should base the on the variance of the corresponding Winsorized sample and not

on the variance of the trimmed sample. A fairly readable study of the effect of applying

t tests (and, by extension, the analysis of variance) to trimmed samples was conducted

by Yuen and Dixon (1973): you should read it before running such analyses. You should

also look at papers by Wilcox (1993 and 1995). A useful reference when we come to

multiple comparisons in Chapter 12 is Keselman, Holland, and Cribbie (2005, pp.

1918–1919).

When to Transform and How to Choose a Transformation

You should not get the impression that transformations should be applied routinely to all of

your data. As a rule of thumb, “If it’s not broken, don’t fix it.” If your data are reasonably

distributed (i.e., are more or less symmetrical and have few if any outliers) and if your vari-

ances are reasonably homogeneous, there is probably nothing to be gained by applying a

transformation. If you have markedly skewed data or heterogeneous variances, however,

some form of transformation may be useful. Furthermore, it is perfectly legitimate to shop

around for a transformation that makes the necessary changes to the variance or shape. If a

logarithmic transformation does not do what you want (stabilize the variances or improve

shape), then consider the square-root (or cubed-root) transformation. If you have near-zero

values and does not work, try . The only thing that

you should not do is to try out every transformation, looking for one that gives you a sig-

nificant result. (You are trying to optimize the data, not the resulting F.) Finally, if you are

considering using transformations, it would be a good idea to look at Tukey (1977) or

Hoaglin, Mosteller, and Tukey (1983).

Resampling

An old but very valuable approach to statistical hypothesis testing that is beginning to win

many more adherents is known as “resampling statistics.” I say a great deal about this ap-

proach in Chapter 18, but before leaving methods for dealing with violations of assump-

tions, I should at least mention that resampling methods offer the opportunity to avoid

some of the assumptions required in the analysis of variance. These methods essentially

create a population that exactly resembles the distribution of obtained data. Then the com-

puter creates samples by drawing randomly, without replacement, from this population as

if the null hypothesis were true, and calculates a test statistic, such as F, for that sample.

This process is then repeated a very large number of times, producing a whole distribution

of F values that would be expected with a true null hypothesis. It is then simple to calcu-

late how many of these Fs were more extreme than the one from your data, and reject, or

fail to reject, depending on the result. Students interested in this approach can jump to

Y = 2X 1 2X 1 1Y = 2X 1 0.5

MSerror
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Chapter 18, which should not be difficult to understand even without reading the intermediate

chapters.

11.10 Fixed versus Random Models

We have not said anything about how we choose the levels of our independent variable; we

have simply spoken of “treatments.” In fact, if you think about it, we could obtain the lev-

els of the treatment variable in at least two different ways: We could, and usually do, delib-

erately select them or we could sample them at random. The way in which the levels are

derived has implications for the generalizations we might draw from our study.

Assume that we were hired as consultants by the Food and Drug Administration (FDA)

and asked to run a study to compare the four most popular pain relievers. We will have four

treatment levels (corresponding to the four pain relievers) that were selected by the FDA.

If we chose to replicate the study (run it over again to verify our results), we would use ex-

actly the same levels (drugs). In a sense, the treatment levels actually used have exhausted

the levels of interest. The important point here is that the levels are in fact fixed in the sense

that they do not change randomly from one replication of the study to another. The analy-

sis of such an experiment is referred to as a fixed-model analysis of variance.

Now assume that we are hired by the FDA again, but this time they merely tell us to

compare a number of pain relievers to see whether “one brand is as good as the next.” In

this case, it would make sense to select randomly the pain relievers to be compared from

the population of all available pain relievers. Here the treatment levels are the result of a

random process, and the population of interest with respect to pain relievers is quite large

(probably over 50). Moreover, if we replicated this study we would again choose the brands

randomly, and would most likely have a whole new set of brands to compare. Because of

the process by which treatment levels are obtained, we speak of treatments as a random

variable and of the analysis as a random-model analysis of variance.

We will have much more to say about fixed and random models in Chapters 13 and 14.

They are playing an expanded role in the analysis of research in the behavioral sciences,

and you need to understand them. The important point at this time is that in a fixed model,

the treatment levels are deliberately selected and would remain constant from one replica-

tion to another. In our example of a fixed model, we actually set out to compare, for exam-

ple, Bayer Aspirin with Tylenol. In a random model, treatment levels are obtained by a

random process and would be expected to vary across replications. In our example of a ran-

dom model, we were studying pain relievers, and the ones that we happened to use were

just random samples of pain relievers in general. For a one-way analysis of variance, the

distinction is not particularly critical, but it can become quite important when we use more

complex designs where we not only have to deal with random variables, but often with

what are called “nested variables” as well. In more complex models the independent vari-

able that is random is often not of great importance in its own right. It is often there prima-

rily to increase the generalizability of our study. However, its presence can substantially

affect the resulting F values.

11.11 The Size of an Experimental Effect

The fact that an analysis of variance has produced a significant F simply tells us that there

are differences among the means of treatments that cannot be attributed to error. It says

nothing about whether these differences are of any practical importance. For this reason, we

must look beyond the value of F to define an additional measure reflecting the “importance”
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of the difference. In previous chapters I have made a distinction between the d-family of

measures, which relate directly to differences among means, and the r-family of measures,

which are based on correlations between the independent and dependent variables. When

we are considering the omnibus F, which looks for any differences among the full set of

means, d-family measures may or may not be appropriate, although they do exist and we

will discuss them shortly. They will become very appropriate, however, when we discuss

individual comparisons in Chapter 12. The r-family of measures is often recommended for

the omnibus test of all means, and that is what I will focus on first. I must admit, however,

that I don’t find r-family measures particularly appealing because it is difficult to know

what is a large, or a small, value for that measure. In some situations explaining 5% of the

variation may be very important, while in others 5% might be trivial. Regardless of the type

of measure you choose to use, the most important issue is whether either measure ad-

dresses the important questions in your study. As I will emphasize in the next chapter, out

of four or five means your fundamental interest may lie in comparing just two of them. If

so, a measure that is based on all of the means, while legitimate, may give the right answer

to the wrong question and waste statistical power.

The set of measures discussed here are often classed as “magnitude of effect” meas-

ures and are related to r2. They represent how much of the overall variability in the de-

pendent variable can be attributed to the treatment effect. At last count, there were at

least six measures of the magnitude of the experimental effect—all different and most

claiming to be less biased than some other measure. In this section we will focus on only

the two most common measures ( and ), because they have the strongest claim to

our attention.

Eta-Squared (h2)

Eta-squared is probably the oldest measure of the strength of an experimental effect. Al-

though it is certainly not the best, it has several points to recommend it. As you will see,

eta-squared ( ), sometimes called the correlation ratio, has a certain intuitive appeal.

Moreover, it forms a strong link between the traditional analysis of variance and multiple

regression, as we will see in Chapter 16.

In some textbooks, eta ( ) is defined as the correlation coefficient associated with

curvilinear regression—that is, regression where the best-fitting line is not a straight line.

Suppose that I proposed to calculate the correlation between the recall scores and the treat-

ment levels (counting, rhyming, adjective, imagery, and intentional) for Eysenck’s data

from Table 11.2. The first criticism that would be raised is that the names counting, . . . ,

intentional are merely labels for treatments and bear no relationship to anything. This

would be true even if we called them treatment 1, 2, . . . , 5. True enough, but that will not

stop us. The next objection raised might be that the treatments are not ordered on any par-

ticular underlying scale, and therefore we would not know in what order to place them if

we were to plot the data. Again, true enough, and again that will not stop us. The next ob-

jection could be that the regression might not be linear. True again, but we can get around

this problem by calling the coefficient h instead of r. Having cavalierly brushed aside all

the objections, we set about plotting the data anyway, as shown in Figure 11.5. (The numerals

2, 3, and 4 in Figure 11.5 indicate the number of overlapping data points.) As you may re-

call from high school (though may not), a kth-order polynomial will exactly fit 

k 1 1 points, which means that if we did try to fit a fourth-order polynomial to the five

points represented by the treatment means, it would fit perfectly. (This is just an extension

of the phrase “two points determine a straight line.”) We do not particularly care what the

equation would look like, but we can represent the line (as in Figure 11.5) simply by

connecting the array means.

h

h2

v2h2
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You should recall that in Chapter 9 we saw that

(Don’t be confused by the fact that we routinely represent the dependent variable in regres-

sion discussions as Y, and the dependent variable in analysis of variance discussions as X.

It really makes no difference what we call them.) We can apply this formula to the case of

multiple groups by realizing that for each group the predicted score for subjects in that 

group is the group mean. Thus we can replace with . Doing this allows us to rewrite

the above equation as follows, substituting for r2.

Note that I have relabeled as in line with the terminology we use in talking

about the analysis of variance and substituted for .

Since is really , we can rewrite the last expression as

We have now defined in terms of the sums of squares in the summary table of our

analysis of variance.7 Applying to Eysenck’s data in Table 11.2 we have

The equation for provides a simple way to estimate the maximum squared correla-

tion between the independent variable and the dependent variable.8 Its derivation also

h2

h2 =
SStreatment

SStotal

=
351.52

786.82
= .447

h2
h2

h2 =
SStreatment

SStotal

SStreatmentSStotal 2 SSerror

NYijYj

SSerrorSSresidual

h2 =
SStotal 2 SSerror

SStotal

=
a (Yij 2 Y )2 2 a (Yij 2 Yj)

2

a (Yij 2 Y )2

h2

Yj
NYij

r2 =
SStotal 2 SSresidual

SStotal

=
a (Yij 2 Y )2 2 a (Yij 2 YNij)

2

a (Yij 2 Y )2
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Figure 11.5 Scatter diagram of data in Table 11.2

7 You will often see eta-squared given in computer printouts, such as SPSS General Linear Model, though it is
usually labeled R2.
8 Niko Tiliopoulus, of Queen Margaret University College has pointed out that if you only have the F statistic, and

its degrees of freedom, you can calculate h2 directly as .h2 =
1

1 1 a df
error
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(v2)

points out the fact that it can be treated as any other squared correlation coefficient, indi-

cating the proportion of the variation accounted for by the independent variable. For

Eysenck’s data, 44.7% of the variation in recall scores can be attributed to differences in

the instructions given to the groups, and therefore, presumably, to the depth to which the

items were processed. This is an unusually large amount of explained variation, reflecting

the extreme nature of group differences.

There is another way to look at that derives directly from the last formula and

which has been recently viewed as a desirable feature of any measure of the magni-

tude of effect. In the terminology popularized by Judd and McClelland (1989) is

the Percent Reduction in Error (PRE). If we did not take group membership into

account, the error associated with our recall scores would be , the variability of

all 50 observations. But when we know which group a subject is in, the error associ-

ated with our predictions is reduced to , the average variation within groups.

But the difference between and is . Thus divided by

is the percentage by which the error of our prediction has been reduced by con-

sidering group membership. In terms of our example, without attending to group

membership we had 786.82 units of error. After attending to group membership we

only have 435.30 units of error. Thus we have reduced our error by 786.82 2 435.30 5

351.52 points, or by 351.52/786.82 5 44.7%.

It is important to realize that assumes that the true regression line passes through

the individual treatment means. When the data are treated as a population, the assump-

tion is correct. When the data are treated as a sample from some larger population, how-

ever, bias is introduced. Since these means are really sample means, they are subject to

sampling error, and will be biased upward—whatever the true regression line

through the population means, it will probably not pass exactly through each sample

mean. Although all measures we discuss will be biased, is the most biased. Thus,

although it has the advantage of simplicity and is intuitively appealing, we will gener-

ally prefer to use a less biased estimate when our interest is in making general state-

ments about our variables. If we are interested in making statements only about our

particular set of data, or if we want a rough idea of the magnitude of the effect, then 

is a perfectly good measure. Moreover, and other, less biased, measures converge as

sample sizes increase.

Omega-Squared (v2)

An alternative, and for many purposes better, method of assessing the magnitude of the ex-

perimental effect with balanced (equal ns) or nearly balanced designs is omega-squared ( ).

This statistic has been discussed by Hays (1994) and developed extensively by Fliess

(1969), Vaughan and Corballis (1969), and Dodd and Schultz (1973). The derivation of 

is based on the underlying structural model that we discussed earlier, and there are two dif-

ferent formulae for , depending on whether the independent variable is fixed or random.

A random independent variable is rare in one-way designs so we will ignore that version

here, though it will become meaningful in the more complex designs in Chapters 13 and 14.

I will also omit any derivation here, but the interested reader can find a derivation in the

earlier editions of this book (Howell, 1997) and in Winer (1971).

For the fixed-model analysis of variance, a relatively unbiased estimate of the magnitude

of experimental effect is given by

v2 =
SStreat 2 (k 2 1)MSerror

SStotal 1 MSerror

v2

v2

V2

h2
h2

h2

h2

h2

SStotal

SStreatmentSStreatmentSSerrorSStotal

SSerror

SStotal

h2

h2



Applying this to our data from Table 11.2, we have

The estimate of in this case (.393) is noticeably less than the estimate of 5 .447,

reflecting the fact that the latter is more biased.

We have discussed two measures of the degree of association between the dependent

and independent variables. These are only two of the many approaches that have been sug-

gested. In general, is probably the best. Fowler (1985) presents evidence on the bias of

six different estimates and shows that performs well.

Aside from their concern about whether one statistic is more or less biased than an-

other, researchers have raised questions regarding the interpretation of magnitude of ef-

fect measures in general, especially those classed as r-family measures. Rosenthal and

Rubin (1982) present an interesting argument that quite small values of r2 (the squared

correlation coefficient) can represent important and dramatic effects. O’Grady (1982)

presents several arguments why magnitude-of-effect measures may not be good meas-

ures of whatever it is we mean by “importance.” Even an important variable may, for sev-

eral reasons, account for small percentages of variation, and, more commonly, a large

value of may simply mean that we have studied a trivial variable (such as the difference

in height between elementary-school children and college students). (Even if not for what

O’Grady says about the magnitude of effect, his excellent paper is worth reading for what

it has to say about the psychometric and methodological considerations behind all the stud-

ies psychologists run.) Lane and Dunlap (1978) raise some important reservations about

the routine reporting of magnitude measures and their interpretation in light of the fact that

journals mainly publish studies with significant results. Finally, Cohen (1973) outlines

some important considerations in the calculation and interpretation of magnitude measures.

Although Cohen is primarily concerned with factorial designs (to be discussed in Chapter 13),

the philosophy behind his comments is relevant even here. All the papers cited are clear

and readable, and I recommend them.

d-Family Measures of Effect Size

I will have more to say about d-family measures of effect size in the next chapter, but here

I want to briefly discuss a measure favored by Steiger (2004) called the root-mean-square

standardized effect (RMSSE). It is based on a logical measure of group differences and

applies to the case of multiple groups. Moreover it is nearly equivalent to the effect size

that we will use in calculating power.

One measure of how much a particular group mean deviated from the overall grand

mean would be

Notice that this is simply a standardized difference between a specific mean and

the grand mean, and is similar to, though not quite the same as, the d that we saw in

Chapter 7. It is logical to average these measures over all groups, but we will need to

square them first or the average would come out to be zero. This gives us a measure that

can be written as

d = Ba 1

k 2 1
ba a

mj 2 m

s
b

2

dj =
(mj 2 m)

s

h2

v2
v2

h2v2

v2 =
SStreat 2 (k 2 1) MSerror

SStotal 1 MSerror

=
351.52 2 4(9.67)

786.82 1 9.67
=

312.84

796.49
= .393
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We divide by (k – 1) instead of k to get the average because with a fixed variable the sum

of the deviations from the grand mean must be 0. We have only (k21) df from groups, and

that is our divisor.

The RMSSE is a logical measure of the effect size because it is a direct measure of the

differences of the group means that has been standardized by dividing by the standard de-

viation. The only change that we will make in this measure is to replace parameters (such

as m and s) by the corresponding statistics.

For the Eysenck study on recall as a function of depth of processing the means were

Counting Rhyming Adjective Imagery Intention Grand Mean

7.0 6.9 11 13.4 12 10.06

The sum of the squared deviations from the grand mean is 29.5648 and the square root

of MS
error

is 3.1101. Thus

Thus the group means differ, on average, by nearly 9/10 of a standard deviation from the

grand mean, which is a considerable difference.

We can go one step further, which will give us more information about the kind of an

effect we have found. Steiger (2004) discusses setting confidence limits on this measure.

Steiger provides free software (see his paper) and Kelley (2008) provides similar software

written as functions for R that do even more. Using such software we can show that the

confidence limits on RMSSE for the Eysenck experiment are .526 d 1.283. (I used d

in this expression because we are estimating a parameter.) The important thing about this

result is that the lower limit on our 95% confidence interval is still greater than .50, mean-

ing that we have a lower limit of over one half of a standard deviation as the average group

difference. This suggests that we are talking about a substantial difference among groups.

We will have more to say about such measures in the next chapter, but in that case we will

focus on pairs of means rather than the complete set of means. In this chapter I have fo-

cused on measures that relate to differences among many groups simultaneously. I think

that you will find in your research that it is specific group differences that are most impor-

tant, and in that situation d-family measures have a distinct advantage.

11.12 Power

Estimating power in the analysis of variance is a straightforward extension of the power

analysis for t, although the notation is different, as are the tables. Just as with t, we will de-

fine a statistic, phi prime ( ), based on the expected differences among the , then derive

a second statistic, phi ( ), which is a function of n and , and finally calculate power from

tables of the noncentral F distribution. A more complete treatment of power can be found

in Cohen (1988) and Koele (1982).

We already know (see p. 323) that

If is true, and the ratio will be distributed as the usual

(central) F distribution. The mean of this distribution is , which is verydferror>(dferror 2 2)

F = MStreat>MSerrora t2
j = 0H0

E(MSreat)

E(MSerror)
=

s2
e 1 na t2

j >(k 2 1)

s2
e

f¿f

mjf¿
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= B 29.5648
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close to 1.00 for reasonable sample sizes. (See footnote, p. 328). If is false, this ratio

becomes

where

is called lambda ( )or the noncentrality parameter (ncp).9

You can see that the noncentrality parameter simply displaces the F distribution in a

positive direction away from one, with the amount of displacement depending on the true

differences among the population means.

The above formulae may not convey a lot of meaning, but recall that ,

which is the deviation of a group mean from the grand mean. As such, it is a measure of

how much the means differ. Similarly, s
t

is the standard deviation of group means, and, as

such, is an excellent measure of differences between groups. One way of calculating power

is to define a standardized measure10 of effect size

This statistic ( ) is the same as Cohen’s (1988) measure of effect size, which he labels f.
(If we had two groups it would be numerically equal to half of what we have previously

called d.) You should recall that when we were calculating power for a t test on two inde-

pendent groups, we took an effect size measure (d) and incorporated the sample size. That

is just what we will do here. We define

This way we can estimate without regard to n, and then include the sample size

when we come to estimating . This just makes our life a bit easier. We can then look up

in the tables of the noncentral F distribution, given the level of and the degrees of free-

dom for the numerator and denominator in F. (It is useful to note that is , which is

simply another way to see as a function of the noncentrality parameter.)

An Example

Before we proceed, let’s work with an example that will illustrate several of the points

made here and lead to some further elaboration. Suppose that we take the original data

from the Conti and Musty (1984) experiment referred to earlier. We wish to replicate their

study and want to estimate the power of our experiment. In their paper they analyzed

postinjection activity as a percentage of preinjection activity, rather than the raw activity

measures themselves. We will treat their sample means and the average sample variance

( ) as if they were the actual population values. For this dependent variable, their

sample means were

MSerror

f
2l>kf
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9 There are a number of different quantities labeled “noncentrality parameter,” but this is one of the more
common. It is also common to see written with a divisor of (k21).
10 To say a measure is a “standardized measure” is just to say that we have divided a quantity by a standard devia-
tion, thus scaling the result in standard deviation units. (This is analogous to dividing 87 inches by 12, getting 7.25,
and declaring the result to be 7.25 feet.)
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Control 0.1 mg 0.5 mg 1 mg 2 mg

34.00 50.80 60.33 48.50 38.10

with a grand mean of 46.346 and an average sample variance (MS
error

) of 240.35.

Power Calculations

I can illustrate the calculations of and by assuming that the population values corre-

spond exactly to those that Conti and Musty found in their experiment. I will simplify the

problem slightly by assuming that we plan to run 10 subjects in each group, rather than the

unequal numbers of subjects they had.

I defined

Then

Each of our samples will contain 10 subjects, so n 5 10. Then

To use the table of the noncentral F distribution (Appendix ncF ) we must enter it with

, dft and dfe, where dft is the df for treatments and dfe is the df for error. For our example,

dft 5 4, dfe 5 45, and 5 1.91. Because tables of the noncentral F distribution are very

coarse, they do not contain all possible values of , dft, and dfe. We either have to inter-

polate or else round off to the nearest value. For purposes of illustration, we will round off

every value in the conservative direction. Thus we will take , dft 5 4, and dfe 5 30.

The entry in the table for F(dft, dfe; ) 5 F(4, 30; 1.8) is .14 at 5 .05. This value is , the

probability of a Type II error. Power 5 12 5 12.14 5 .86, which is a conservative esti-

mate given the way we have rounded off.

Perhaps we are willing to sacrifice some power to save on the number of subjects we

use. To calculate the required sample sizes for a different degree of power, we simply need

to work the problem backwards. Suppose that we would be satisfied with power 5 .80.

Then 5.20, and we simply need to find that value of for which 5.20. A minor com-

plication arises because we cannot enter Appendix ncF without and we cannot calculate

without knowing n. This is not a serious problem, however, because whether dfe is 30,

50, 180, or whatever will not make any really important difference in the tables. We will

therefore make the arbitrary decision that dfe 5 30, because we already know that it will

have to be less than 45, and 30 is the closest value. With dft 5 4, dfe 5 30, and 5.20, we

find from the table that will have to be 1.68 (by interpolation).

Given

then
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Thus we would need 8 subjects per group to have an 80% chance of rejecting if it is

false to the extent that we believe it to be.

For those readers who were disturbed by my setting dfe 5 30, it might be instructive to

calculate power for n 5 8:

From Appendix ncF for F(4, 30; 1.71), we see that 5.19 (by interpolation) and our

power 5 .81. This is quite close to the power 5 .80 that we sought.

In an effort to give some guidance in situations where little is known about the likely

values of parameters, Cohen (1988) has defined a small effect as 5 0.10, a medium ef-

fect as 5 0.25, and a large effect as 5 0.40. Cohen meant these to be used as a last

resort when no other estimates were possible, but it has been the general observation over

the past few years that those who calculate power most often fall back on these conven-

tions. They have tended to become starting points for a power analysis rather than a route

of last resort. I have found myself using them because I was either too lazy or too ignorant

to estimate noncentrality parameters directly, and I know of many others who fall in the

same camp. They have also become rules of thumb for deciding whether effect sizes based

on sample means should be classed as small, medium, or large. If we go back to Eysenck’s

data on recall as a function of depth of processing, we would calculate 5.95. By Cohen’s

rule of thumb, this is a very large effect. When we looked at v25.393, we were saying that

depth of processing accounted for 39% of the variability in recall. Both of these statistics

are giving us useful information on the meaning of the differences.

Cohen’s 1988 book on power became the standard by which psychologists and others

calculated power, and I recommend it highly. It is still the best we have around if we want

to understand power. The terminology takes a bit of getting used to, and Cohen uses his

own tables rather than those of the noncentral F distribution, but there are many examples

and the book is well written. Bradley, Russell, and Reeve (1996) have shown that Cohen’s

power estimates tend to be conservative for more complex designs, but they are certainly

good enough for a rough estimate.

There are a number of software programs available to calculate power, and many statis-

tical analysis packages (e.g., JMP, SPSS, and DATASIM) contain the necessary routines.

I recommend G*Power, which is available free at http://www.psycho.uni-duesseldorf.de/aap/

projects/gpower/. It is easy to use, gives quick results, and lets you experiment with alterna-

tive assumptions and sample sizes. We will see an example of using G*Power shortly.

An Alternative Way to Think of Power

Imagine that we are willing to take the Conti and Musty means and variances as being a

sufficiently accurate estimate of the corresponding population means. One direct way to

estimate power (and it has become an important way in many areas), is to work with re-

sampling statistics. We start with the estimates we have and then create populations of ran-

dom numbers with those characteristics. We can then draw a large number of sets of

samples from these populations and observe what kind of sample means and variances we

actually obtain. This will give us a handle on the kinds of variability we can expect from ex-

periment to experiment, even with the kind of robust effect that Conti and Musty found. We

can go a step further and compute an F on each set of samples and observe the variability in

f¿

f¿f¿
f¿

b

dfe = 5(7) = 35

dft = 4

f = f¿2n = 0.605428 = 1.71

H0

= 7.70 L 8 subjects per group

= 1.682>.60542
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F values that we obtain. Finally, we can ask how many of those F values exceed the critical

value of F, thus leading to a significant result. In other words, what we’re saying here is

“Assume that the populations really have means like the ones Conti and Musty obtained.

How often would we obtain sample data from such populations that would lead us to reject

?” This is what power is all about.

Using a very simple program that I wrote using R, though I could have used SPSS or

SAS, I created five populations with parameters corresponding to the statistics that Conti

and Musty found. I then drew five samples at a time from these populations, and ran an

analysis of variance on the result. I simplified the problem slightly by assuming that we ran

10 subjects in each group, rather than the unequal numbers of subjects in their groups,

though it would have been easy to do it the other way. I repeated this process 10,000 times,

and Table 11.7 presents the results of the first 10 sets of samples, showing the means and

with their associated F and p values, Here you can get some idea of the natural variability

of these statistics even in a case where we know that the null hypothesis is false.

Notice that the eighth set of means has an F of 2.54, which just barely misses being sig-

nificant. This illustrates the point that even having quite different population means does

not guarantee that each replication of the experiment will reject the null hypothesis.

Another way to look at these results is to plot all 10,000 F values that were produced.

If the null hypothesis had been true, the Fs would be distributed around a mean of approxi-

mately . Instead, this empirical F distribution, shown

in Figure 11.6, has a mean considerably above 1.046, reflecting the fact that the noncen-

trality parameter is not 0.00. The mean of this distribution is 5.833. I said earlier that when

is not true, the expected value of F is

where the first part of this equation includes the noncentrality parameter. Using the

means and variance given on page 339, and treating Conti and Musty’s means as popula-

tion means, and their MS
error

as our estimate of se
2, would give an expected value of 

(1 1 4.58)(1.046) 5 5.838, which is very close to the actual mean of this distribution (5.833).

Finally, the critical value is . You can see that most of this distribution is

above that point. In fact, 92.16% of the values exceed 2.58, meaning that given these popu-

lation parameters, the probability of rejecting (i.e., the power of the test) is .9216. This

value agrees closely with the values we could calculate exactly using electronic tables of

the complete noncentral F distribution (.9207), or approximately using the table of the

noncentral F distribution in the back of this book.

H0

F4,45 = 2.58

E(F) = a1 1
na t2

j

s2
e(k 2 1)

b a dferror

dferror 2 2
b

H0

dferror>(dferror 2 2) = 45>43 = 1.046

H0
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Table 11.7 Means of 10 computer replications of Conti

and Musty (1984)

Control 0.1 mg 0.5 mg 1 mg 2 mg F p

34.30 57.60 65.00 47.62 37.10 4.10 .0064

25.30 54.80 61.22 49.37 39.70 8.60 <.0001

26.90 44.80 56.44 53.43 31.30 7.45 .0001

27.40 49.50 59.89 46.12 37.70 7.34 .0001

31.20 50.80 61.22 47.37 35.10 9.73 <.0001

32.70 47.60 62.33 56.00 43.10 3.73 .0105

30.10 47.70 62.44 59.87 26.90 8.87 <.0001

39.60 57.00 60.44 52.12 53.40 2.54 .0527

26.70 52.30 60.33 47.25 32.90 4.77 .0027

36.70 42.70 60.00 58.62 46.20 5.00 .0020



This example illustrates the use of repeated sampling to directly investigate the power of a

test, the variability of sample means over replication, and the meaning of the noncentrality

parameter. It also shows you graphically the idea of power looked at from the point of view of

the sampling distribution of a statistic (in this case, F). You even have the opportunity to see a

Type II error in action, because the eighth case in Table 11.7, whose probability was greater

than .05 under H0, is a Type II error. I took this digression to viewing power in terms of resam-

pling because more of the statistical software that is written today makes calculations of power,

confidence limits, and other statistics using the same kind of resampling statistics that we have

used here, especially when direct calculation would be difficult or impossible.

G*Power

Having recommended G*Power as an excellent program for calculating power, I have used it

to produce the following printout. Because the software makes it easy for me to deal with un-

equal sample sizes, I have used the actual sample sizes from the Conti and Musty experiment.

(However G*Power bases its calculations on the average sample size.) The screen on the right

in Exhibit 11.2 shows the results of calculating the effect size. I have specified that I want

power for an analysis of variance, and have entered the means and sample sizes for the five

groups. The program automatically computes the effect size when I click on the “Calculate

and transfer” button. In this case it is 0.6092, which is close to the same answer that we calcu-

lated earlier with sample sizes of 10. I then clicked on the “Calculate” button and the program

moved to the left window to calculate power. I requested that it calculate post-hoc power

because I am using the actual sample means and error term from the Conti and Musty data.11

You will notice that the calculated power is .9036, which is higher than our calculation.

But remember that we had to use 30 df for the error term in our calculation because the

tables of the noncentral F distribution did not allow us to use the true value of 45 df.
Koele (1982) presents methods for calculating the power of random models. Random

models, while not particularly common in a one-way layout, are more common in higher

order designs and present particular problems because they generally have a low level of power.

For these models, two random processes are involved—random sampling of participants
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Figure 11.6 Empirical sampling distribution of F when noncentrality parameter

equals 5.838.

11 If I had been writing this software I would not have used the phrase “post-hoc power” here because it conveys
different meanings to different people. What I am really doing is making parameter estimates from a previous
study and using those estimates to calculate power. That is a very valid approach even among those who decry
what is often meant as “post-hoc power.”



and random sampling of treatment levels. As Koele phrased it, “Not only should there be

many observations per level, but also many levels per treatment (independent variable).

Experiments that have random factors with only two or three levels must be considered as

absurd as t tests on samples with two or three observations” (p. 516). This is important ad-

vice to keep in mind when you are considering random models. We will say more about this

in Chapter 13.

One final point should be made about power and design considerations. McClelland

(1997) has argued persuasively that with fixed variables we often use far more levels of

our independent variable than we need. For example, if he were running the Eysenck

(1974) experiment on recall as a function of levels of processing, I suspect that he would

run only the two extreme groups (Counting and Imagery), or perhaps three groups, adding

the Adjective condition. He would argue that to use five groups dilutes the effect across

four degrees of freedom. Similarly, he would probably use only the 0, 0.5 mg, and 2 mg

groups in the Conti and Musty (1984) study, putting the same number of subjects in the

0.5 mg group as in the other two conditions combined. I recommend this paper to those

who are concerned about maximizing power and good experimental design. It is impor-

tant and very readable.

11.13 Computer Analyses

Exhibit 11.3 contains printout for the SPSS analysis of Everitt’s data on the treatment of

anorexic girls. Instead of choosing the one-way procedures from Analyze/Compare

Means/One-Way Anova, I have used the Analyze/General Linear Model/Univariate
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Exhibit 11.2 G*Power estimation of power for Conti and Musty experiment



Procedure. (Menu selections are not shown, but they should be evident.) This is the proce-

dure we will use in Chapters 13 and 14 and it produces the same answers as the one-way

procedure. It also produces some output that will not be familiar to you, which is explained

below.

Notice in the summary table that the first line is labeled “Corrected Model.” If there

were two or more independent variables (e.g., Group and Sex), then this line would repre-

sent the combined effects of those variables. Because there is only one independent vari-

able, the Model and the Group effects will be exactly the same.

The line labeled “Intercept” refers to a test on the null hypothesis that the grand mean

is equal to 0 in the population. We very rarely care about this test, although in this case it is

a test of a meaningful question about whether the girls in this study, averaged across

groups, gained weight.

The lines labeled “Group,” “Error,” and “Corrected total” are the same the results we

saw in Exhibit 11.1.

Notice that the entry of partial eta squared for the Group effect is the same as the 

“R-squared” given at the bottom of the table. This tells us that 14% of the variation in

weight gain could be attributable to differences between treatments.

SPSS then calculates observed power, treating the obtained means as parameters,

and the obtained MS
error

as an accurate estimate of the population variance. Because

there are unequal sample sizes in this example, you will have difficulty reproducing

these values exactly.
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Mean

−.450000

3.006897

7.264706

2.763889

Treatment Group

Control

CogBehav

Family

Total

Std.

Deviation

7.988705

7.308504

7.157421

7.983598

N

26

29

17

72

Descriptive Statistics

Dependent Variable: WTGAIN

Type III

Sum of

Squares

614.644b

732.075

614.644

3910.742

5075.400

4525.386

Source

Corrected Model

Intercept

GROUP

Error

Total
Corrected

Total

df

2

1

2

69

72

71

Mean

Square

307.322

732.075

307.322

56.677

F

5.422

12.917

5.422

Sig.

.006

.001

.006

Eta

Squared

.136

.158

.136

Noncent.

Parameter

10.845

12.917

10.845

Observed

Powera

.830

.943

.830

Tests of Between-Subjects Effects

Dependent Variable: WTGAIN

b R Squared = .136 (Adjusted R Squared = .111)

a Computed using alpha =.05

Exhibit 11.3 SPSS general linear model analysis of Everitt’s data on treatment of anorexia
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Exercises

11.1 To investigate the maternal behavior of laboratory rats, we move the rat pup a fixed distance

from the mother and record the time (in seconds) required for the mother to retrieve the pup

to the nest. We run the study with 5-, 20-, and 35-day old pups. The data are given below for

six pups per group.

5 days: 15 10 25 15 20 18

20 days: 30 15 20 25 23 20

35 days: 40 35 50 43 45 40 

Run a one-way analysis of variance on the data.

11.2 Another aspect of the study by Eysenck (1974), referred to earlier, compared Younger and

Older subjects on their ability to recall material in the face of instructions telling them that

they would be asked to memorize the material for later recall—the Intentional group. (Pre-

sumably this task required a high level of processing.) The data follow, where the dependent

variable is the number of items recalled.

Younger: 21 19 17 15 22 16 22 22 18 21

Older: 10 19 14 5 10 11 14 15 11 11

a. Run the analysis of variance comparing the means of these two groups.

b. Run an independent groups t test on the data and compare the results to those you

obtained in part (a).

11.3 Another way of looking at the data from Eysenck’s (1974) study is to compare four groups

of subjects. One group consisted of Younger subjects who were presented the words to be

recalled in a condition that elicited a Low level of processing. A second group involved

Younger subjects who were given a task requiring the Highest level of processing (as in

Exercise 11.2). The two other groups were Older subjects who were given tasks requiring

either Low or High levels of processing. The data follow.

Younger/Low: 8 6 4 6 7 6 5 7 9 7

Younger/High: 21 19 17 15 22 16 22 22 18 21



Older/Low: 9 8 6 8 10 4 6 5 7 7

Older/High: 10 19 14 5 10 11 14 15 11 11

a. Run a one-way analysis of variance on these data.

b. Now run a one-way analysis of variance on treatments 1 and 3 combined (n 5 20)

versus treatments 2 and 4 combined. What question are you answering?

c. Why might your answer to part (b) be difficult to interpret?

11.4 Refer to Exercise 11.1. Assume that, for reasons beyond our control, neither the data for the

last pup in the 5-day group nor the data for the last two pups in the 35-day group could be

used. Rerun the analysis of variance with the remaining data.

11.5 Refer to Exercise 11.2. Suppose that we collected additional data and had two more sub-

jects in the Younger group, with scores of 13 and 15.

a. Rerun the analysis of variance.

b. Run an independent groups t test without pooling the variances.

c. Run an independent groups t test after pooling the variances.

d. For (b) and (c), which of these values of t corresponds (after squaring) to the F in (a)?

11.6 Calculate and for the data in Exercise 11.2. Would you assume a fixed or a random

model?

11.7 Calculate and for the data in Exercise 11.3.

11.8 Foa, Rothbaum, Riggs, and Murdock (1991) conducted a study evaluating four different

types of therapy for rape victims. The Stress inoculation therapy (SIT) group received in-

structions on coping with stress. The Prolonged exposure (PE) group went over the events

in their minds repeatedly. The Supportive counseling (SC) group was taught a general

problem-solving technique. Finally, the Waiting list (WL) control group received no ther-

apy. The data follow, where the dependent variable was the severity rating of a series of

symptoms.

Group n Mean S.D.

SIT 14 11.07 3.95

PE 10 15.40 11.12

SC 11 18.09 7.13

WL 10 19.50 7.11

a. Run the analysis of variance, ignoring any problems with heterogeneity of variance,

and draw whatever conclusions are warranted.

b. Apply Welch’s procedure for heterogeneous variances. Does this affect your conclusions?

c. Draw a graph showing the means of the four groups.

d. What does rejection of mean in this case?

11.9 Calculate and for the data in Exercise 11.8 and interpret the results.

11.10 What would happen if the sample sizes in Exercise 11.8a were twice as large as they actu-

ally were, but all other statistics remained the same?

11.11 The computer printout in Exhibit 11.4 is from a JMP analysis of the data in Exercise 11.8.

a. Compare the results with those you obtained in Exercise 11.8a.

b. What can you tell from this printout that you cannot tell from a standard summary

table?

v2h2

H0

v2h2

v2h2
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Exhibit 11.4 JMP analysis of data in Exercise 11.8

Tests that the Variances are Equal

Mean. Abs Dif Mean. Abs Dif

Level Count Std Dev to Mean to Median

PE 10 11.11755 9.600000 9.600000

SC 11 7.13379 5.537190 5.636364

SIT 14 3.95094 3.071429 3.071429

WL 10 7.10634 6.100000 6.100000

Test F Ratio DF Num DF Den Prob > F

O’Brien [.5] 5.1694 3 41 0.0040

Brown-Forsythe 6.3543 3 41 0.0012

Levene 6.6330 3 41 0.0009

Bartlett 3.5390 3 * 0.0140

Welch Anova testing Means Equal, allowing Std’s Not Equal

F Ratio DF Num DF Den Prob > F

5.3749 3 19.128 0.0075

11.12 The following results, also produced by JMP, include tests for heterogeneity of variance and

Welch’s modification to allow for heterogeneity of variance. How does this result compare

to your answer to Exercise 11.8b? From what you know from this chapter and from Chapter 7,

what are the F ratios in the middle table?



11.13 Write an appropriate statistical model for Exercise 11.1.

11.14 Write an appropriate statistical model for Exercise 11.2.

11.15 Write an appropriate statistical model for Exercise 11.3. Save it for later use in Chapter 13.

11.16 When F is less than 1, we usually write “,1” rather than the actual value. What meaning

can be attached to an F appreciably less than 1? Can we speak intelligently about an F
“significantly” less than 1? Include E(MS) in your answer.

11.17 Howell and Huessy (1981) classified children as exhibiting (or not exhibiting) attention

deficit disorder (ADD)-related behaviors in second, fourth, and fifth grade. The subjects

were then sorted on the basis of the year(s) in which the individual was classed as exhibit-

ing such behavior. They then looked at GPA for these children when the latter were in high

school. The data are given in terms of mean GPA per group. 
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Never Second Fourth Second

ADD Only Only and Fourth

Mean 2.6774 1.6123 1.9975 2.0287

S.D. 0.9721 1.0097 0.7642 0.5461

n 201 13 12 8

Second,

Fifth Second Fourth Fourth,

Only and Fifth and Fifth and Fifth

Mean 1.7000 1.9000 1.8986 1.4225

S.D. 0.8788 1.0318 0.3045 0.5884

n 14 9 7 8

Run the analysis of variance and draw the appropriate conclusion.

11.18 Rerun the analysis of Exercise 11.17, leaving out the Never ADD group. In what way does

this analysis clarify the interpretation of the data?

11.19 Apply a square-root transformation to the data in Table 11.5.

11.20 Run the analysis of variance for the transformed data you obtained in Exercise 11.19.

11.21 Calculate and for the data in Exercise 11.17.

11.22 Darley and Latané (1968) recorded the speed with which subjects summoned help for a per-

son in trouble. Subjects thought either that they were the only one listening to the person

(Group 1, n 5 13), that one other person was listening (Group 2, n 5 26), or that four other

people were listening (Group 3, n 5 13). The dependent variable was the speed with which

the person summoned help (5 1/time 3 100). The mean speed scores for the three groups

were 0.87, 0.72, and 0.51, respectively. The was 0.053. Reconstruct the analysis of

variance summary table. What can you conclude?

11.23 In Exercise 11.22 the data were transformed from their original units, which were in

seconds. What effect would this have on the shape of the distributions?

11.24 Would a transformation of Eysenck’s data in Table 11.2 be useful in terms of equalizing the

variances? What transformation would you suggest applying, if any?

11.25 Suppose that we wanted to run a study comparing recall of nouns and verbs. We present

each subject with 25 nouns or 25 verbs and later ask for recall of the list. We look at both

differences between parts of speech and between different words within the category of

“noun.” What variable is a fixed variable and what is a random variable?

11.26 Give an example of a study in which the main independent variable would be a random variable.

11.27 Davey, Startup, Zara, MacDonald, and Field (2003) were interested in the role of mood on

the degree of compulsive checking in which a person engaged. (Compulsive checking is in-

volved in a number of psychopathologies.) Three groups of 10 participants each listened to

music designed to induce a positive, negative, or neutral mood. They were then asked to

“list as many things around your home that you should check for safety or security reasons

before you go away for three weeks.” The dependent variable was the number of things

listed. The actual data follow.

MSerror
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Induced Mood

Negative Positive None

7 9 8

5 12 5

16 7 11

13 3 9

13 10 11

24 4 10

20 5 11

10 4 10

11 7 7

7 9 5

a. Run the appropriate analysis of variance and draw your own conclusion.

b. Which column means would you be interested in comparing for theoretical reasons when

we get to discussing multiple comparisons in the next chapter? Computer Exercises

11.28 In Exercise 7.46 you had data on students who had lost a parent through death, who came

from a divorced household, or who grew up with two parents. You then ran three separate t
tests comparing those groups.

a. Now reanalyze those data using an analysis of variance with GSIT as the dependent

variable.

b. How does your answer to this question differ from your answer in Chapter 7?

Use the following material to answer Exercises 11.29–11.31.

Introini-Collison and McGaugh (1986) examined the hypothesis that hormones normally pro-

duced in the body can play a role in memory. Specifically, they looked at the effect of post-

training injections of epinephrine on retention of a previously learned discrimination. To

oversimplify the experiment, they first trained mice to escape mild shock by choosing the left

arm of a Y maze. Immediately after training they injected the mice with either 0.0, 0.3, or

1.0 mg/kg of epinephrine. (The first group was actually injected with saline.) They predicted

that low doses of epinephrine would facilitate retention, whereas high doses would inhibit it.

Either 1 day, 1 week, or 1 month after original training, each mouse was again placed in the

Y maze, but this time was required to run to the right arm of the maze to escape shock. Pre-

sumably the stronger the memory of the original training, the more it would interfere with

the learning of this new task and the more errors the subject would make.

There are two data sets for this experiment, and they are described in Appendix Computer

Exercises. The original study used 18 animals in the three dosage groups tested after 1 day,

and 12 animals in each group tested after intervals of 1 week and 1 month. Hypothetical

data that closely reproduce the original results are contained in Epinuneq.dat, although for

our purposes there are data for only 7 subjects in the 1.0 mg/kg dose at the 1-month test.

A second data set was created with 12 observations in each of the 9 cells, and is called

Epineq.dat. In both cases the need to create data that were integers led to results that are slightly

conservative relative to the actual data, but the conclusions with respect to are the same.

11.29 On the reasonable assumption that there are no important differences from one interval to

the next, combine the data by ignoring the Interval variable and run the analysis of variance

on Dosage. Use the data in Epinuneq.dat. (You will have 42 observations for the 0.0 and 

0.3 mg/kg doses and 37 subjects for the 1.0 mg/kg dose.)

11.30 Use the data in Epinuneq.dat to run three separate one-way analyses of variance, one at each

retention interval. In each case, test the null hypothesis that the three dosage means are

equal. Have your statistical package print out the means and standard deviations of the three

dosage groups for each analysis. Now run a separate analysis testing the hypotheses that the

three Interval means are equal. In this case you will simply ignore Dosage.

11.31 Rerun Exercise 11.29, this time using Epineq.dat. (The results will differ somewhat because

the data are different.) Calculate the average of the three error terms ( ) and show thatMSerror

H0



this is equal to the average of the variances within each of the nine groups in the experiment.

Save this value to use in Chapter 13.

11.32 Strayer, Drews, and Couch (2006) ran a study in which they compared the driving behavior

of a control group, a group that was at the legal limit for alcohol, and a group that was talk-

ing on a cell phone. I have modified their study slightly, but the results are consistent with

theirs. The three groups are given below (the data are available on the Web site for this book

as Ex11–32.dat).

Control:

808 757 773 937 726 788 806 792 751 765 853 655 626 721 630 722 683 709

718 812 703 791 586 864 737 701 799 844 639 705 822 935 842 827 784 838

795 823 791 819

Alcohol:

631 656 621 706 937 538 947 855 661 887 750 945 663 880 873 830 751 855

815 593 666 730 1021 906 821 956 606 660 802 961 629 603 826 531 828 959 743 745 922 829

Cell Phone:

909 712 805 852 859 781 841 822 740 910 900 912 863 785 863 809 927 847 918 810 788

929 798 863 981 842 1021 827 876 736 640 851 787 703 942 758 843 781 969 872

From these data is there evidence that cell phones lead to longer reaction times than baseline

conditions? How does the cell phone condition differ from the alcohol impaired condition?

11.33 Gouzoulis-Mayfrank et al. (2000) examined task performance of users of the drug Ecstacy

and compared that with a group of Cannabis users and a control group of Nonusers. There

were 28 participants in each group, and the Ecstacy users were almost all users of Cannabis

as well. Performance was evaluated on several different tasks, but we will focus on a test of

abstract thinking. The data given below were created to have the same means and variances

as in the original study, and higher scores represent better performance. The data are avail-

able on the Web site as Ex11–33.dat.

Ecstacy: 25 25 23 32 21 28 34 26 23 22 26 21 29 28

23 24 29 23 30 18 25 25 25 25 32 23 29 32

Control: 29 31 31 25 33 21 18 40 35 32 29 31 25 32

33 34 28 28 25 22 27 34 38 31 30 31 26 30

Cannabis: 28 28 28 29 37 34 27 25 34 28 25 27 30 29 31 32

30 29 32 25 32 31 32 22 31 25 28 34

a. Run an analysis of variance comparing the means of the three groups.

b. Calculate Cohen’s d to examine the pairwise effect sizes—in other words, calculate d
on the comparison of each group with each of the other groups.

c. What is a reasonable set of conclusions from this study?

Discussion Questions

11.34 Some experimenters have a guilty conscience whenever they transform data. Construct a

reasoned argument why transformations are generally perfectly acceptable.

11.35 In the study by Conti and Musty (1984) on the effects of THC on activity, the means clearly

do not increase linearly with dosage. What effect, if any, should this have on any magnitude-

of-effect measure?

11.36 With four groups you could have the means equally spaced along some continuum, or you

could have three means approximately equal to each other and a fourth one different, or you

could have two means approximately equal but different from two other approximately

equal means, or some other pattern. Using very simple data that you create yourself (hold-

ing within-groups variance constant), how does the F statistic vary as a function of the

pattern of means?
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To extend the analysis of variance by examining ways of making comparisons
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A SIGNIFICANT F IN AN ANALYSIS OF VARIANCE is simply an indication that not all the popu-

lation means are equal. It does not tell us which means are different from which other

means. As a result, the overall analysis of variance often raises more questions than it

answers. We now face the problem of examining differences among individual means, or

sets of means, for the purpose of isolating significant differences or testing specific hypothe-

ses. We want to be able to make statements of the form , and , but

the first three means are different from the last two, and all of them are different from .

Many different techniques for making comparisons among means are available, and

the list grows each year. Here we will consider the most common and useful ones. A thor-

ough discussion of this topic can be found in Miller (1981), and in Hochberg and

Tamhane (1987), and Toothaker (1991). Keselman, Holland, and Cribbie (2005) offer a

review of some of the newer methods. The papers by Games (1978a, 1978b) are also help-

ful, as is the paper by Games and Howell (1976) on the treatment of unequal sample sizes.

It may be helpful to the reader to understand how this chapter has changed through vari-

ous editions. The changes largely reflect the way people look at experimental results. Origi-

nally this chapter covered a few of the most common test procedures and left it at that. Then

as time went on I kept adding to the number of procedures and focused at length on ways to

make many individual comparisons among means. But in this edition I am deliberately go-

ing in the other direction. I am emphasizing the fact that we should direct our attention to

those differences we really care about and not fill our results section with all of the other

differences that we can test but don’t actually care about. This philosophy carries over to

calculating effect sizes and selecting appropriate error terms. Taking a standard multiple

comparison test such as Tukey’s (which is an excellent test for the purpose for which it was

designed) and then testing every conceivable pairwise null hypothesis is a very poor idea. It

wastes power, it often leads to the use of inappropriate error terms, it gives poor measures of

effect size, and generally confuses what is often a clear and simple set of results. The fact

that you are able to do something is rarely a sufficient reason for actually doing it.

12.1 Error Rates

The major issue in any discussion of multiple-comparison procedures is the question of

the probability of Type I errors. Most differences among alternative techniques result from

different approaches to the question of how to control these errors. The problem is in part

technical, but it is really much more a subjective question of how you want to define the

error rate and how large you are willing to let the maximum possible error rate be.

Here we will distinguish two basic ways of specifying error rates, or the probability of

Type I errors.1 (Later we will discuss an alternative view of error rates called the False Dis-

covery Rate, which has received a lot of attention in the last few years.) In doing so, we shall

use the terminology that has become more or less standard since an extremely important un-

published paper by Tukey in 1953. (See also Ryan, 1959; O’Neil & Wetherill, 1971.)

Error Rate per Comparison (PC)

We have used the error rate per comparison (PC) in the past and it requires little elabo-

ration. It is the probability of making a Type I error on any given comparison. If, for

m6

m4 = m5m1 = m2 = m3
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1 There is another error rate called the error rate per experiment (PE), which is the expected number of Type I
errors in a set of comparisons. The error rate per experiment is not a probability, and we typically do not attempt
to control it directly. We can easily calculate it, however, as PE 5 c , where c is the number of comparisons and

is the per comparison error rate.a
a

error rate per

comparison (PC)



example, we make a comparison by running a t test between two groups and we reject the

null hypothesis because our t exceeds , then we are working at a per comparison error

rate of .05.

Familywise Error Rate (FW )

When we have completed running a set of comparisons among our group means, we will

arrive at a set (often called a family) of conclusions. For example, the family might consist

of the statements

The probability that this family of conclusions will contain at least one Type I error is

called the familywise error rate (FW).2 Many of the procedures we will examine are specif-

ically directed at controlling the FW error rate, and even those procedures that are not in-

tended to control FW are still evaluated with respect to what the level of FW is likely to be.

In an experiment in which only one comparison is made, both error rates will be the same.

As the number of comparisons increases, however, the two rates diverge. If we let represent

the error rate for any one comparison and c represent the number of comparisons, then

If the comparisons are not independent, the per comparison error rate remains un-

changed, but the familywise rate is affected. In most situations, however, 

still represents a reasonable approximation to FW. It is worth noting that the limits on FW
are PC # FW # ca and in most reasonable cases FW is in the general vicinity of ca. This

fact becomes important when we consider the Bonferroni tests.

The Null Hypothesis and Error Rates

We have been speaking as if the null hypothesis in question were what is usually called the

complete, or omnibus, null hypothesis ( ). This is the null hy-

pothesis tested by the overall analysis of variance. In many experiments, however, nobody

is seriously interested in the complete null hypothesis; rather, people are concerned about a

few more restricted null hypotheses, such as ( , , ), with

differences among the various subsets. If this is the case, the problem becomes more com-

plex, and it is not always possible to specify FW without knowing the pattern of population

means. We will need to take this into account in designating the error rates for the different

tests we shall discuss.

A Priori versus Post Hoc Comparisons

In the earlier editions of this book I carefully distinguished between a priori comparisons,

which are chosen before the data are collected, and post hoc comparisons, which are

planned after the experimenter has collected the data, looked at the means, and noted which

m6 = m7m4 = m5m1 = m2 = m3

m1 = m2 = m3 = Á = mk

1 2 (1 2 a¿)c

(if comparisons are independent)

a = 1 2 (1 2 a¿)cFamilywise error rate (FW ):

a = a¿Error rate per comparison (PC ):

a¿

m1 6 (m3 1 m4)>2
m3 6 m4

m1 6 m2

t.05
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2 This error rate is frequently referred to, especially in older sources, as the “experimentwise” error rate. However,
Tukey’s term “familywise” has become more common. In more complex analyses of variance, the experiment
often may be thought of as comprising several different families of comparisons.

familywise error

rate (FW)

a priori

comparisons

post hoc

comparisons



of the latter are far apart and which are close together. This is a traditional distinction, but

one that seems to be less and less important to people who run such comparisons. In prac-

tice the real distinction seems to come down to the difference between deliberately making

a few comparisons that are chosen because of their theoretical or practical nature, and

making comparisons among all possible pairs of means. I am going to continue to make

the a priori/post hoc distinction because it organizes the material nicely and is referred to

frequently, but keep in mind that the distinction is a rather fuzzy one.

To take a simple example, consider a situation in which you have five means. In this

case, there are 10 possible comparisons involving pairs of means (e.g., versus , 

versus , and so on). Assume that the complete null hypothesis is true but that by

chance two of the means are far enough apart to lead us erroneously to reject .

In other words, the data contain one Type I error. If you have to plan your single compari-

son in advance, you have a probability of .10 of hitting on the 1 comparison out of 10 that

will involve a Type I error. If you look at the data first, however, you are certain to make a

Type I error, assuming that you are not so dim that you test anything other than the largest

difference. In this case, you are implicitly making all 10 comparisons in your head, even

though you perform the arithmetic for only the largest one. In fact, for some post hoc tests,

we will adjust the error rate as if you literally made all 10 comparisons.

This simple example demonstrates that if comparisons are planned in advance (and are
a subset of all possible comparisons), the probability of a Type I error is smaller than if the

comparisons are arrived at on a post hoc basis. It should not surprise you, then, that we will

treat a priori and post hoc comparisons separately. It is important to realize that when we

speak of a prior tests, we commonly mean a relatively small set of comparisons. If you are

making all possible pairwise comparisons among several means, for example, it won’t

make any difference whether that was planned in advance or not. (I would wonder, how-

ever, if you really wanted to make all possible comparisons.)

Significance of the Overall F

Some controversy surrounds the question of whether one should insist that the overall F on

treatments be significant before conducting multiple comparisons between individual

group means. In the past, the general advice was that without a significant group effect, in-

dividual comparisons were inappropriate. In fact, the rationale underlying the error rates

for Fisher’s least significant different test, to be discussed in Section 12.4, required overall

significance.

The logic behind most of our multiple comparison procedures, however, does not

require overall significance before making specific comparisons. First of all, the hypothe-

ses tested by the overall test and a multiple-comparison test are quite different, with quite

different levels of power. For example, the overall F actually distributes differences among

groups across the number of degrees of freedom for groups. This has the effect of diluting

the overall F in the situation where several group means are equal to each other but differ-

ent from some other mean. Second, requiring overall significance will actually change the

FW, making the multiple comparison tests conservative. The tests were designed, and their

significance levels established, without regard to the overall F.

Wilcox (1987a) has considered this issue and suggested that “there seems to be little

reason for applying the (overall) F test at all” (p. 36). Wilcox would jump straight to

multiple-comparisons without even computing the F. Others have said much the same

thing. That position may have seemed a bit extreme in the past, but it does emphasize the

point. However it does not seem as extreme today as it did 20 years ago. If you recognize

that typical multiple-comparison procedures do not require a significant overall F, you

H0 : mi = mj

X3X1

X2X1
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will examine group differences regardless of the value of that F. Why, then, do we even

need that F except to provide a sense of closure? The only reason I can think of is “tradi-

tion,” and that is a powerful force. You would need to go as far as calculating MS
error

any-

way, so you might as well take the extra step and calculate the omnibus F.

12.2 Multiple Comparisons in a Simple Experiment
on Morphine Tolerance

In discussing the various procedures, it will be helpful to have a data set to which each of

the approaches can be applied. We will take as an example a study similar to an important

experiment on morphine tolerance by Siegel (1975). Although the data are fictitious and a

good deal of liberty has been taken in describing the conditions, the means (and the signif-

icance of the differences among the means) are the same as those in Siegel’s paper. It will

be necessary to describe this study in some detail, but the example is worth the space re-

quired. It will be to your advantage to take the time to understand the hypotheses and the

treatment labels.

Morphine is a drug that is frequently used to alleviate pain. Repeated administrations

of morphine, however, lead to morphine tolerance, in which morphine has less and less of

an effect (pain reduction) over time. (You may have experienced the same thing if you eat

spicy food very often. You will find that the more you eat it, the hotter you have to make it

to taste the way it did when you started.) A common experimental task that demonstrates

morphine tolerance involves placing a rat on an uncomfortably warm surface. When the

heat becomes too uncomfortable, the rat will lick its paws, and the latency of the paw-lick

is used as a measure of the rat’s sensitivity to pain. A rat that has received a single mor-

phine injection typically shows a longer paw-lick latency, indicating a reduced pain sensi-

tivity. The development of morphine tolerance is indicated by a progressive shortening of

paw-lick latencies (indicating increased sensitivity) with repeated morphine injections.

Siegel noted that there are a number of situations involving drugs other than morphine

in which conditioned (learned) drug responses are opposite in direction to the uncondi-

tioned (natural) effects of the drug. For example, an animal injected with atropine will

usually show a marked decrease in salivation. However if physiological saline (which

should have no effect whatsoever) is suddenly injected (in the same physical setting) after

repeated injections of atropine, the animal will show an increase in salivation. It is as if

the animal were compensating for the anticipated effect of atropine. In such studies, it ap-

pears that a learned compensatory mechanism develops over trials and counterbalances

the effect of the drug. (You experience the same thing if you leave the seasoning out of

food that you normally add seasoning to. It will taste unusually bland, though the Grape

Nuts you eat for breakfast does not taste bland—and I hope that you don’t put seasoning

on Grape Nuts.)

Siegel theorized that such a process might help to explain morphine tolerance. He rea-

soned that if you administered a series of pretrials in which the animal was injected with

morphine and placed on a warm surface, morphine tolerance would develop. Thus, if you

again injected the subject with morphine on a subsequent test trial, the animal would only

be as sensitive to pain as would be a naive animal (one who had never received morphine)

because of the tolerance that has developed. Siegel further reasoned that if on the test trial

you instead injected the animal with physiological saline in the same test setting as the nor-

mal morphine injections, the conditioned hypersensitivity that results from the repeated ad-

ministration of morphine would not be counterbalanced by the presence of morphine, and

the animal would show very short paw-lick latencies. Siegel also reasoned that if you gave
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the animal repeated morphine injections in one setting but then tested it with morphine in a

new setting, the new setting would not elicit the conditioned compensatory hypersensitiv-

ity to counterbalance the morphine. As a result, the animal would respond as would an ani-

mal that was being injected for the first time. Heroin is a morphine derivative. Imagine a

heroin addict who is taking large doses of heroin because he has built up tolerance to it. If

his response to this now large dose were suddenly that of a first-time (instead of a tolerant)

user, because of a change of setting, the result could be, and often is, lethal. We’re talking

about a serious issue here.

You may think that an experiment conducted 30 years ago, which is before most of the

readers of this book were born, is too old to be interesting. But a quick search of Google

will reveal a great many recent studies that have derived directly from Siegel’s early work.

A particularly interesting one by Mann-Jones, Ettinger, Baisden, and Baisden has shown

that a drug named Dextromethorphan can counteract morphine tolerance. That becomes in-

teresting when you learn that Dextromethorphan is an important ingredient in cough syrup.

This suggests that heroine addicts don’t want to be taking cough syrup any more than they

want to be administering heroine in novel environments. The study can be found at

www.eou.edu/psych/re/morphinetolerance.doc.

Our version of Siegel’s experiment is based on the predictions just outlined. The exper-

iment involved five groups of rats. Each group received four trials, but the data for the

analysis come from only the critical fourth (test) trial. The groups are designated by indi-

cating the treatment on the first three trials and then the treatment on the fourth trial. Group

M-M received morphine on the first three trials in the test setting and then again on the

fourth trial in the same test setting. This is the standard morphine-tolerant group, and, 

because morphine tolerance develops very quickly, we would expect to see normal, or at

least near-normal, levels of pain sensitivity on that fourth trial. Group M-S received mor-

phine on the first three trials but then received saline on the fourth trial (in the same test

setting). These animals would be expected to be hypersensitive to the pain stimulus be-

cause the conditioned hypersensitivity would not be balanced by any compensating effects

of morphine. Group M(cage)-M (abbreviated Mc-M) received morphine on the first three

trials in their home cage but then received morphine on the fourth trial in the standard test

setting, which was new to them. For this group, cues originally associated with morphine

injection were not present on the test trial, and therefore, according to Siegel’s model, the

animals should not exhibit morphine tolerance on that trial. The fourth group (group S-M)

received saline on the first three trials (in the test setting) and morphine on the fourth trial.

These animals would be expected to show the least sensitivity to pain because there has

been no opportunity for morphine tolerance to develop. Finally, group S-S received saline

on all four trials.

If Siegel’s model is correct, group S-M should show the longest latencies (indicating

least sensitivity), whereas group M-S should show the shortest latency (most sensitivity).

Group Mc-M should resemble group S-M, because cues associated with group Mc-M’s

first three trials would not be present on the test trial. Groups M-M and S-S should be in-

termediate. Whether group M-M will be equal to group S-S will depend on the rate at

which morphine tolerance develops. The pattern of anticipated results is

S-M 5 Mc-M . M-M ? S-S . M-S

The “?” indicates no prediction. The dependent variable is the latency (in seconds) of 

paw-licking.

The results of this experiment are presented in Table 12.1a, and the overall analysis of

variance is presented in Table 12.1b. Notice that the within-group variances are more or

less equal (a test for heterogeneity of variance was not significant), and there are no obvi-

ous outliers. The overall analysis of variance is clearly significant, indicating differences

among the five treatment groups.
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Magnitude of Effect

We can calculate 2 for these data as SS
treat

SS
total

5 3497.60 4617.60 5 .76, indicating

that treatment differences account for 76% of the variation in the study. A nearly unbiased

estimate would be v2, which would be

Both estimates indicate that group differences account for a very substantial proportion

of the variation in this study.

12.3 A Priori Comparisons

There are two reasons for starting our discussion with a priori comparisons and t tests. In

the first place, standard t tests between pairs of means can be a perfectly legitimate method

of comparison. Second, the basic formula for t, and minor modifications on it, are applica-

ble to a large number of procedures, and a review at this time is useful.

As we have seen, a priori comparisons (also called contrasts) are planned before the

data have been collected. There are several different kinds of a priori comparison proce-

dures, and we will discuss them in turn.

Multiple t Tests

One of the simplest methods of running preplanned comparisons is to use individual t tests be-

tween pairs of groups. In running individual t tests, if the assumption of homogeneity of vari-

ance is tenable, we usually replace the individual variances, or the pooled variance estimate,

v2 =
SStreat 2 (k 2 1)MSerror

SStotal 1 MSerror

=
3497.60 2 4(32)

4617.60 1 32
=

3369.6

4649.6
= 0.72

>>h
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Table 12.1 Data and analysis on morphine tolerance

(a) Data

M-S M-M S-S S-M Mc-M

3 2 14 29 24

5 12 6 20 26

1 13 12 36 40

8 6 4 21 32

1 10 19 25 20

1 7 3 18 33

4 11 9 26 27

9 19 21 17 30

Mean 4.00 10.00 11.00 24.00 29.00

St. Dev 3.16 5.13 6.72 6.37 6.16

(b) Summary Table

Source df SS MS F

Treatment 4 3497.60 874.40 27.33*

Error 35 1120.00 32.00

Total 39 4617.60

* p , .05

contrasts



with from the overall analysis of variance and evaluate the t on degrees of free-

dom. When the variances are heterogeneous but the sample sizes are equal, we do not use

, but instead use the individual sample variances and evaluate t on 2(n 2 1) degrees of

freedom. Finally, when we have heterogeneity of variance and unequal sample sizes, we use

the individual variances and correct the degrees of freedom using the Welch–Satterthwaite ap-

proach (see Chapter 7). (For an evaluation of this approach, albeit for a slightly different test

statistic, see Games and Howell, 1976.)

The indiscriminate use of multiple t tests is typically brought up as an example of a

terrible approach to multiple comparisons. In some ways, this is an unfair criticism. It is a

terrible thing to jump into a set of data and lay waste all around you with t tests on each

and every pair of means that looks as if it might be interesting. The familywise error rate

will be outrageously high. However, if you have only one or two comparisons to make and

if those comparisons were truly planned in advance (you cannot cheat and say, “Oh well,

I would have planned to make them if I had thought about it”), the t-test approach has much

to recommend it. With only two comparisons, for example, the maximum FW would be ap-

proximately .10 if each comparison were run at a 5 .05, and would be approximately .02

if each comparison were run at a 5 .01. For a discussion of the important role that individ-

ual contrasts can play in an analysis, see Howell (2008).

In the study on morphine tolerance described previously, we would probably not use

multiple t tests simply because too many important comparisons should be considered. (In

fact, we would probably use one of the post hoc procedures for making all pairwise com-

parisons unless we can restrict ourselves to relatively few comparisons.) For the sake of an

example, however, consider two fundamental comparisons that were clearly predicted by

the theory and that can be tested easily with a t test. The theory predicted that a rat that had

received three previous morphine trials and was then tested in the same environment using a

saline injection would show greater pain sensitivity than would an animal that had always been

tested using saline. This involves a comparison of group M-S with group S-S. Furthermore,

the theory predicted that group Mc-M would show less sensitivity to pain than would group

M-M, because the former would be tested in an environment different from the one in which it

had previously received morphine. Because the sample variances are similar and the sample

sizes are equal, we will use as the pooled variance estimate and will evaluate the result

on degrees of freedom.

Our general formula for t, replacing individual variances with , will then be

Substituting the data from our example, the contrast of group M-S with group S-S yields

And group Mc-M versus group M-M yields

t =
XMc-M 2 XM-M

B2MSerror

n

=
29.00 2 10.00

B2(32.00)

8

=
1918

= 6.72

MSerror = 32.00XM-M = 10.00XMc-M = 29.00

t =
XM-S 2 XS-S

B2MSerror

n

=
4.00 2 11.00

B2(32.00)

8

=
-718

= -2.47

MSerror = 32.00XS-S = 11.00XM-S = 4.00

t =
Xi 2 Xj

BMSerror

n
1

MSerror

n

=
Xi 2 Xj

B2MSerror

n

MSerror

dferror

MSerror

MSerror

dferrorMSerror
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Both of these obtained values of t would be evaluated against t
.025

(35) 5 2.03, and both

would lead to rejection of the corresponding null hypothesis. We can conclude that with two

groups of animals tested with saline, the group that had previously received morphine in the

same situation will show a heightened sensitivity to pain. We can also conclude that changing

the setting in which morphine is given significantly reduces, if it does not eliminate, the con-

ditioned morphine-tolerance effect. Because we have tested two null hypotheses, each with

a 5 .05 per comparison, the FW will approach .10 if both null hypotheses are true, which

seems quite unlikely. In fact, given the position of Jones and Tukey (2000) that it is highly

unlikely that either null hypothesis would be true, and that we can only incorrectly find a sig-

nificant difference in the wrong direction, the probability of an error in this situation is at

most .05. That is important to keep in mind when we speak of the advantages and disadvan-

tages of individual contrasts on pairs of means.

The basic t test that we have just used is the basis for almost everything to follow. I

may tweak the formula here or there, and I will certainly use a number of different tables

and decision rules, but it remains your basic t test—even when I change the formula and

call it q.

Linear Contrasts

The use of individual t tests is a special case of a much more general technique involving

what are known as linear contrasts.3 In particular, t tests allow us to compare one group

with another group, whereas linear contrasts allow us to compare one group or set of
groups with another group or set of groups. Although we can use the calculational proce-

dures of linear contrasts with post hoc tests as well as with a priori tests, they are discussed

here under a priori tests because that is where they are most commonly used.

To define linear contrasts, we must first define a linear combination. A linear combi-

nation of means takes the form

This equation simply states that a linear combination is a weighted sum of treatment means.

If, for example, the were all equal to 1, L would just be the sum of the means. If, on the

other hand, the were all equal to 1 k, then L would be the mean of the means.

When we impose the restriction that , a linear combination becomes what is

called a linear contrast. By convention we designate the fact that it is a linear contrast by

replacing “L” with the Greek psi ( ). With the proper selection of the , a linear contrast

is very useful. It can be used, for example, to compare one mean with another mean, or the

mean of one condition with the combined mean of several conditions. As an example, con-

sider three means ( , , and ). Letting , and , 

In this case, is simply the difference between the means of group 1 and group 2, with the

third group left out. If, on the other hand, we let 5 1 2, 5 1 2, and 21, then

in which case represents the difference between the mean of the third treatment and the

average of the means of the first two treatments.

c

c = (1>2)X1 1 (1>2)X2 1 (-1)X3 =
X1 1 X2

2
2 X3

a3 =>a2>a1

c

c = (1)X1 1 (-1)X2 1 (0)X3 = X1 2 X2

gaj = 0,a3 = 0a2 = -1a1 = 1,X3X2X1

ajc

gaj = 0

>aj

aj

L = a1X1 1 a2 X2 1 Á 1 ak Xk = aaj Xj

6
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Sum of Squares for Contrasts

One of the advantages of linear contrasts is that they can be converted to sums of squares

very easily and can represent the sum of squared differences between the means of sets of

treatments. If we write

it can be shown that

is a component of the overall on 1 df, where n represents the number of scores per

treatment.4

Suppose we have three treatments such that

n 5 10

For the overall analysis of variance,

Suppose we wanted to compare the average of treatments 1 and 2 with treatment 3. Let 

5 1 2, a
2

5 1 2, 5 21. Then

This sum of squares is a component of the overall on 1 df. We have 1 df because we

are really comparing two quantities (the mean of the first two treatments with the mean of

the third treatment).

Now suppose we obtain an additional linear contrast comparing treatment 1 with treat-

ment 2. Let 5 1, 5 21, and . Then

This is also a component of on 1 df. In addition, because of the particular

contrasts that we chose to run,

the two contrasts account for all of the and all of the df attributable to treatments. We

say that we have completely partitioned .SStreat

SStreat

 11.667 = 10.417 1 1.25

 SStreat = SScontrast1 1 SScontrast2

SStreatSScontrast

 SScontrast =
n c2

aa2
j

=
10(-0.5)2

2
=

2.5

2
= 1.25

 c = aaj Xj = (1)(1.5) 1 (-1)(2.0) 1 (0)(3.0) = -0.5

a3 = 0a2a1

SStreat

 SScontrast =
nc2

aa2
j

=
10(-1.25)2

1.5
=

15.625

1.5
= 10.417

 c = aaj Xj = A12B(1.5) 1 A12B A2.0B 1 (-1)(3.0) = -2.5

a3>>a1

 = 1030.4449 1 0.0278 1 0.69394 = 11.667

 SStreat = na (Xj 2 X..)
2 = 103(1.5 2 2.167)2 1 (2 2 2.167)2 1 (3 2 2.167)24

X3 = 3.0X2 = 2.0X1 = 1.5

SStreat

SScontrast =
nc 2

aa2
j

=
nAaaj XjB2
aa2

j

c = a1X1 1 a2 X2 1 Á 1 ak Xk =aaj Xj
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The Choice of Coefficients

In the previous example, it should be reasonably clear why we chose the coefficients we

did. They weight the treatment means in what seems to be a logical way to perform the

contrast in question. Suppose, however, that we have five groups of equal size and wish to

compare the first three with the last two. We need a set of coefficients ( ) that will accom-

plish this task and for which 5 0. The simplest rule is to form the two sets of treat-

ments and to assign as weights to each set the reciprocal of the number of treatment groups

in that set. One arbitrary set of coefficients is then given a minus sign. For example, take

the means

We want to compare , , and combined with and combined. The first set

contains three means, so for , , and the 5 1 3. The second set contains two

means, so for and the 5 1 2. We will let the 1 2s be negative. Then we have

Means:

: 1⁄3 1⁄3 1⁄3 21⁄2 21⁄2

Then reduces to 1⁄3 1⁄2 .

(If you go back to Siegel’s experiment on morphine, lump the first three groups to-

gether and the last two groups together, and look at the means of the combined treatments,

you will get an idea of why this system makes sense.)5

There are other ways of setting up the coefficients using whole numbers, and for many

purposes you will arrive at the same result. I used to like alternative approaches because

I find fractions messy, but using fractional values as I did here, where the sum of the ab-

solute values of all coefficients is equal to 2, has some important implications when it

comes to estimating effect sizes. The set of coefficients whose sum of absolute values

equals 2 is often referred to as a standard set.

The Test of Significance

We have seen that linear contrasts can be easily converted to sums of squares on 1 degree of

freedom. These sums of squares can be treated exactly like any other sums of squares. They

happen also to be mean squares because they always have 1 degree of freedom, and can thus

be divided by to produce an F. Because all contrasts have 1 degree of freedom

This F will have one and degrees of freedom. And if you feel more comfortable

with t, you can take the square root of F and have a t on df
error

degrees of freedom.

For our example, suppose we had planned (a priori) to compare the mean of the two

groups for whom the morphine should be maximally effective, either because they had

dferror

F =
MScontrast

MSerror

=
nc 2>aa 2

j

MSerror

=
nc2

aa 2
j MSerror

MSerror

AX4 1 X5B AX1 1 X2 1 X3B 2gaj Xj

aaj = 0aj

X5X4X3X2X1

>>ajX5X4

>ajX3X2X1

X5X4X3X2X1

X5X4X3X2X1

aaj

aj
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5 If we have different numbers of subjects in the several groups, we may need to obtain our coefficients somewhat
differently. If the sample sizes differ in nonessential ways, such as when a few subjects are missing at random, the
approach above will be the appropriate one. It will not weight one group mean more than another just because the
group happens to have a few more subjects. However, if the sample sizes are systematically different, not just dif-
ferent at random, and if we want to give more weight to the means from the larger groups, then we need to do
something different. Because there really are very few cases where I can imagine wanting the different sample
sizes to play an important role, I have dropped that approach from this edition of the book. However, you can find
it in earlier editions and on the Web pages referred to earlier. 
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never had morphine (Condition S-M) or because they had received morphine in a different

context (Mc-M), with the mean of the other three groups (M-M, S-S, and M-S). We also

planned to compare group Mc-M with group M-M, and group M-S with group S-S, for the

same reasons given in the discussion of individual t tests. Finally, we planned to compare

group M-M with group S-S to see whether morphine tolerance developed to such an extent

that animals that always received morphine were no different after only four trials from an-

imals that always received saline. (As we will see shortly, these four contrasts are not inde-

pendent, but they answer substantive questions.) The analysis is shown in Table 12.2.

Each of these F values can be evaluated against . As expected, the

first three contrasts are significant. The fourth contrast, comparing M-M with S-S, is not

significant, indicating that complete morphine tolerance seems to develop in as few as four

trials. (Be careful here, as I am acting as if I can prove the null hypothesis, when we know

that such is not possible.) Note that contrasts 2 and 3 test the same hypotheses that we

F.05(1, 35) = 4.12
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Table 12.2 A set of a priori comparisons on morphine data

Groups: M-S M-M S-S S-M Mc-M

Means: 4.00 10.00 11.00 24.00 29.00

Coefficient

aj 21 3 21 3 1 3 1 2 1 2 0.833 18.167

bj 0 21 0 0 1 2 19

cj 21 0 1 0 0 2 7

dj 0 1 21 0 0 2 21

 F =
MScontrast

MSerror

=
4.00

32.00
= 0.125

 SScontrast4 =
n Aadj XjB2
ad 2

j

=
8( 21)2

2
=

8

2
= 4.00

 F =
MScontrast

MSerror

=
196.00

32.00
= 6.125

  SScontrast3 =
nAa cj XjB2
a c2

j

=
8(7)2

2
=

392

2
= 196.00

 F =
MScontrast

MSerror

=
1444.00

32.00
= 45.125

 SScontrast2 =
nAabj XjB2
ab 2

j

=
8(19)2

2
=

2888

2
= 1444.00

 F =
MScontrast

MSerror

=
3169.42

32.00
= 99.04

 SScontrast1 =
nAaaj XjB2
aa2

j

=
8(18.17)2

0.8333
=

2641.19

0.8333
= 3169.42

>>>>>
c = aaj Xjaa2

j



tested using individual t tests. If you take the square root of the Fs for these two contrasts,

they will equal 6.72 and 2.47, which are precisely the values we obtained for t earlier. This

simply illustrates the fact that t tests are a special case of linear contrasts.

With four contrasts, we have an FW approaching .20 if all null hypotheses are true,

which seems highly unlikely. This error rate is uncomfortably high, although some experi-

menters would accept it, especially for a priori contrasts. One way of reducing the error

rate would be to run each comparison at a more stringent level of a; for example, a 5 .01.

Another alternative would be to use a different a priori procedure, the Bonferroni proce-

dure, which amounts to almost the same thing as the first alternative but is conducted in a

more precise manner. We will consider this procedure after we briefly discuss a special

type of linear contrast, called orthogonal contrasts. Yet a third way to control FW is to run

fewer contrasts. For example, the comparison of M-M with S-S is probably not very im-

portant. Whether complete tolerance develops on the fourth trial or on the sixth or seventh

trial is of no great theoretical interest. By eliminating that contrast, we could reduce the

maximum FW to .15. You should never choose to run contrasts the way you eat peanuts or

climb mountains—just because they are there. In general, if a contrast is not important, do

not run it.

Orthogonal Contrasts

Linear contrasts as they have been defined allow us to test a series of hypotheses about treat-

ment differences. Sometimes contrasts are independent of one another, and sometimes they

are not. For example, knowing that is greater than the average of and tells you

nothing about whether is greater than nor whether is likely to be greater than .

These contrasts are independent. However, knowing that is greater than the average of 

and suggests that there is a better than 50:50 chance that is greater than . These two

contrasts are not independent. When members of a set of contrasts are independent of one

another, they are called orthogonal contrasts, and the sums of squares of a complete set of

orthogonal contrasts sum to . (If the contrasts are not orthogonal, they contain over-

lapping amounts of information and do not have this additivity property.) From a calcula-

tional point of view, what sets orthogonal contrasts apart from other types of contrasts we

might choose is the relationship between the coefficients for one contrast and the coeffi-

cients for other contrasts in the set. Other than that, the computations are exactly the same.

Orthogonal Coefficients

Given that sample sizes are equal, for contrasts to be orthogonal the coefficients must meet

the following three criteria:

1.

2.

where aj and bj are the sets of coefficients for different contrasts. Furthermore, for the

to sum to , we need to add a third criterion:

3. Number of comparisons 5 number of df for treatments

The first restriction has been discussed already; it results in the contrast’s being a sum

of squares. The second restriction ensures that the contrasts are independent of (or orthog-

onal to) one another, and thus that we are summing nonoverlapping components. The third

restriction says nothing more than that if you want the parts to sum to the whole, you need

to have all the parts.

SStreatSScontrast

gajbj = 0

gaj = 0

SStreat

X2X1X3

X2X1

X5X4X2X3

X3X2X1
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At first glance, it would appear that finding sets of coefficients satisfying the require-

ment would require that we either undertake a frustrating process of trial and

error or else solve a set of simultaneous equations. In fact, a simple rule exists for finding

orthogonal sets of coefficients; although the rule will not find all possible sets, it will lead

to most of them. The rule for forming the coefficients visualizes the process of breaking

down in terms of a tree diagram. The overall F for five treatments deals with all five

treatment means simultaneously. That is the trunk of the tree. If we then compare the combi-

nation of treatments 1 and 2 with the combination of treatments 3, 4, and 5, we have formed

two branches of our tree, one representing treatments 1 and 2 and the other representing treat-

ments 3, 4, and 5. As discussed earlier, the value of for the treatment means on the left will

be equal to the reciprocal of the number of treatments in that set, and vice versa, with one of

the sets being negative. In this case the coefficients are (1⁄2, 1⁄2, 21⁄3, 21⁄3, 21⁄3) for the five

treatments, respectively.

Now that we have formed two limbs or branches of our tree, we can never compare

treatments on one limb with treatments on another limb, although we can compare treat-

ments on the same limb. Thus, comparing treatment 3 with the combination of treatments

4 and 5 is an example of a legitimate comparison. The coefficients in this case would be

(0, 0, 1, 21⁄2, 21⁄2). Treatments 1 and 2 have coefficients of 0 because they are not part of

this comparison. Treatment 3 has a coefficient of 1 because it contains one treatment.

Treatments 4 and 5 received coefficients of 21⁄2 because there are two treatments in that

set. The negative signs can be arbitrarily assigned to either side of the comparison.

The previous procedure could be carried on until we have exhausted all possible sets of

comparisons. This will occur when we have made as many comparisons as there are df for

treatments. As a result of this procedure, we might arrive at the comparisons and coeffi-

cients shown in Figure 12.1. To show that these coefficients are orthogonal, we need to

show only that all pairwise products of the coefficients sum to zero. For example,

and

Thus, we see that the first and second and the first and third contrasts are both inde-

pendent. Similar calculations will show that all the other contrasts are also independent of

one another.

These coefficients will lead to only one of many possible sets of orthogonal contrasts. If

we had begun by comparing treatment 1 with the combination of treatments 2, 3, 4, and 5,

the resulting set of contrasts would have been entirely different. It is important for the ex-

perimenter to decide which contrasts she considers important, and to plan accordingly.

The actual computation of F with orthogonal contrasts is the same as when we are us-

ing nonorthogonal contrasts. Because of this, there is little to be gained by working through

an example here. It would be good practice, however, for you to create a complete set of

orthogonal contrasts and to carry out the arithmetic. You can check your answers by show-

ing that the sum of the sums of squares equals .SStreat

aajcj = A12B(0) 1 A12B(0) 1 A-1
3B(2) 1 A-1

3B(-1) 1 A-1
3B(-1) = 0

aajbj = A12B (1) 1 A12B (-1) 1 A- 1
3B(0) 1 A-1

3B (0) 1 A-1
3B (0) = 0

aj

SStreat

gajbj = 0
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When I first started teaching and writing about statistics, orthogonal contrasts were a

big deal, just as was the distinction between a priori and post hoc tests. Authors went out of

their way to impress on you the importance of orthogonality, and the need to feel guilty if

you ran comparisons that were not orthogonal. That attitude has changed over the years.

While it is nice to have a set of orthogonal comparisons, in part because they sum to SS
treat

,

people are far more willing to run nonorthogonal contrasts. I would certainly not suggest

that you pass up an important contrast just because it is not orthogonal to others that you



ran. In fact, the contrasts that I ran earlier are not orthogonal to each other, and that does

not worry me over much. They address important questions; (well, possibly not S-S versus

M-M, as I said). Nor should you use a contrast in which you have no interest, just because

it is part of an orthogonal set. But keep in mind that being nonorthogonal means that these

contrasts are not independent of each other.

Bonferroni t (Dunn’s Test)

I suggested earlier that one way to control the familywise error rate when using linear

contrasts is to use a more conservative level of a for each comparison. The proposal that

you might want to use a 5 .01 instead of a 5 .05 was based on the fact that our statistical

tables are set up that way. (Tables do not usually have many critical values of t for a

between .05 and .01, although statistical software to compute and print them is widely

available.) A formal way of controlling FW more precisely by manipulating the per com-

parison error rate can be found in a test proposed by Dunn (1961), which is particularly

appropriate when you want to make only a few of all possible comparisons. Although this

test had been known for a long time, Dunn was the first person to formalize it and to pres-

ent the necessary tables, and it is sometimes referred to as Dunn’s test. It now more com-

monly goes under the name Bonferroni t. The Bonferroni t test is based on what is known

as the Bonferroni inequality, which states that the probability of occurrence of one or
more events can never exceed the sum of their individual probabilities. This means that

when we make three comparisons, each with a probability of 5 .05 of a Type I error,

the probability of at least one Type I error can never exceed 3 3 .05 5 .15. In more for-

mal terms, if c represents the number of comparisons and represents the probability of

a Type I error for each comparison, then FW is less than or equal to . From this it fol-

lows that if we set 5 a c for each comparison, where a 5 the desired maximum FW,

then . Dunn (1961) used this inequality to design a test in which

each comparison is run at , leaving the FW # a for the set of comparisons. This

can be accomplished by using the standard t test procedure but referring the result to mod-

ified t tables.

The problem that you immediately encounter when you attempt to run each compari-

son at is that standard tables of Student’s t do not provide critical values for the

necessary levels of a. If you want to run each of three comparisons at 5 .05 3

5 .0167, you would need tables of critical values of t at a 5 .0167, or software6 that will

easily compute it. Dunn’s major contribution was to provide such tables. (Although such

tables are less crucial now that virtually all computer programs report exact probability

>a¿ = a>c
a¿ = a>c

a¿ = a>c
FW … ca¿ = c(a>c) = a

>a¿
ca¿

a¿

a¿
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(1, 2, 3, 4, 5)

(1, 2) vs. (3, 4, 5)

(1 vs. 2) (3) vs. (4, 5)

(4) vs. (5)

Figure 12.1 Tree diagram illustrating orthogonal partition of SS
treat

Coefficients

2 2 2

1 21 0 0 0

0 0 1 2 2

0 0 0 1 21

1
2

1
2

1
3

1
3

1
3

1
2

1
2

6 Free probability calculators can be found at http://www.danielsoper.com/statcalc/.
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values for each F, they still have a role to play, and her table can be found in the appendix

of this book.)

For the Bonferroni test on pairwise comparisons (i.e., comparing one mean with one

other mean), define

and evaluate against the critical value of taken from Dunn’s tables in Appendix .

Notice that we still use the standard formula for t. The only difference between and a

standard t is the tables used in their evaluation. With unequal sample sizes but homoge-

neous variances, replace the ns in the leftmost equation with and . With heterogeneity

of variance, see the solution by Games and Howell later in this chapter.

To write a general expression that allows us to test any comparison of means, pairwise

or not, we can express in terms of linear contrasts.

and

This represents the most general form for the Bonferroni t, and it can be shown that if

c is any linear combination (not necessarily even a linear contrast, requiring ), the

FW with c comparisons is at most a (Dunn, 1961).7 To put it most simply, the Bonferroni t
runs a regular t test but evaluates the result against a modified critical value of t that has

been chosen so as to limit FW.

I would offer one word of caution when it comes to the Bonferroni test and variations

on it. These tests are appropriate when you have a limited number of planned contrasts,

whether they be pairwise or complex. However SPSS and SAS offer the Bonferroni test

only with pairwise post hoc tests, for which it is usually inappropriate. If you want to apply

such a correction to a planned set of contrasts, you need to specify those contrasts and then

evaluate significance on your own in relation to a c. And to specify those contrast coeffi-

cients you will need to use Compare Means/One-way ANOVA and not the univariate

procedure. In SAS you will need to use a contrast statement with Proc GLM.

A variation on the Bonferroni procedure was proposed by ˇSidák (1967). His test

is based on the multiplicative inequality and evaluates at 

. (This is often called the Dunn-Šidák test.) A comparison of the 

power of the two tests shows only very minor differences in favor of the ˇSidák approach,

and we will stick with the Bonferroni test because of its much wider use. Many computer

software programs, however, provide this test. For four comparisons, the ˇSidák approach

would test each comparison at level,

whereas the Bonferroni approach would test at a c 5 .05 4 5 .0125. You can see that

there is not a lot of difference in power.

When we considered linear contrasts earlier in this section, we ran four comparisons,

which had an FW of nearly .20. (Our test of each of those contrasts involved an F statistic

but, because each contrast involves 1 df, we can go from t to F and vice versa by means of

the relationship .) If we wish to run those same comparisons but to keep FW at a

maximum of .05 instead of 4 3 (.05) 5 .20, we can use the Bonferroni t test. In each case,

t = 2F

>>
a¿ = 1 2 (1 2 a)1>4 = 1 2 .95.25 = 0.0127

a¿ = 1 2 (1 2 a)1>c
t¿p(FW) … 1 2 (1 2 a)c

>

gaj = 0

t¿ =
c

Baa2
j MSerror

n

c = aaj Xj

t¿

njni

t¿
t¿t¿t¿

t¿ =
Xi 2 Xj

BMSerror

n
1

MSerror

n

=
Xi 2 Xj

B2MSerror

n
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7 Note the similarity between the right side of the equation and our earlier formula for F with linear contrasts. The
resemblance is not accidental; one is just the square of the other.

Dunn-Šidák test



we will solve for and refer that to Dunn’s tables. Taking the pairwise tests first, the

calculations follow.

Mc-M versus M-M:

S-S versus M-S:

M-M versus S-S:

The calculations for the more complex contrast, letting the , 1 3, 1 3, 21 2, 21 2

as before, follow.

S-M and Mc-M versus M-M, S-S, and M-S:

From Appendix , with c 5 4 and 5 35, we find by interpolation . In

this case, the first and last contrasts are significant, but the other two are not.8 Whereas we

earlier rejected the hypothesis that groups S-S and M-S were sampled from populations

with the same mean, using the more conservative Bonferroni t test we are no longer able to

reject that hypothesis. Here we cannot conclude that prior morphine injections lead to

hypersensitivity to pain. The difference in conclusions between the two procedures is a di-

rect result of our use of the more conservative familywise error rate. If we wish to concen-

trate on per comparison error rates, ignoring FW, then we evaluate each t (or F) against the

critical value at a 5 .05. On the other hand, if we are primarily concerned with controlling

FW, then we evaluate each t, or F, at a more stringent level. The difference is not in the

arithmetic of the test; it is in the critical value we choose to use. The choice is up to the

experimenter.

Multistage Bonferroni Procedures

The Bonferroni multiple-comparison procedure has a number of variations. Although

these are covered here in the context of the analysis of variance, they can be applied

equally well whenever we have multiple hypothesis tests for which we wish to control

the familywise error rate. These procedures have the advantage of setting a limit on the

FW error rate at a against any set of possible null hypotheses, as does the Tukey HSD

(to be discussed shortly), while at the same time being less conservative than Tukey’s test

t¿.05(35) = 2.64dferrort¿

t¿ =
aaj Xj

Baa 2
j MSerror

n

=
A12B(24) 1 Á 1 A-1

3B(4)

B(0.833)(32.00)

8

=
18.16713.3333

= 9.95

>>>>aj = 1>3

t¿ =
Xi 2 Xj

B2MSerror

n

=
10.00 2 11.00

B(2)(32.00)

8

=
-118

= -0.35

t¿ =
Xi 2 Xj

B2MSerror

n

=
11.00 2 4.00

B(2)(32.00)

8

=
718

= 2.47

t¿ =
Xi 2 Xj

B2MSerror

n

=
29.00 2 10.00

B(2)(32.00)

8

=
1918

= 6.72

t¿
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8 The actual probabilities would be .000, .073, 1.00, and .000. 



when our interest is in a specific subset of contrasts. In general, however, multistage

procedures would not be used as a substitute when making all pairwise comparisons

among a set of means.

As you saw, the Bonferroni test is based on the principle of dividing up FW for a fam-

ily of contrasts among each of the individual contrasts. Thus, if we want FW to be .05 and

we want to test four contrasts, we test each one at a 5 .05 4 5 .0125. The multistage tests

follow a similar principle, the major difference being in the way they choose to partition a.

Holm and Larzelere and Mulaik Tests

Both Holm (1979) and Larzelere and Mulaik (1977) have proposed a multistage test that

adjusts the denominator (c) in 5 a c depending on the number of null hypotheses

remaining to be tested. Holm’s test is generally referred to when speaking about the analy-

sis of variance, whereas the Larzelere and Mulaik test is best known as a test of signifi-

cance for a large set of correlation coefficients. The logic of the two tests is the same,

though the method of calculation is different.

In the Holm procedure, we calculate values of just as we did with the Bonferroni t
test. For the equal n case, we compute

For the unequal n case, or when we are concerned about heterogeneity of variance, we

compute

We calculate for all contrasts of interest and then arrange the values in increas-

ing order without regard to sign. This ordering can be represented as 

, where c is the total number of contrasts to be tested.

The first significance test is carried out by evaluating , the largest of the , against the

critical value in Dunn’s table corresponding to c contrasts. In other words, is evaluated at

. If this largest is significant, then we test the next largest against

the critical value in Dunn’s table corresponding to c 2 1 contrasts. Thus, is evaluated

at . The same procedure continues for . . . until the test re-

turns a nonsignificant result. At that point we stop testing. Holm has shown that such a pro-

cedure continues to keep FW # a, while offering a more powerful test.

The rationale behind the test is that when we reject the null for tc, we are declaring that

null hypothesis to be false. If it is false, that only leaves c 2 1 possibly true null hypotheses,

and so we only need to protect against c 2 1 contrasts. A similar logic applies as we carry

out additional tests. This logic makes particular sense when you know, even before the ex-

periment is conducted, that several of the null hypotheses are almost certain to be false. If

they are false, there is no point in protecting yourself from erroneously rejecting them.

To illustrate the use of Holm’s test, consider our example on morphine tolerance. With

the standard Bonferroni t test, we evaluated four contrasts with the following results,

arranged by increasing magnitude of , as in Table 12.3.

If we were using the Bonferroni test, each of these s would be evaluated against

which is actually Student’s t at a 5 0.0125. For Holm’s test we vary the criti-

cal value in stages, depending on the number of contrasts that have not been tested. This

t¿.05 = 2.64,

t¿
t¿
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number is indexed by “Order (i)” in the Table 12.3. These critical values are presented in

the right-hand column above. They were taken, with interpolation, from Dunn’s tables for

c 5 i and 35 degrees of freedom. For example, the critical value of 2.35 corresponds to the

entry in Dunn’s tables for c 5 2 and df 5 35. For the smallest , the critical value came

from the standard Student t distribution (Appendix t).
From this table you can see that the test on the complex contrast S-M, Mc-M versus

M-S, M-M, S-S required a of 2.64 or above to reject . Because was 9.95, the differ-

ence was significant. The next largest was 6.72 for Mc-M versus M-M, and that was also

significant, exceeding the critical value of 2.52. The contrast S-S versus M-S is tested as if

there were only two contrasts in the set, and thus must exceed 2.35 for significance.

Again this test is significant. If it had not been, we would have stopped at this point. But

because it is, we continue and test M-M versus S-S, which is not significant. Because of

the increased power of Holm’s test over the Bonferroni t test, we have rejected one null hy-

pothesis (S-S versus M-S) that was not rejected by the Bonferroni.

Larzelere and Mulaik Test

Larzelere and Mulaik (1977) proposed a test equivalent to Holm’s test, but their primary

interest was in using that test to control FW when examining a large set of correlation coef-

ficients. As you might suspect, something that controls error rates in one situation will tend

to control them in another. (When you are testing all possible correlation coefficients in a

correlation matrix, it is conceptually the same as testing all possible pairwise differences in

a set of means. This would mean that perhaps we really should consider the Larzelere and

Mulaik test as being a post hoc test, and discuss it in that section of the chapter. But since it

is essentially the same as the Holm procedure, I am discussing it here.)

I will consider the Larzelere and Mulaik test with respect to correlation coefficients

rather than the analysis of variance, because such an example will prove useful to those

who conduct research that yields large numbers of such coefficients. Normally this section

should go in Chapter 9, but the underlying logic had not yet been developed when we dis-

cussed correlations, so it needed to wait until here. But if you do a lot of correlational work,

this is an important test to know. As you will see when you look at the calculations, the test

would be applied in the same way whenever you have a number of test statistics with their

associated probability values. (Your test statistic could be t, F, , or any other test statis-

tic, just so long as you can calculate its probability under the null.) If you had never heard

of Larzelere and Mulaik, you could still accomplish the same thing with Holm’s test. How-

ever, the different calculational approach is instructive. It is worth noting that when these

tests are applied in an analysis of variance setting we usually have a small number of com-

parisons. However, when they are used in a regression/correlation setting, we commonly

test all pairwise correlations.

Compas, Howell, Phares, Williams, and Giunta (1989) investigated the relationship

among daily stressors, parental levels of psychological symptoms, and adolescent behavior

x2

t¿

t¿
t¿H0t¿

t¿
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Table 12.3 Application of Holm’s test to the morphine data

Contrast Order (i) t t

M-M vs. S-S 1 2.03

S-S vs. M-S 2 2.35*

Mc-M vs. M-M 3 2.52*

S-M, Mc-M vs. M-S, M-M, S-S 4 2.64*

*p , .05

t¿ = 29.95

t¿ = 26.72

t¿ = 22.47

t¿ = 20.35

¿crit¿



problems (as measured by Achenbach’s Youth Self-Report Form [YSR] and by the Child

Behavior Checklist [CBCL]). The study represented an effort to understand risk factors for

emotional/behavioral problems in adolescents. Among the analyses of the study was the

set of intercorrelations between these variables at Time 1. These correlations are presented

in Table 12.4.

Most standard correlation programs print out a t statistic for each of these correlations.

However, we know that with 21 hypothesis tests, the probability of a Type I error based on

that standard t test, if all null hypotheses were true, would be high. It would still be high if

only a reduced set of them were true. For this reason we will apply the modified Bonferroni

test proposed by Larzelere and Mulaik. There are two ways to apply this test to this set of

correlations. For the first method we could calculate a t value for each coefficient, based on

(or take the t from a standard computer printout) and then proceed exactly as we did for the

Holm procedure). Alternatively, we could operate directly on the two-tailed p values asso-

ciated with the t test on each correlation. These p values can be taken from standard com-

puter printouts, or they can be calculated using commonly available programs. For

purposes of an example, I will use the p-value approach.

Table 12.5 shows the correlations to be tested from Table 12.4 as well as the associated

p values. The p values have been arranged in increasing numerical order. (Note that the

sign of the correlation is irrelevant—only the absolute value matters.)

The right-hand column gives the value of required for significance. For example, if

we consider 21 contrasts to be of interest, . By

the time we have rejected the first four correlations and wish to test the fifth largest, we are

going to behave as if we want a Bonferroni t adjusted for just the 

remaining correlations. This correlation will be tested at

.

Each correlation coefficient is tested for significance by comparing the p value associ-

ated with that coefficient with the entry in the final column. For example, for the largest

correlation coefficient out of a set of 21 coefficients to be significant, it must have a proba-

bility (under ) less than .00238. Because the probability for r 5 .69 is given as

.0000 (there are no nonzero digits until the sixth decimal place), we can reject and

declare that correlation to be significant.

Having rejected for the largest coefficient, we then move down to the second row,

comparing the obtained p value against p 5 .00250. Again we reject and move on to theH0

H0

H0

H0 : r = 0

a¿ = a>(k 2 i 1 1) = .05>17 = .00294

21 2 5 1 1 = 21 2 4 = 17

k 2 i 1 1 5

a¿ = a>(k 2 i 1 1) = .05>21 = .00238

a¿

t =
r1(N 2 2)

3(1 2 r2)
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Table 12.4 Correlations among behavioral and stress measures

(1) (2) (3) (4) (5) (6) (7)

Mother

(1) Stress 1.00 .69 .48 .37 .02 .30 .03

(2) Symptoms 1.00 .38 .42 .12 .39 .19

Father

(3) Stress 1.00 .62 .07 .22 .07

(4) Symptoms 1.00 .00 .24 .20

Adolescent

(5) Stress 1.00 .11 .44

(6) CBCL 1.00 .23

(7) YSR 1.00

2



third row. We continue this procedure until we find a row at which the obtained p value in

column 4 exceeds the critical p value in column 5. At that point we declare that correlation

to be nonsignificant and stop testing. All correlations below that point are likewise classed

as nonsignificant. For our data, those correlations equal to or greater than .30 are declared

significant, and those below .30 are nonsignificant. The significant correlations are indi-

cated with an asterisk in the table.

Had we used a standard Bonferroni test, we would have set 5 .05 21 5 .00238, and

a correlation less than .37 would not have been significant. In this particular case the multi-

stage test made only a small difference. But often the difference is substantial in terms of

the number of coefficients that are declared significant.

Trimmed Means

I want to include one more approach that is very general and can be shown to be more pow-

erful than standard procedures when the data come from long-tailed distributions. This is

the use of trimmed means. The nice thing about this approach is that it can be adapted to

carry out any of the procedures in this chapter, simply by substituting the appropriate

trimmed means and squared standard errors.

I will assume that you have reasonably large sample sizes because we will trim those

samples from each end. Wilcox recommends 20% trimming, which results in a sizable drop

in the effective sample size, but with a corresponding gain in power. For convenience, assume

that we have 40 observations in each of several groups and that we will go along with

Wilcox’s suggestion of 20% trimming. That means that we will omit the lowest (.20)(40) 5 8

observations and the highest 8 observations, leaving us with a sample of 24 observations for

each condition. The trimmed means will be the means of those 24 observations in each group.

>a¿
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Table 12.5 Significance tests for correlations in Table 12.4

Pair i Correlation p value a/(k 2 i 1 1)

1 vs. 2 1 .69 .0000 .00238*

3 vs. 4 2 .62 .0000 .00250*

1 vs. 3 3 .48 .0000 .00263*

5 vs. 7 4 .44 .0000 .00278*

2 vs. 4 5 .42 .0000 .00294*

2 vs. 6 6 .39 .0001 .00313*

2 vs. 3 7 .38 .0001 .00333*

1 vs. 4 8 .37 .0002 .00357*

1 vs. 6 9 .30 .0028 .00385*

4 vs. 6 10 .24 .0179 .00417

6 vs. 7 11 .23 .0236 .00455

3 vs. 6 12 .22 .0302 .00500

4 vs. 7 13 .20 .0495 .00556

2 vs. 7 14 .19 .0618 .00625

2 vs. 5 15 .12 .2409 .00714

5 vs. 6 16 .11 .2829 .00833

3 vs. 5 17 .07 .4989 .01000

3 vs. 7 18 .07 .4989 .01250

1 vs. 7 19 .03 .7724 .01667

1 vs. 5 20 2.02 .8497 .02500

4 vs. 5 21 .00 1.0000 .05000

*p , .05



To calculate the variance, we will use Winsorized samples, in which the lowest 8 scores are

replaced with the 9th lowest score and the highest 8 scores are replaced with the 9th highest

score. This leaves us with samples of ni 5 40 scores, but only hi 5 24 of those are independ-

ent observations from the ith sample. If we let represent the variance of the Winsorized

sample of 40 scores, then the squared standard error of the mean for that sample would be 

and the robust pairwise t test on the difference between two means can be written as

Notice that we are not doing anything very surprising here. We are replacing means with

trimmed means and variances with variances that are based on Winsorized samples, but

with an adjustment to ni to account for the trimming. Other than that, we have a standard t
test, and it can be used as a replacement for the t in any of the procedures we have dis-

cussed, or will discuss, in this chapter. There is one complication, however, and that refers

to the estimated degrees of freedom. The degrees of freedom are estimated as

That is a messy formula, but not very difficult to work out. As Keselman et al. (2005)

noted, “When researchers feel they are dealing with nonnormal data, they can replace the

usual least squares estimators of central tendency and variability with robust estimators

and apply these estimators in any of the previously recommended” multiple comparison

procedures.

One More Comment

I want to emphasize one more time that the Bonferroni test and its variants are completely

general. They are not the property of the analysis of variance or of any other statistical pro-

cedure. If you have several tests that were carried by any statistical procedure (and perhaps

by different procedures), you can use the Bonferroni approach to control FW. For example,

I recently received an e-mail message in which someone asked how they might go about ap-

plying the Bonferroni to logistic regression. He would do it the same way he would do it for

the analysis of variance. Take the set of statistical tests that came from his logistic regres-

sion, divide a by the number of tests he ran, and declare a test to be significant only if its re-

sulting probability was less than a c. You don’t even need to know anything about logistic

regression to do that.

12.4 Confidence Intervals and Effect Sizes 
for Contrasts

Having run a statistical significance test on the data from an experiment, and looked at in-

dividual comparisons, often called “individual contrasts,” we will generally want to look at

some measure of the amount of difference between group means. In Chapter 11 we saw

that when we have the omnibus F, which compares all means together, the most commonly

used measure is a member of the r-family measures, such as 2 or v2. However, when weh

>

dfW =
As2

WXi
1 s2

WXj
B2

s2
WXi

(hi 2 1) 1 s2
WXj

(hj 2 1)

tW =
Yti 2 Ytj

3s2
Wi

1 s2
WXj

s2
WXi

=
(ni 2 1)s2

Wi

hi(hi 2 1)

s2
Wi
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are looking at comparisons of individual means, or sets of means, it generally makes more

sense to calculate confidence limits on our differences and or to use a d-family measure of

the effect size.

There are several ways that we could approach d-family measures. One very simple

way is to go back to Chapter 7, which discussed t tests, and apply the measures that were

discussed there. We will come out at the same place, however, if we approach the problem

through linear contrasts. Remember that when you are looking at two groups, it makes no

difference whether you run a t test between those groups, or compute a linear contrast and

then an F, and take the square root of that F. The advantage of going with linear contrasts

is that they are more general, allowing us to compare means of sets of groups rather than

just two individual groups.

We will take an example from our morphine study by Siegel. One contrast that really in-

terests me is the contrast between Group M-M and Group Mc-M. If their means are statisti-

cally significantly different, then that tells us that there is something important about changing

the physical context in which the morphine is given. The group statistics are given below.

Condition M-M Mc-M

Mean 10.00 29.00

St. Dev 5.13 6.06

Variance 26.32 37.95

MS
error

32.00

The coefficients for the linear contrast of these two groups would be “21” for M-M, “11”

for Mc-M, and “0” for the other three conditions.

Confidence Interval

Let us first compute a confidence interval on the difference between conditions. The gen-

eral formula for a confidence interval on a contrast of two means is

or, if we let “ j” represent the value of the contrast, where , then

where s
error 

is the standard error of the contrast, which is

For our confidence interval on the difference between the two conditions of interest I have

The probability is .95 that an interval formed as I have formed this one will include the true

difference between the population means.

When it comes time to form our effect size measure, we have a choice of what we will

use as the error term—the standard deviation in the equation. I could choose to use the

square root of MS
error

from the overall analysis, because that represents the square root of

the average variance within each groups. Kline (2004) recommends this approach. I have

two other perfectly reasonable alternatives, however. First I could take the square root of

 13.26 … mM-M 2 mMc-M … 24.74

 = 19 6 2.03(2.828) = 19 6 5.74

 CI.95 = (-1(10) 1 1(29)) 6 2.0318.00

B2MSerror

n

CI.95 = (cj) 6 t.025serror

cj = ©ai Xic

CI.95 = (Xi 2 Xj) 6 t.025sXi2Xj

>
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the average sample variance of the two groups in question (perhaps weighted if the sam-

ple sizes were unequal). In this case it would be (26.32 1 37.95) 2 5 32.135 and

5 5.669. This would make sense if I were worried about heterogeneity of vari-

ance. Alternatively, I could consider one of the groups to be a control group and use its

standard deviation as my error term. Here I might argue that M-M is like a control group

because the conditions don’t change on trial 4. In this case I would let s
error

5 5.13. I think

that my preference in general would be to base my estimate on the average of the vari-

ances of the groups in question. If the variances are homogeneous across all five groups,

then the average of the groups in question won’t deviate much from the average of the

variances of all five groups, so I haven’t lost much. Others might take a different view.

Effect Size

We have just seen that the confidence interval on the difference between Mc-M and 

M-M is 13.26 # (m
Mc-M

– m
M-M

) # 24.74. Both limits are on the same side of 0, reflecting

the fact that the difference was statistically significant. However, the dependent variable

here is the length of time before the animal starts to lick its paws, and I don’t suppose that

any of us have a strong intuitive understanding of what a long or short interval is for this

case. A difference of at least thirteen seconds seems pretty long, but I would like some bet-

ter understanding of what is happening. One way to compute that would be to calculate an

effect size on the difference between these means.

Our effect size measure will be essentially the same as it was in the case for t tests for

independent samples. However, I will write it slightly differently because doing so will

generalize to more complex comparisons. We have just seen that c represents a contrast

between two means or sets of means, so it is really just a difference in means. We will take

this difference and standardize it, which simply says that we want to represent the differ-

ence in group means in standard deviation units. (That is what we did in Chapter 7 as well.)

In Chapter 7 we defined

where sp is the square root of our pooled variance estimate and is a measure of the average

standard deviation within the groups. We are going to calculate essentially the same thing

here, but I will write its expression as

The numerator is a simple linear contrast, while the denominator is some estimate of the

within groups standard deviation.

The preceding formula raises two points. In the first place, the coefficients must form

what we have called a “standard set.” This simply means that the absolute values of the co-

efficients must sum to 2. For example, if we want to compare the mean of two groups with

the mean of a third, we could use coefficients of (1⁄2 1⁄2 21) to form our contrast. Alterna-

tively, we would get to the same place as far as our test of significance is concerned by us-

ing (1 1 –2) or (3 3 –6). The resulting F would be the same. But only the first would give

us a numerical answer for the contrast that is the difference between the mean of the first

two groups and the mean of the third. This is easily seen when you write

 =
X1 1 X2

2
2 X3

 c = A12B (X1) 1 A12BX2 1 (-1) X3

Nd =
c

se
=
a (aiXi)

se

Nd =
Xi 2 Xj

Sp

132.135

>
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You can see clearly that we are taking the difference between the mean of the first two

groups and the third group.

The second question raised by our equation for is the choice of the denominator. As

I mentioned a few paragraphs back, there are at least three possible estimates. We could

use the square root of MS
error

, or the square root of the average of the variances in the

groups being contrasted, or we could conceive of one of the groups as a control group, and

use its standard deviation as our estimate. The most common approach seems to be to use

the square root of MS
error

, and that is what I will do here because the variances in our ex-

ample are quite similar.

Earlier we looked at four contrasts that seemed to be of interest for theoretical reasons.

Holm’s procedure showed that three of the contrasts were statistically significant, while the

fourth was not. Computation of the effect sizes for these contrasts are shown in Table 12.6. In

these calculations I have used the square root of MS
error

as my denominator for consistency.

Because the Holm test showed that the last contrast was not nearly statistically signifi-

cant, our best approach would probably be to treat that effect size as 0.00. There are no dif-

ferences between groups. An interesting question arises as to what we would do if the test

statistic had been nearly large enough to be significant. In that case I would present my ef-

fect size measure but caution that the corresponding hypothesis test was not significant.

You can see that the other effect sizes are substantial, all showing a difference of at

least one standard deviation. I will speak about these effects in the following section.

12.5 Reporting Results

We have run several different tests on these data, and the following is a report based on

Holm’s procedure.

This experiment examined the phenomenon of morphine tolerance in rats placed on a

warm surface. The underlying hypothesis was that with repeated injections of morphine

animals develop a hypersensitivity to pain, which reduces the effect of the drug. When

animals are then tested without the drug, or with the drug in a different context, this hy-

persensitivity will be expressed in a shorter paw lick latency.

The omnibus F from the overall analysis was statistically significant (F(4,35) 5

27.33, p , .05). Subsequent contrasts using Holm’s adaptation of the Bonferroni test

revealed that morphine’s effects were as predicted. The groups receiving morphine on

the test trial after having received either saline, or morphine in a different context, on

trials 1–3 showed longer reaction times than the average of groups who (1)never re-

ceived morphine on any trials, (2) received morphine on all trials and had the opportu-

nity to develop tolerance, and (3) switched from morphine to saline on the test trial and

were predicted to show hypersensitivity. (t(35) 5 9.95, t
.0125

5 2.64). The standardized 

effect size was 3.21, indicating a difference of nearly 31⁄4 standard deviations between

the means of the two sets of groups.

The effect of context is seen in a statistically longer mean paw lick latency in the

Mc-M ( 5 29) condition than in the M-M condition ( ) (t(35) 5 6.72, 

t
.0167

5 2.52). The standardized effect size here was 3.36.

The hypersensitivity effect of morphine can be seen in the contrast of group M-S

with group S-S, where group M-S had statistically significantly shorter reaction times

than S-S. (t(35) 5 2.475, t
.025

5 2.35). Here we have a standardized effect size estimate

of 1.24, indicating that animals that were switched from morphine to saline were nearly

one and a quarter standard deviations faster in paw lick latency than animals that had

never had morphine. Finally, the complete development of morphine tolerance in four

ta/3 5X = 10X

dN
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Table 12.6 Means of conditions in our morphine example

Groups: M-S M-M S-S S-M Mc-M

Means: 4.00 10.00 11.00 24.00 29.00

Coefficient

aj 22⁄2 1⁄3 21⁄2 1⁄3 1⁄3 0.833 18.167

bj 0 21 0 0 1 2 19

cj 22 0 1 0 0 2 7

dj 0 1 21 0 0 2 21

M-S, S-S versus M-M, S-M, Mc-M

M-M versus Mc-M

M-S versus S-S

M-M versus S-S

 =
10–11

32
=

1

5.657
= 0.177

 =
(21)10.00 2 (1)11.00132

 Nd4 =
a di Xi

serror

=
1XM-M 2 1(1)XS-S1MSerror

 =
24 1 11

32
=

7

5.657
= 1.24

 =
(21)4.00 1 (1)11.00132

 Nd3 =
a ci Xi

serror

=
21XM-S 1 (1)XS-S1MSerror

 =
-10.00 1 29.00

32
=

19

5.657
= 3.36

 =
(-1)10.00 1 (1)29.00132

 Nd2 =
a bi Xi

serror

=
-1XM-M 1 (1)XMc-M1MSerror

 =

-
4.00 1 10.00 1 11.00

3
1

24.00 1 29.00

2132
=

-8.333 1 26.5

5.657
=

18.167

5.657
= 3.21

 =
A-1

3B4.00 1 A-1
3B10.00 1 A-1

3B11.00 1 A12B24.00 1 A12B29132

 Nd2 =
a bi Xi

serror

=
-1XM-M 1 (1)XMc-M1MSerror

c = aaj Xjaa j
2



trials is evidenced by a nonsignificant difference between the means of conditions 

M-M and S-S (t(35) 5 0.35, t
.025

5 2.03.

12.6 Post Hoc Comparisons

There is much to recommend the use of linear contrasts and the Bonferroni t test when a

relatively small number of comparisons can be specified a priori. In fact, my strong prefer-

ence would be to ask a few very pointed questions, which would best be approached by

setting up linear contrasts. However, some experiments involve many hypotheses9 and/or

hypotheses that are arrived at only after the data have been examined. In this situation, a

number of a posteriori or post hoc techniques are available.

Fisher’s Least Significant Difference Procedure

One of the oldest methods for making post hoc comparisons is known as Fisher’s least

significant difference (LSD) test (also known as Fisher’s protected t). The only differ-

ence between the post hoc LSD procedure and the a priori multiple t test procedure dis-

cussed earlier is that the LSD requires a significant F for the overall analysis of variance.

When the complete null hypothesis is true (all population means are equal), the require-

ment of a significant overall F ensures that the familywise error rate will equal a. Unfortu-

nately, if the complete null hypothesis is not true but some other more limited null

hypotheses involving subsets of means are true, which is most likely to be the case, the

overall F no longer affords protection for FW. For this reason, many people recommend

that you not use this test, although Carmer and Swanson (1973) have shown it to be the

most powerful of the common post hoc multiple-comparison procedures. If your experi-

ment involves three means, the LSD procedure is a good one because FW will stay at a,

and you will gain the added power of using standard t tests. (The FW error rate will be a

with three means because if the complete null hypothesis is true, you have a probability

equal to a of making a Type I error with your overall F, and any subsequent Type I errors

you might commit with a t test will not affect FW. If the complete null is not true but a

more limited one is, with three means there can be only one null difference among the

means and, therefore, only one chance of making a Type I error, again with a probability

equal to a.) You should generally be reluctant to use the LSD for more than three means

unless you have good reason to believe that there is at most one true null hypothesis hidden

in the means. In fact, with only three means I would present the tests as linear contrasts and

not invoke Fisher’s test at all.

The Studentized Range Statistic (q)

Because many of the post hoc tests we are about to discuss are based on the Studentized

range statistic or special variants of it, we will consider this statistic before proceeding. The

Studentized range statistic (q) is defined as

qr =
Xl 2 Xs

BMSerror

n
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where and represent the largest and smallest of a set of treatment means and r is the

number of treatments in the set. You probably have noticed that the formula for q is very

similar to the formula for t. In fact

and the only difference is that the formula for t has a “ ” in the denominator. Thus, q is a

linear function of t and we can always go from t to q by the relation . The real dif-

ference between q and t tests comes from the fact that the tables of q (Appendix q) are set

up to allow us to adjust the critical value of q for the number of means involved, as will be-

come apparent shortly. When there are only two treatments, whether we solve for t or q is

irrelevant as long as we use the corresponding table.

When we have only two means or when we wish to compare two means chosen at ran-
dom from the set of available means, t is an appropriate test.10 Suppose, however, that we

looked at a set of means and deliberately selected the largest and smallest means for test-

ing. It is apparent that we have drastically altered the probability of a Type I error. Given

that is true, the largest and smallest means certainly have a greater chance of being

called “significantly different” than do means that are adjacent in an ordered series of

means. This is the point at which the Studentized range statistic becomes useful. It was de-

signed for just this purpose.

To use q, we first rank the means from smallest to largest. We then take into account

the number of steps between the means to be compared. For adjacent means, no change is

made and . For means that are not adjacent, however, the critical value of q
increases, growing in magnitude as the number of intervening steps between means in-

creases.

As an example of the use of q, consider the data on morphine tolerance. The means are

4 10 11 24 29

with n 5 8, 5 35, and 5 32.00. The largest mean is 29 and the smallest is 4,

and there are a total (r) of 5 means in the set (in the terminology of most tables, we say that

these means are r 5 5 steps apart).

Notice that r is not involved in the calculation. It is involved, however, when we go to the ta-

bles. From Appendix q, for r 5 5 and 5 35, . Because 12.5 . 4.07,

we will reject and conclude that there is a significant difference between the largest and

smallest means.

An alternative to solving for and referring to the sampling distribution of q
would be to solve for the smallest difference that would be significant and then to compare

qobtqobt

H0

q.05(5,35) = 4.07dferror

q5 =
X1 2 Xs

BMSerror

n

=
29 2 4

B32.00

8

=
2514

= 12.5

MSerrordferror

X5X4X3X2X1

q.05 = t.0512

H0

q = t12

12

 t =
Xi 2 Xj

B2(MSerror)

n

 qr =
Xl 2 Xs

BMSerror

n

XsXl
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our actual difference with the minimum significant difference. This approach is frequently

taken by computer based post hoc procedures, such as those used by SPSS, so I cover it

here, but I really don’t find that it saves any time. Since

then

where is the minimum difference between two means that will be found to be

significant.

We know that with five means the critical value of . Then, for our data,

Thus, a difference in means equal to or greater than 8.14 would be judged significant,

whereas a smaller difference would not. Because the difference between the largest and

smallest means in the example is 25, we would reject .

Although q could be used in place of an overall F (i.e., instead of running the tradi-

tional analysis of variance, we would test the difference between the two extreme means),

there is rarely an occasion to do so. In most cases, F is more powerful than q. However,

where you expect several control group means to be equal to each other but different from

an experimental treatment mean (i.e., ), q might well be the

more powerful statistic.

Although q is seldom a good substitute for the overall F, it is a very important statistic

when it comes to making multiple comparisons among individual treatment means. It

forms the basis for the next several tests.

Tukey’s Test

Much of the work on multiple comparisons has been based on the original work of Tukey,

and an important test bears his name.11 The Tukey test, also called the Tukey’s HSD

(honestly significant difference) test or the WSD (wholly significant difference) test,

uses the Studentized q statistic for its comparisons, except that is always taken as the

maximum value of . In other words, if there are five means, all differences are tested as if

they were five steps apart. The effect is to fix the familywise error rate at a against all pos-

sible null hypotheses, not just the complete null hypothesis, although with a loss of power.

The Tukey HSD is the favorite pairwise test for many people because of the control it exer-

cises over a.

If we apply the Tukey HSD to the data on morphine tolerance, we first arrange the

means in the order of increasing magnitude, as follows.

M-S M-M S-S S-M Mc-M

4 10 11 24 29

qr

qHSD

m1 = m2 = m3 = m4 Z m5

H0

X1 2 Xs = 4.07A32

8
= 8.14

q.05(5,35) = 4.07

X1 2 Xs

X1 2 Xs = q.05(r, dferror)BMSerror

n

qr =
X1 2 Xs

BMSerror

n
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From Appendix q we find that with 35 df for MS
error

and r set at 5, the critical

value of q equals 4.07. If we use r 5 5 for all comparisons, we can calculate the mini-

mal difference we will need between means for the difference to be declared significant.

Thus, we declare all mean differences ( ) to be significant if they exceed 8.14 and

to be not significant if they are less than 8.14. For our data, the difference between 

and 5 10 2 4 5 6, and the difference between and is 11 2 4 5 7. The

Tukey HSD test would declare them not significant because 6 and 7 are less than 8.14. The

differences between M-S and S-M is 20, and between M-S and Mc-M is 25, both of which

exceed 8.14. Thus M-S is not significantly different from M-M and from S-S. Neither, of

course, is the difference between M-M and S-S, which is a difference of 1. Therefore the

first three means (M-S, M-M, and S-S) form a homogeneous set, which is different from

S-M and Mc-M. Furthermore, S-M differs from Mc-M by 5 points, which again is not sig-

nificant, yielding another homogeneous set. We can write these as

(M-S 5 M-M 5 S-S) (S-M 5 Mc-M)

The equal signs indicate simply that we could not reject the null hypothesis of equality, not

that we have proven the means to be equal.

Unequal Sample Sizes and Heterogeneity of Variance

The Tukey procedure was designed primarily for the case of equal sample sizes

( ). Frequently, however, experiments do not work out as planned,

and we find ourselves with unequal numbers of observations and still want to carry out a

comparison of means. A good bit of work has been done on this problem with respect to

the Tukey HSD test (see particularly Games and Howell, 1976; Keselman and Rogan,

1977; Games, Keselman, and Rogan, 1981).

One solution, known as the Tukey–Kramer approach, is to replace with

and otherwise conduct the test the same way you would if the sample sizes were equal.

This is the default solution with SPSS.

An alternative, and generally preferable, test was proposed by Games and Howell

(1976). The Games and Howell procedure uses what was referred to as the Behrens–Fisher

approach to t tests in Chapter 7. The authors suggest that a critical difference between

means (i.e., ) be calculated separately for every pair of means using

Wr = Xi 2 Xj = q.05(r, df ¿)F
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where is taken from the tables of the Studentized range statistic on

degrees of freedom. This is basically the solution referred to earlier in the discussion of

multiple t tests, although here we are using the Studentized range statistic instead of t, and

is an optional solution in SPSS. This solution is laborious, but the effort involved is still

small compared to that of designing the study and collecting the data. The need for special

procedures arises from the fact that the analysis of variance and its attendant contrasts are

especially vulnerable to violations of the assumption of homogeneity of variance when the

sample sizes are unequal. Moreover, regardless of the sample sizes, if the sample variances

are nearly equal you may replace and in the formula for with from the

overall analysis of variance. And regardless of the sample size, if the variances are hetero-

geneous you should probably use the Games and Howell procedure.

The Newman–Keuls Test

The Newman–Keuls test is a controversial test. I covered this procedure in the first five

editions, but have finally given in to those who argue with its underlying logic. All I will

say here is that the Newman-Keuls, often called the Student-Newman-Keuls, does not test

all comparisons as if r 5 5, but, instead, continually readjusts r depending upon the means

being compared. This allows for means that are closer in an ordered series to be tested with

a smaller critical value than means that are further apart. (As a result, the Newman-Keuls

concludes that group M-S is different from all other groups, with M-M and S-S forming a

homogeneous subset). Unfortunately, this adjustment to r and the critical value allows FW
to exceed .05, which many people find a critical flaw. We will have little to say about the

Newman–Keuls test after this, although it is produced by most statistical software.

The Ryan Procedure (REGWQ)

As we have seen, the Tukey procedure controls the familywise error rate at a regardless of

the number of true null hypotheses (not just for the overall null hypothesis), whereas the

Newman–Keuls allows the familywise error rate to rise as the number of true null hypotheses

increases. The Tukey test, then, provides a firm control over Type I errors, but at some loss in

power. The Newman–Keuls tries to maximize power, but with some loss in control over the

familywise error rate. A compromise, which holds the familywise error rate at a but which

also allows the critical difference between means to shrink as r (the number of means in a set)

decreases, was proposed by Ryan (1960) and subsequently modified by others.

The effect of the Newman-Keuls approach was to allow the critical values to grow as r
increases, but they actually grow too slowly to keep the familywise error rate at a when mul-

tiple null hypotheses are true. Ryan (1960) also proposed modifying the value of a for each

step size, but in such a way that the overall familywise error rate would remain unchanged

at a. For k means and a step size of r, Ryan proposed using critical values of at the

ar =
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level of significance, rather than always using at the a level of significance. This suggestion

was then modified by Einot and Gabriel (1975) to set

and then again by Welsch (1977) to keep the Einot and Gabriel suggestion but to allow 

to remain at a for r 5 k, and r 5 k 2 1. These changes hold the overall familywise error

rate at a while giving greater power than does Tukey to some comparisons. (Notice the

similarity in the first two of these suggestions to the way a is adjusted by the Bonferroni

and the Dunn- ˇSidák procedures.)

What these proposals really do is to allow you to continue to use the tables of the Stu-

dentized Range Distribution, but instead of always looking for at a 5 .05, for example,

you look for at a 5 , which is likely to be some unusual fractional value. The problem

is that you don’t have tables that give at any values other than a 5 .05 or a 5 .01. Com-

puter software can compute the necessary values without blinking an eye, and, since 

almost all computations are done using software, there is no particular problem.

One way that you can run the Ryan procedure (or the Ryan/Einot/Gabriel/Welsch pro-

cedure) is to use SPSS or SAS and request multiple comparisons using the REGWQ

method. The initials refer to the authors and to the fact that it uses the Studentized Range

Distribution (q). For those who have access to SPSS or other software that will implement

this procedure, I recommend it over either the Newman–Keuls or the Tukey, because it ap-

pears to be the most powerful test generally available that still keeps the familywise error

rate at a. Those who don’t have access to the necessary software will have to fall back on

one of the more traditional tests. The SAS output for the REGWQ procedure (along with

the Student–Newman–Keuls, the Tukey, and the Scheffé tests) are presented later in the

chapter so that you can examine the results. In this situation the conclusions to be drawn

from the REGWQ and Tukey tests are the same, although you can see the difference in

their critical ranges.

The Scheffé Test

The post hoc tests we have considered all involve pairwise comparisons of means. One of

the best-known tests, which is both broader and more conservative, was developed by

Henry Scheffé (1953). Scheffé was impressed by Tukey’s concept of a family error rate

and set out to create a test that would allow any kind of contrast (pairwise or not, a priori

or post hoc) and would hold the familywise error rate at for the entire set. The Scheffé

test, which uses the F distribution rather than the Studentized range statistic, sets the fam-

ilywise error rate at a against all possible linear contrasts, not just pairwise contrasts. If

we let

then

Scheffé has shown that if is evaluated against —rather

than against —the FW is at most a. (Note that all that we have done is to cal-

culate F on a standard linear contrast, but we have evaluated that F against a modified crit-

ical value.) Although this test has the advantage of holding constant FW for all possible

linear contrasts—not just pairwise ones—it pays a heavy price; it has the least power of all

Fa(1, dferror)
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the tests we have discussed. Partly to overcome this objection, Scheffé proposed that peo-

ple may prefer to run his test at a 5 .10. Although both SPSS and SAS only offer this test

as a pairwise test of means, it should never be used that way. There are much more power-

ful alternatives if you only want pairwise tests. Scheffé stated that when the “only contrasts

of interest are the 1⁄2 k(k 2 1) differences mi 2 mj, the method of Tukey . . . should be used

in preference to the above, because the confidence intervals will then be shorter.” It is curi-

ous that two of the major statistical packages only offer the Scheffé test in the situation for

which the test’s originator specifically recommended against its use. In general, the Scheffé

test should never be used to make a set of solely pairwise comparisons, nor should it nor-

mally be used for comparisons that were thought of a priori. The test was specifically de-

signed as a post hoc test, and its use on a limited set of comparisons that were planned

before the data were collected would generally be foolish. Unless you have a very very

large number of planned contrasts, a Bonferroni correction (modified or not) on the results

of your a priori contrasts would be more powerful. Although most discussions of multiple-

comparison procedures include the Scheffé, and many people recommend it, perhaps out

of habit, it is not often seen as the test of choice in research reports because of its conserva-

tive nature. I can’t imagine when I would ever use it, but I have to include it here because it

is such a standard test.

Dunnett’s Test for Comparing All Treatments with a Control

In some experiments the important comparisons are between one control treatment and each

of several experimental treatments. In this case, the most appropriate test is Dunnett’s test.

This is more powerful (in this situation) than are any of the other tests we have discussed

that seek to hold the familywise error rate at or below a.

We will let represent the critical value of a modified t statistic. This statistic is found

in tables supplied by Dunnett (1955, 1964) and reproduced in Appendix . We can either

run a standard t test between the appropriate means (using as the variance estimate

and evaluating the t against the tables of ) or solve for a critical difference between

means. For a difference between means and (where represents the mean of the

control group) to be significant, the difference must exceed

Applying this test to our data, letting group S-S from Table 12.1 be the control group,

We enter Appendix with k 5 5 means and 5 35. The resulting value of is 2.56.

Thus, whenever the difference between the control group mean (group S-S) and one of the

other group means exceeds 7.24, that difference will be significant. The k 2 1 statements

we will make concerning this difference will have an FW of a 5 .05.

S-S versus Mc-M = 11 2 29 = -18

S-S versus S-M = 11 2 24 = -13

S-S versus M-M = 11 2 10 = 1

S-S versus M-S = 11 2 4 = 7

6

Critical value (Xc 2 Xj) = 2.56B2(32.00)

8
= 2.56(2.828) = 7.24

tddferrortd

Critical value (Xc 2 Xj) = tdB2(32.00)

8

Critical value (Xc 2 Xj) = tdB2MSerror

n

XcXjXc
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MSerror
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Because we have a two-tailed test ( was taken from two-tailed tables), the sign of the

difference is irrelevant. The last two differences exceed 7.24 and are therefore declared

to be significant.

In the case in which the groups have unequal sample sizes or heterogeneous variances,

a test on the difference in treatment means is given by the same general procedure we used

with the Tukey. Of the test that we have discussed, when you want to compare one group

against each of the other groups I would recommend Dunnett’s test.

Benjamini-Hochberg Test

Each of the post hoc tests that we have been discussing has focused on controlling the fam-

ilywise error rate (FEW), and several of them have been sequential tests, which change the

critical value as you move through a series on comparisons. Benjamini and Hochberg

(1995, 2000) have developed tests that are becoming more popular, are sequential, and are

not based on the FWE. They advocate using what they call the False Discovery Rate

(FDR) instead of the familywise error rate. When Tukey began advocating FWE in the

early 1950s he, perhaps unintentionally, oriented our thinking almost exclusively toward

controlling the probability of even one Type I error. When you compute a familywise rate,

you are dealing with the probability of one or more Type I errors. In effect you are saying

that your whole set of conclusions are erroneous when you make even one Type I error.

(Curiously we don’t consider our conclusions to be erroneous if we make Type II errors.)

Hochberg and Benjamini have looked at the problem somewhat differently and asked

“What percentage of the significant results (“discoveries”) that we have found are false dis-

coveries?” Suppose that we carry out nine comparisons (either simple contrasts, complex

contrasts, tests on a single mean, or any other test). We find that there are four significant

effects but, unknown to us, one of those significant effects is really a Type I error. The FDR

is then defined as

I will take an example of a simple “thought experiment” from Maxwell and Delaney (2004),

who have an excellent discussion of the FDR. Imagine that we have a situation in which we

test 10 null hypotheses, three of which are known to be false and the others true. Suppose that

we mentally run our experiment 100 times, testing all 10 hypotheses for each run. Further

suppose that we have very considerable power to reject false null hypotheses, so that we

nearly always reject the three false null hypotheses. Finally assume that we have chosen a

critical value so as to set the experimentwise error rate at .20. (You probably think that .20 is

too high, but bear with me.) Then out of our 100 hypothetical experiments, 80 percent of the

time we will make no Type I errors and 20 percent of the time we will make one Type I error

(assuming that we don’t make two type I errors in any experiment). Because we have a great

deal of power, we will almost always reject the three false null hypotheses. Here our FWE is

.20, which perhaps made you wince. But what about the FDR? Given the description above,

we will make no errors in 80 percent of the experiments. In the other 20 experiments we will

make one Type I error and three correct rejections, for an FDR of 1⁄4 5 .25 for those 20 exper-

iments and an FDR of 0 for the other 80 experiments. Over the long haul of 100 experiments,

the average FDR will be .05, while the FWE will be .20. Thus the critical value that sets the

familywise FWE at .20 leaves the FDR at only .05. The problem is how we choose that criti-

cal value. Unfortunately, that choice is quite complicated in the general case, but fortunately

it is fairly simple in the case of either independent contrasts or pairwise contrasts. See

Keselman, Cribbie, and Holland (1999). In this chapter I have been a strong advocate of pair-

wise contrasts, so restricting ourselves to that case is not particularly onerous.

FDR =  
Number of False Rejections

Number of Total Rejections
 =  

1

4
 = .25

6

td
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The procedure we will follow is called the Benjamini and Hochberg’s Linear Step

Up (LSU) procedure.12 I will not take the space to develop the logic of this test, but the

paper by Benjamini and Hochberg (1995) and the chapter by Maxwell and Delaney (2004)

are reasonably clear. Instead I will frame this discussion in terms of the steps needed to per-

form the test.

Assume that we have performed 10 pairwise contrasts on Siegel’s morphine data. The

results are shown in Table 12.7 ordered by p value. The column labeled “i” is the index of

the comparison and simply ranks the p values from lowest to highest. The critical part of

the table is labeled p
crit

, the critical value for our test . We define

where “i” is the index, “k” is the number of tests (here k 5 10), and a is the desired FDR

(here a 5 .05). To carry out the test we work our way down the table. If p . p
crit

we retain

the null hypothesis and move on to the next row. As soon as p , p
crit

we reject that null

hypothesis and all subsequent ones.

Using the Benjamini-Hochberg test we would declare that MM-SS, SM-McM, and

MS-MM are not different from each other pairwise. All other contrasts are judged

statistically significant. Had we used Ryan’s REGWQ test we would have failed to reject

the MS-SS contrast, whereas we rejected that null hypothesis here. In the preceding exam-

ple it would be perfectly appropriate to include non-pairwise contrasts as long as they are

orthogonal to the other contrasts that you have used. Thus you could remove the SM-MM

and the SM-McM comparisons and replace them with SM-(M-M 1 Mc-M) 2.

12.7 Comparison of the Alternative Procedures

Because the multiple-comparison techniques we have been discussing were designed for

different purposes, there is no truly fair basis on which they can be compared. There is

something to be gained, however, from summarizing their particular features and compar-

ing the critical differences they require for the same set of data. Table 12.8 lists the tests,

>

pcrit = a i

k
ba
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Table 12.7 Benjamini-Hochberg test on Siegel’s data

Group t p i p
crit

Significance

MM-SS

SM-McM

MS-MM

MS-SS

SS-SM

MM-SM

SS-McM

MM-McM

MS-SM

MS-McM

2.354

21.768

22.121

22.475

24.596

24.950

26.364

26.717

27.071

28.839

.726

.086

.041

.018

.00007

.00003

.00000

.00000

.00000

.00000

10

9

8

7

6

5

4

3

2

1

.05

.045

.040

.035

.030

.025

.020

.015

.010

.005

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

12 Benjamini and Hochberg (2000) recommended a variation on the test given here, sometimes called their
“adaptive” test. It is more powerful than the LSU test, but somewhat more cumbersome. Both of these tests are
different from the Hochberg GT2 test produced by SPSS.

Benjamini and

Hochberg’s

Linear Step Up

(LSU) procedure



the error rate most commonly associated with them, the kinds of comparisons they are pri-

marily designed to test, and the type of test (range test, F test, or t—modified or not in

each case).

12.8 Which Test?

Choosing the most appropriate multiple-comparison procedure for your specific situation

is not easy. Many tests are available, and they differ in a number of ways. The choice is a

bit easier if we consider the two extremes first.

If you have planned your test in advance and you want to run only one comparison,

I would suggest that you run a standard t test (correcting for heterogeneity of variance if

necessary), or, if you have a complex comparison, a linear contrast. If you have several a

priori contrasts to run, not necessarily pairwise, the multistage Bonferroni t proposed by

Holm does a good job of controlling FW while at the same time maximizing power.

If you have a large number of groups and wish to make many comparisons, whether or

not you are interested in all of the possible pairwise comparisons, you would probably be

better off using the Ryan REGWQ if you have it available or, if not, the Tukey. I can’t think

of a situation where I would personally recommend the Scheffé, but I presented it here

because it is a common test and real hard-liners like it. (In fact I recently wrote an article

about it for someone else and came to appreciate that it does have some redeeming virtues

[Howell, 2009]).

What about the Benjamini-Hochberg test? This is a difficult test to place in a table

because it controls an entirely different error rate. It is not fair to say that one test is more

powerful than another when they are working on different error rates. I have consider-

able fondness for the Benjamini-Hochberg test just because it is not based on the idea

that one false rejection invalidates a family of conclusions. If you are willing to accept

an occasional Type I error to gain power for other contrasts, there is much to recommend

this test.
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Table 12.8 Comparison of alternative multiple-comparison procedures

Error A Priori/

Test Rate Comparison Type Post Hoc

1. Individual t tests PC Pairwise t A priori

2. Linear contrasts PC Any contrasts F A priori

3. Bonferroni t FW Any contrasts t‡ A priori

4. Holm: Larzelere & Mulaik FW Any contrasts t‡ Either

5. Fisher’s LSD FW† Pairwise t Post hoc

6. Newman–Keuls FW† Pairwise Range Post hoc

7. Ryan (REGWQ) FW Pairwise Range Post hoc

8. Tukey HSD FW Pairwise Range‡ Post hoc

9. Scheffé test FW Any contrasts F‡ Post hoc

10. Dunnett’s test FW With control F‡ Post hoc

11. Benjamini-Hochberg FDR Any contrasts t‡ Post hoc

† Against complete null hypothesis
‡ Modified
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12.9 Computer Solutions

Most software packages will perform multiple comparison procedures, but not all packages

have all procedures available. Exhibit 12.1 contains the results of an analysis of the morphine

data using SAS. I chose SAS because it has a broad choice of procedures and is one of the

major packages. It also has more information in its printout than does SPSS, and is thus

somewhat more useful for our purpose. I have included the Scheffé test for comparison even

though I have already said that it is totally inappropriate for simple pairwise comparisons.

Exhibit 12.1 begins with the program commands and the overall analysis of variance. This

analysis agrees with the summary table shown in Table 12.1. The R2 5 .757 is simply . You

can see that our experimental manipulation accounts for a substantial portion of the variance.

The remainder of the exhibit includes the results of the Newman–Keuls, Ryan, Tukey, and

Scheffé tests.

The Newman–Keuls, as the least conservative test, reports the most differences be-

tween conditions. If you look first at the means and “SNK Grouping” at the end of that por-

tion of the printout, you will see a column consisting of the letters A, B, and C. Conditions

that share the same letter are judged to not differ from one another. Thus the means of Con-

ditions Mc-M and S-M are not significantly different from one another, but, because they

don’t have a letter in common with other conditions, they are different from the means of

S-S, M-M, and M-S. Similarly, Conditions S-S and M-M share the letter B and their means

are thus not significantly different from each other, but are different from the means of the

other three conditions. Finally, the mean of Condition M-S is different from the means of

all other conditions.

If you look a bit higher in the table you will see a statement about how this test deals

with the familywise (here called “experimentwise”) error rate. As I said earlier, the

Newman-Keuls holds the familywise error rate at a against the complete null hypothesis,

but allows it to rise in the case where a subset of null hypotheses are true. You next see a

statement saying that the test is being run at a 5 .05, that we have 35 df for the error term,

and that 5 32.00. Following this information you see the critical ranges. These are

the minimum differences between means that would be significant for different values of r.

The critical ranges are equal to

For example, when r 5 3 (a difference between the largest and smallest of three means)

Because all three step differences (e.g., 29 2 11 5 18; 24 2 10 5 14; 11 2 4 5 7) are

greater than 6.92, they will all be declared significant.

The next section of Exhibit 12.1 shows the results of the Ryan REGWQ test. Notice

that the critical ranges for r 5 2 and r 5 3 are larger than they were for the Newman–Keuls

(though smaller than they will be for the Tukey). As a result, for r 5 3 we need to exceed a

difference of 7.54, whereas the difference between 11 and 4 is only 7. Thus this test will

not find Group 1 (M-S) to be different from Group 3 (S-S), whereas it was different for the

more liberal Newman–Keuls. However, the maximum familywise error rate for this set of

comparisons is a 5 .05, whereas it would be nearly a 5 .10 for the Newman–Keuls.

The Tukey test is presented slightly differently, but you can see that Tukey requires all

differences between means to exceed a critical range of 8.1319 to be declared significant,

W3 = q.05(3, dfe)BMSerror

n
= 3.46B32

8
= 3.46(2) = 6.92

Wr = q.05(r, dfe)BMSerror

n

MSerror

h2
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Data Siegel;

Infile ‘Alexander:SAS610:Data Files:Siegel.dat’;

Input Condtion Latency;

run;

Proc GLM Data = Siegel;

Class Condtion;

Model Latency = Condtion/SS3;

Means Condtion /SNK Tukey REGWQ Scheffe;

Run;

-------------------------------------------------------------------------------------------------------------------------

The SAS System 16:51 Thursday

December 20, 2007

The GLM Procedure

Dependent Variable: LATENCY

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 3497.600000 874.400000 27.33 <0.0001

Error 35 1120.000000 32.000000

Corrected Total 39 4617.600000

R-Square Coeff Var Root MSE LATENCY Mean
�2

0.757450 36.26189 5.656854 15.60000

Dependent Variable: LATENCY

Source DF Type III SS Mean Square F Value Pr > F

CONDTION 4 3497.600000 874.400000 27.33 0.0001
F for 

-------------------------------------------------------------------------------------------------------------------------
Condition

Student-Newman-Keuls Test for LATENCY

NOTE: This test controls the Type I experimentwise error rate under the
complete null hypothesis but not under partial null hypotheses.

Alpha = 0.05 df = 35 MSE = 32

Number of Means 2 3 4 5

Critical Range 5.7420598 6.921941 7.6279952 8.1319061 w
5

= q
5

Means with the same letter are not significantly different.

SNK Grouping Mean N CONDTION

A 29.000 8 Mc-M

A 24.000 8 S-M

B 11.000 8 S-S

B 10.000 8 M-M

C 4.000 8 M-S

-------------------------------------------------------------------------------------------------------------------------

Ryan-Einot-Gabriel-Welsch Multiple Range Test LATENCY

NOTE: This test controls the Type I experimentwise error rate.

Alpha = 0.05 df = 35 MSE = 32

Number of Means 2 3 4 5

Critical Range 6.8765473 7.5391917 7.6279952 8.1319061Larger 
than for SNK Same as SNK

Exhibit 12.1 (continues)
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Means with the same letter are not significantly different.

REGWQ Grouping Mean N CONDTION

A 29.000 8 Mc-M

A 24.000 8 S-M

B 11.000 8 S-S

B 10.000 8 M-M

B 4.000 8 M-S

-------------------------------------------------------------------------------------------------

Tukey’s Studentized Range (HSD) for variable: LATENCY

NOTE: This test controls the type I experimentwise error rate, but generally has a higher
Type II error rate than REGWQ.

Alpha = 0.05 df = 35 MSE = 32

Critical Value of Studentized Range = 4.066

Minimum Significant Difference = 8.1319
Critical range for 
all differences

Means with the same letter are not significantly different.

Tukey Grouping Mean N CONDTION

A 29.000 8 Mc-M

A 24.000 8 S-M

B 11.000 8 S-S

B 10.000 8 M-M

B 4.000 8 M-S

-------------------------------------------------------------------------------------------------

Scheffe’s test for variable: LATENCY

NOTE: This test controls the Type I experimentwise error rate but generally has a higher
Type II error rate than REGWQ for all pairwise comparisons

Alpha = 0.05 df = 35 MSE = 32

Critical Value of F = 2.64147

Minimum Significant Difference = 9.1939
Critical range for 
all differences

Means with the same letter are not significantly different.

Scheffe Grouping Mean N CONDTION

A 29.000 8 Mc-M

A 24.000 8 S-M

B 11.000 8 S-S

B 10.000 8 M-M

B 4.000 8 M-S

-------------------------------------------------------------------------------------------------

Exhibit 12.1 (continued)

regardless of where they lie in an ordered series. For this specific set of data our conclu-

sions are the same as they were for the Ryan test, although that will certainly not always be

the case.

Although the Scheffé test is run quite differently from the others, it is possible to com-

pute a critical range for all pairwise comparisons. From Exhibit 12.1 we can see that this

range is 9.1939, almost a full point larger than the critical range for Tukey. This reflects the

extreme conservatism of the Scheffé procedure, especially with just pairwise contrasts, and

illustrates my major objection to the use of this test for this purpose.



SAS will also produce a number of other multiple comparison tests, including the

Bonferroni and the Dunn-Šidák. I do not show those here because it is generally foolish to

use either of those tests when you want to make all possible pairwise comparisons among

means. The Ryan or Tukey test is almost always more powerful and still controls the family-

wise error rate. I suppose that if I had a limited number of pairwise contrasts that I was in-

terested in, I could use the Bonferroni procedure in SAS (BON) and promise not to look at

the contrasts that were not of interest.

12.10 Trend Analysis

The analyses we have been discussing are concerned with identifying differences among

group means, whether these comparisons represent complex contrasts among groups or

simple pairwise comparisons. Suppose, however, that the groups defined by the independ-

ent variable are ordered along some continuum. An example might be a study of the bene-

ficial effects of aspirin in preventing heart disease. We could ask subjects to take daily

doses of 1, 2, 3, 4, or 5 grains of aspirin, where 1 grain is equivalent to what used to be

called “baby aspirin” and 5 grains is the standard tablet. In this study we would not be con-

cerned so much with whether a 4-grain dose was better than a 2-grain dose, for example,

as with whether the beneficial effects of aspirin increase with increasing the dosage of the

drug. In other words, we are concerned with the trend in effectiveness rather than multiple

comparisons among specific means.

To continue with the aspirin example, consider two possible outcomes. In one outcome

we might find that the effectiveness increases linearly with dosage. In this case the more

aspirin you take, the greater the effect, at least within the range of dosages tested. A sec-

ond, alternative, finding might be that effectiveness increases with dosage up to some

point, but then the curve relating effectiveness to dosage levels off and perhaps even de-

creases. This would be either a “quadratic” relationship or a relationship with both linear

and quadratic components. It would be important to discover such relationships because

they would suggest that there is some optimal dose, with lower doses being less effective

and higher doses adding little, if anything, to the effect.

Typical linear and quadratic functions are illustrated in Figure 12.2. It is difficult to

characterize quadratic functions neatly because the shape of the function depends both on

the sign of the coefficient of and on the sign of X (the curve changes direction when X
passes from negative to positive, and for positive values of X the curve rises if the coeffi-

cient is positive and falls if it is negative). Also included in Figure 12.2 is a function with

both linear and quadratic components. Here you can see that the curvature imposed by a

quadratic function is superimposed upon a rising linear trend.

Tests of trend differ in an important way from the comparison procedures we have been

discussing. In all of the previous examples, the independent variable was generally qualita-

tive. Thus, for example, we could have written down the groups in the morphine-tolerance

example in any order we chose. Moreover, the F or t values for the contrasts depended only

on the numerical value of the means, not on which particular groups went with which par-

ticular means. In the analysis we are now considering, F or t values will depend on the both

the group means and the particular ordering of those means. To put this slightly differently

using the aspirin example, a REGWQ test between the largest and the smallest means will

not be affected by which group happens to have which mean. However, in trend analysis

the results would be quite different if the 1-grain and 5-grain groups had the smallest and

largest means than if the 4- and 2-grain groups had the smallest and largest means, respec-

tively. (A similar point was made in Section 6.7 in discussing the nondirectionality of the

chi-square test.)

X2
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Boring is Attractive

A useful example of trend analysis comes from a study by Langlois and Roggman (1990),

which examined the question of what makes a human face attractive. They approached the

problem from both an evolutionary and a cognitive perspective. Modern evolutionary the-

ory would suggest that average values of some trait would be preferred to extreme ones,

and cognitive theory suggests that both adults and children respond to prototypes of ob-

jects more positively than to objects near the extremes on any dimension. A prototype, by

definition, possesses average values of the object along important dimensions. (A proto-

type of a cat is one that is not too tall or too short, not too fat or too thin, and doesn’t purr

too loudly or too quietly.)

Langlois and Roggman took facial photographs of 336 males and 214 females. They

then created five groups of composite photographs by computer-averaging the individual

faces. Thus, for one group the computer averaged 32 randomly selected same-gender faces,

producing a quite recognizable face with average width, height, eyes, nose length, and

so on. For the other groups the composite faces were averaged over either 2, 4, 8, or 16

individual faces. The label Composite will be used to represent the five different groups.

12.10 Trend Analysis 403

Figure 12.2 Typical linear and quadratic functions

30

20

10

0

–10

–20

–30

2
*

X

–
0

.2
*

X
2

15

Linear fit

1050

(a) Linear trend Y = 2*X

–5–10–15

X

5

0

–15

–10

–5

–20

–25

10

0

–30

–20

–10

–40

–50

(c) Linear plus quadratic trend Y = 2*X – 0.2*X2

X

Polynomial fit, degree = 2

Polynomial fit, degree = 2

(b) Quadratic trend Y =  (–0.2)*X2

X

151050–5–10–15

2
*

X
–

 0
.2

*
X

2

151050–5–10–15



That is not an ideal name for the independent variable, but neither I nor the study’s authors

have a better suggestion. Within each group of composite photographs were three male and

three female faces, but we will ignore gender for this example. (There were no significant

gender differences, and the overall test on group differences is not materially affected by

ignoring that variable.)

Langlois and Roggman presented different groups of subjects with composite faces and

asked them to rate the attractiveness of the faces on a 1–5 scale, where 5 represents “very at-

tractive.” The individual data points in their analysis were actually the means averaged across

raters for the six different composites in each condition. The data are given in Table 12.9.

These data are fictional, but they have been constructed to have the same mean and variance

as those reported by Langlois and Roggman, so the overall F and the tests on trend will be

the same as those they reported.

A standard one-way analysis of variance on these data would produce the following

summary table:

Source df SS MS F

Composite 4 2.1704 0.5426 3.13*

Error 25 4.3281 0.1731

Total 29 6.4985

*p , .05

From the summary table it is apparent that there are significant differences among the five

groups, but it is not clear how these differences are manifested. One way to examine these

differences would be to plot the group means as a function of the number of individual pic-

tures that were averaged to create the composite. An important problem that arises if we

try to do this concerns the units on the abscissa. We could label the groups as “2, 4, 8, 16,

and 32,” on the grounds that these values correspond to the number of elements over which

the average was taken. However, it seems unlikely that rated attractiveness would increase

directly with those values. We might expect that a picture averaged over 32 items would be

more attractive than one averaged over 2 items, but I doubt that it would be 16 times more

attractive. But notice that each value of the independent variable is a power of 2. In other

words, the values of 2, 4, 8, 16, and 32 correspond to . (Put another way,

taking the of 2, 4, 8, 16, and 32 would give us 1, 2, 3, 4, and 5.) For purposes of ana-

lyzing these data, I am going to represent the groups with the numbers 1 to 5 and refer to

these as measuring the degree of the composite. (If you don’t like my approach, and there

is certainly room to disagree, be patient and we will soon see a solution using unequally

log2

21,22,23,24, and 25
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Table 12.9 Data on rated attractiveness (from left to right the groups 

represent averaging across 2, 4, 8, 16, or 32 faces)

Group 1 Group 2 Group 3 Group 4 Group 5

2.201 1.893 2.906 3.233 3.200

2.411 3.102 2.118 3.505 3.253

2.407 2.355 3.226 3.192 3.357

2.403 3.644 2.811 3.209 3.169

2.826 2.767 2.857 2.860 3.291

3.380 2.109 3.422 3.111 3.290

Mean 2.6047 2.6450 2.8900 3.1850 3.2600



spaced values of the independent variable. The example will be simpler statistically if the

units on the abscissa are evenly spaced.) The group means using my composite measure on

the abscissa are plotted in Figure 12.3, where you can see that the rated attractiveness does

increase with increasing levels of Composite.

The overall analysis of variance really asked if a horizontal straight line through Y 5 2.917

(the grand mean) would fit the data adequately. The F led to rejection of that null hypothesis

because several means were far from 2.917. Our next question asks whether a nonhorizontal

straight line provides a good fit to the data. A glance at Figure 12.3 would suggest that this is

the case. We will then follow that question by asking whether systematic residual (nonerror)

variance remains in the data after fitting a linear function, and, if so, whether this residual vari-

ance can be explained by a quadratic function.

To run a trend analysis, we will return to the material we discussed under the headings

of linear and orthogonal contrasts. (Don’t be confused by the use of the word linear in the

last sentence. We will use the same approach when it comes to fitting a quadratic function.

Linear in this sense simply means that we will form a linear combination of coefficients

and means, where nothing is raised to a power.)

In Section 12.3 we defined a linear contrast as

The only difference between what we are doing here and what we did earlier will be in

the coefficients we use. In the case in which there are equal numbers of subjects in the

groups and the values on the abscissa are equally spaced, the coefficients for linear, quad-

ratic, and higher-order functions (polynomial trend coefficients) are easily tabled and are

found in Appendix Polynomial. From Appendix Polynomial we find that for five groups

the linear and quadratic coefficients are

Linear: 22 21 0 1 2

Quadratic: 2 21 22 21 2

We will not be using the cubic and quartic coefficients shown in the appendix, but their

use will be evident from what follows. Notice that like any set of orthogonal linear coeffi-

cients, the requirements that 5 0 and are met. The coefficients do not form a

“standard set,” because the sum of the absolute values of the coefficients does not equal 2.

That is not a problem here.

As you should recall from Section 12.3, we calculate a sum of squares for the contrast as

SScontrast =
nc2

aa2
j

gai bj = 0gaj

c = a1X1 1 a2X2 1 a3 X3 1 Á 1 ak Xk = aaj Xj
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In our case,

Like all contrasts, this contrast has a single degree of freedom, and therefore

. As you probably suspect from what you already know, we can convert

this mean square for the contrast to an F by dividing by :

This is an F on 1 and 25 degrees of freedom, and from Appendix F we find that

. Because the F for the linear component (11.87) exceeds 4.245, we will

reject and conclude that there is a significant linear trend in our means. In other words,

we will conclude that attractiveness varies linearly with increasing levels of Composite.

Notice here that a significant F means that the trend component we are testing is signifi-

cantly different from 0.13

It is conceivable that we could have a significant linear trend in our data and still have

residual variance that can be explained by a higher-order term. For example, it is possible

that we might have both linear and quadratic, or linear and cubic, components. In fact, it

would be reasonable to expect a quadratic component in addition to a linear one, because it

seems unlikely that judged attractiveness will keep increasing indefinitely as we increase

the number of individual photographs we average to get the composite. There will presum-

ably be some diminishing returns, and the curve should level off.

The next step is to ask whether the residual variance remaining after we fit the linear

component is significantly greater than the error variance that we already know is present.

If accounted for virtually all of , there would be little or nothing left over

for higher-order terms to explain. On the other hand, if were a relatively small part

of , then it would make sense to look for higher-order components. From our

previous calculations we obtain

 = 3

 = 4 2 1

 df residual = df Composite 2 df linear

 = 0.1156

 = 2.1704 2 2.0548

 SSresidual = SSComposite 2 SSlinear

SSComposite

SSlinear

SSCompositeSSlinear

H0

F.05(1,25) = 4.245

 = 11.8706

 =
2.0548

0.1731

 F =
MSlinear

MSerror

MSerror

SSlinear = MSlinear

 = 2.0548

 SSlinear =
nc2

ga2
j

=
6(1.85062)

10

 = 1.8506

 clinear = (-2)2.6047 1 (-1)2.6450 1 (0)2.8900 1 (1)3.1850 1 (2)3.2600
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13 I recently received a message from someone with similar data. He was studying the experimental hypothesis
that drug effects increased with dosage. He had obtained a nonsignificant overall F, but when he computed a test
on linear trend, the result was “highly significant.” He wanted to know what to do. Because the linear trend
tested his hypothesis directly, whereas the overall F did not, my recommendation was to rely solely on the test
for trend.



Because F for the residual is less than 1, we know automatically that it is not significant.

This tells us that there is no significant variability left to be explained over and above that

accounted for by the linear component. We would, therefore, normally stop here. However,

for purposes of an example I will go ahead and calculate the quadratic component. The cal-

culations will be shown without discussion, because the discussion would essentially be

the same as above with the word quadratic substituted for linear.

As our test on the residual suggested, there is no significant quadratic component on

our plot of the group means. Thus there is no indication, over the range of values used in

this study, that the means are beginning to level off. Therefore, we would conclude from

these data that attractiveness increases linearly with Composite, at least given the defini-

tion of Composite used here.

A word of caution is in order at this point. You might be tempted to go ahead and apply

the cubic and quartic coefficients that you find in Appendix Polynomial. You might also ob-

serve that having done this, the four sums of squares ( , . . . , ) will sum to

, and be very impressed that you have accounted for all of the sums of squares be-

tween groups. Before you get too impressed, think about how proud you would be if you

showed that you could draw a straight line that exactly fit two points. The same idea applies

here. Regardless of the data, you know before you begin that a polynomial of order k 2 1 will

exactly fit k points. That is one reason why I was not eager to go much beyond fitting the lin-

ear components to the data at hand. A quadratic was stretching things a bit. Moreover, if you

were to fit a fourth-order polynomial and found that the quartic component was significant,

SSComposite

SSquarticSSlinear

 6 1

 =
0.0061

0.1731

 F =
MSquadratic

MSerror

 = 0.0061

 =
6A0.11942B

14

 SSquadratic =
n c2

ab2
j

 = 0.1194

 cquadratic = (2)2.6047 1 (-1)2.6450 1 (-2)2.8900 1 (-1)3.1850 1 (2)3.2600

 6 1

 =
0.0385

0.1731

 Fresidual =
MSresidual

MSerror

 = 0.0385

 =
0.1156

3

 MSresidual =
SSresidual

df residual
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what would you have to say about the results? A linear or quadratic component would make

some sense, but a quartic component could not be explained by any theory I know.

Unequal Intervals

In the preceding section we assumed that the levels of the independent variable are equally

spaced along some continuum. In fact, I actually transformed the independent variable into

a scale called Composite to fulfill that requirement. It is possible to run a trend analysis

when we do not have equal intervals, and the arithmetic is the same. The only problem

comes when we try to obtain the trend coefficients, because we cannot take our coefficients

from Appendix Polynomial unless the intervals are equal.

Calculating quadratic coefficients is not too difficult, and a good explanation can be

found in Keppel (1973). For higher-order polynomials the calculations are more laborious,

but a description of the process can be found in Robson (1959). For most people, their

analyses will be carried out with standard statistical software, and that software will often

handle the problem of unequal spacing. Without diving deeply into the manuals, it is often

difficult to determine how your software handles the spacing problem. The simplest thing

to do, using the attractiveness data as an example, would be to code the independent vari-

able as 1, 2, 3, 4, and 5, and then recode it as 2, 4, 8, 16, 32. If the software is making

appropriate use of the levels of the independent variable, you should get different answers.

Then the problem is left up to you to decide which answer you want, when both methods

of coding make sense. For example, if you use SPSS ONEWAY procedure and ask for

polynomial contrasts, where the independent variable is coded 1, 2, 3, 4, 5, you will obtain

the same results as above. If you code the variable 2, 4, 8, 16, 32, you will obtain slightly

different results. However, if you use SPSS General Linear Model/Univariate procedure,

the way in which you code the independent variable will not make any difference—both

will produce results as if the coding were 1, 2, 3, 4, 5. It always pays to check.

An example containing both a quadratic and a cubic component can be found in

Exercise 12.25 Working through that exercise can teach you a lot about trend analysis.
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Exercises

12.1 Assume that the data that follow represent the effects of food and/or water deprivation on

behavior in a learning task. Treatments 1 and 2 represent control conditions in which the

animal received ad lib food and water (1) or else food and water twice per day (2). In treat-

ment 3 animals were food deprived, in treatment 4 they were water deprived, and in treat-

ment 5 they were deprived of both food and water. The dependent variable is the number

of trials to reach a predetermined criterion. Assume that before running our experiment we

decided that we wanted to compare the combined control groups (treatments 1 and 2) with

the combined experimental groups, the control groups with each other, the singly deprived

treatments with the doubly deprived treatment, and the singly deprived treatments with

each other.

Ad Lib Two per Food Water Food and

Control Day Control Deprived Deprived Water Deprived

18 20 6 15 12

20 25 9 10 11

21 23 8 9 8

16 27 6 12 13

15 25 11 14 11

90 120 40 60 55

a. Analyze the data using linear contrasts. (Note: I am not asking for linear polynomials

(trend) here, just standard contrasts.)

b. Show that the contrasts are orthogonal.

c. Show that the sums of squares for the contrasts sum to .

12.2 Using the data from Exercise 11.1, compute the linear contrasts for 5 versus (20 and 35)

days and 20 versus 35 days, using a 5 .05 for each contrast. (Note that this and subsequent
exercises refer to exercises in Chapter 11, not this chapter.)

12.3 What would be the per comparison and familywise error rates in Exercise 12.2? (Hint: Are

the contrasts orthogonal?)

12.4 Compute F for the linear contrast on the two groups in Exercise 11.2. Is this a waste of

time? Why or why not?

12.5 Compute the Studentized range statistic for the two groups in Exercise 11.2, and show that

it is equal to (where t is taken from Exercise 11.2b).

12.6 Compute the Fs for the following linear contrasts in Exercise 11.3. Save the results for use

in Chapter 13.

a. 1 and 2 versus 3 and 4

b. 1 and 3 versus 2 and 4

c. 1 and 4 versus 2 and 3

d. What questions do the contrasts in (a), (b), and (c) address?

12.7 Run the Bonferroni t test on the data for Exercise 11.1, using the contrasts supplied in

Exercise 12.2. Set the maximum FW at .05.

12.8 Repeat Exercise 12.7, using Holm’s multistage test. What differences do you find between

these answers and the answers to Exercise 12.7?

12.9 Apply Holm’s multistage test to Exercise 12.1.

12.10 Run a REGWQ test on the example given in Table 11.2 (p. 324) and interpret the results.

t12
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12.11 Calculate the Tukey test on the data in the example in Table 11.2, and compare your results

to those you obtained for Exercise 12.10.

12.12 Why might you be more interested in running specific contasts on the data referred to in

Exercises 12.10 and 12.11?

12.13 Run Games and Howell (1976) approach to Tukey’s HSD procedure for unequal sample

sizes on the data in Exercise 12.12.

Group 1 2 3 4 5

10 18 19 21 29

8 5 8 7 9

7.4 8.9 8.6 7.2 9.3

12.14 Use the Scheffé test on the data in Exercise 12.13 to compare groups 1, 2, and 3 (combined)

with groups 4 and 5 (combined). Then compare group 1 with groups 2, 3, and 4 (com-

bined). (Hint: Go to the discussion at www.uvm.edu/~dhowell/methods7/Extras/Unequal-n-

contrasts.html)

12.15 Apply the Tukey procedure to the log transformed THC data from Table 11.6 (p. 339). What

is the maximum FW for this procedure?

12.16 Apply Dunnett’s test to the log transformed data in Table 11.6.

12.17 How could a statistical package that did not have a Bonferroni command be used to run the

Bonferroni t test on the data in Exercise 12.7?

12.18 The Holm test is referred to as a modified sequentially rejective procedure. Why?

12.19 Fit linear and quadratic trend components to the Conti and Musty (1984) log transformed

data in Table 11.6. The control condition received 0 mg of THC. For purposes of this exam-

ple, assume that there were 10 subjects in all groups. (You could add a 2.56 to the 0.5 mg

group and a 2.35 and 2.36 to the 1 mg group without altering the results appreciably.) The

linear coefficients (calculated with unequal spacing on the independent variable) are

[20.72, 20.62, 20.22, 0.28, 1.28]. The quadratic coefficients are [0.389, 0.199, 20.362,

20.612, 0.387].

Verify your answers using SPSS ONEWAY if you have it available.

12.20 Calculate the Benjamini-Hochberg test on the data in the example in Table 11.2, and com-

pare your results to those you obtained for Exercise 12.10.

12.21 Use any statistical package to apply the REGWQ (if available), and Scheffé procedures to the

data from Introini-Collison and McGaugh (1986), described in the exercises for Chapter 11

(p. 356). Do these analyses for both Epineq.dat and Epinuneq.dat, which are on the book’s

Web site. Do not combine across the levels of the interval variable.

12.22 In Exercise 12.21 it would not have made much of a difference whether we combined the

data across the three intervals or not. Under what conditions would you expect that it would

make a big difference?

12.23 Using the data in Epineq.dat, compute both the linear and quadratic trend tests on the

three drug dosages. Do this separately for each of the three intervals. (Hint: The linear

coefficients are [20.597110, 20.183726, 0.780836], and the quadratic coefficients are

[0.556890, 20.795557, 0.238667].)

12.24 Interpret the results in Exercise 12.23.

12.25 Stone, Rudd, Ragozzino, and Gold (1992) investigated the role that glucose plays in mem-

ory. Mice were raised with a 12 hour light-on/light-off cycle, starting at 6:00 AM. During

training mice were placed in the lighted half of an experimental box and given foot shock

when they moved into the dark half. The mice quickly learned to stay in the lighted half.

The day/night cycle was then advanced by 4 hours for all mice, which is known to interfere

with memory of the original training. Three days later mice were retested 30 minutes after

being injected with 0, 1, 10, 100, 250, or 500 mg/kg of sucrose. The purpose was to see

whether sucrose would reduce the disruptive effects of changing the diurnal cycle, and

sj
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whether different doses would have different effects. Data that have been generated to

loosely mimic the results of Stone et al. are given below, where the dependent variable is

the latency to enter the dark chamber.

Glucose Level in mg/kg

0 1 10 100 250 500

295 129 393 653 379 521

287 248 484 732 530 241

91 350 308 570 364 162

260 278 112 434 385 197

193 150 132 690 355 156

52 195 414 679 558 384

a. Plot these data using both the actual dosage, and the values 1, 2, 3, 4, 5, 6 as the values

of X.

b. Run a trend analysis using SPSS Oneway, if available, with the actual dosage as the 

independent variable.

c. Repeat part b) using the 1, 2, 3, 4, 5, 6 coding as the independent variable.

d. Interpret your results. How might these results have something to say to students who

stay up all night studying for an exam?

e. Why might you, or Stone et al., prefer one coding system over another?

12.26 Using the data from Exercise 12.1, compute confidence interval for the first comparison (con-

trast) described in that question. Interpret your answer. (If you use SPSS, use the Compare

Means/One-Way ANOVA procedure, which allows you to specify coefficients.)

12.27 Using the data from Exercise 12.1, compute effect sizes on all of the contrasts that you ran

with that question. How would you interpret these effect sizes? Why are these called stan-

dardized effect sizes, and what would an unstandardized effect size be?

12.28 Write up a brief report of the results computed for Exercises 12.1, 12.26, and 12.27.

12.29 Using the data from Exercise 11.27, perform the appropriate test(s) to draw meaningful con-

clusions from the study by Davey et al. (2003).

12.30 In Exercise 11.8 we considered a study by Foa et al. concerning therapy for victims of rape.

The raw data can be found on the Web site at Ex12.30.dat. Apply the Benjamini and

Hochberg LSU procedure to these data.

Discussion Questions

12.31 Students often have difficulty seeing why a priori and post hoc tests have different family-

wise error rates. Make up an example (not necessarily from statistics) that would help to ex-

plain the difference to others.

12.32 Find an example in the research literature of a study that used at least five different condi-

tions, and create a data set that might have come from this experiment. Apply several of the

techniques we have discussed, justifying their use, and interpret the results. (You would

never apply several different techniques to a set of data except for an example such as this.

Hint: You can generate data with a given mean and variance by taking any set of numbers

[make them at least unimodal and symmetrical], standardizing them, multiplying the stan-

dard scores by the desired standard deviation, and then adding the desired mean to the

result. Do this for each group separately and you will have your data.)
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IN THE PREVIOUS TWO CHAPTERS, we dealt with a one-way analysis of variance in which we

had only one independent variable. In this chapter, we will extend the analysis of variance to

the treatment of experimental designs involving two or more independent variables. For pur-

poses of simplicity, we will be concerned primarily with experiments involving two or three

variables, although the techniques discussed can be extended to more complex designs.

In Chapter 11, we considered a study by Eysenck (1974) in which he asked participants

to recall lists of words to which they had been exposed under one of several different con-

ditions. In that example, we were interested in determining whether recall was related to

the level at which material was processed initially. Eysenck’s study was actually more

complex. He was interested in whether level-of-processing notions could explain differ-

ences in recall between older and younger participants. If older participants do not process

information as deeply, they might be expected to recall fewer items than would younger

participants, especially in conditions that entail greater processing. This study now has two

independent variables, which we shall refer to as factors: Age and Recall Condition (here-

after referred to simply as Condition). The experiment thus is an instance of what is called

a two-way factorial design.

An experimental design in which every level of every factor is paired with every level

of every other factor is called a factorial design. In other words, a factorial design is one

in which we include all combinations of the levels of the independent variables. In the fac-

torial designs discussed in this chapter, we will consider only the case in which different

participants serve under each of the treatment combinations. For instance, in our example,

one group of younger participants will serve in the Counting condition, a different group of

younger participants will serve in the Rhyming condition, and so on. Since we have 10

combinations of our two factors (5 Recall Conditions 3 2 Ages), we will have 10 different

groups of participants. When the research plan calls for the same participant to be included

under more than one treatment combination, we will speak of repeated-measures designs.

Repeated-measures designs will be discussed in Chapter 14.

Factorial designs have several important advantages over one-way designs. First, they

allow greater generalizability of the results. Consider Eysenck’s study for a moment. If we

were to run a one-way analysis using the five Conditions with only the older participants,

as in Chapter 11, then our results would apply only to older participants. When we use a

factorial design with both older and younger participants, we are able to determine whether

differences between Conditions apply to younger participants as well as older ones. We are

also able to determine whether age differences in recall apply to all tasks, or whether

younger (or older) participants excel on only certain kinds of tasks. Thus, factorial designs

allow for a much broader interpretation of the results, and at the same time give us the abil-

ity to say something meaningful about the results for each of the independent variables sep-

arately. An interesting discussion of this issue, though from the perspective of engineering,

can be found in Czitrom (1999).

The second important feature of factorial designs is that they allow us to look at the

interaction of variables. We can ask whether the effect of Condition is independent of Age

or whether there is some interaction between Condition and Age. For example, we would

have an interaction if younger participants showed much greater (or smaller) differences

among the five Recall Conditions than did older participants. Interaction effects are often

among the most interesting results we obtain.

A third advantage of a factorial design is its economy. Since we are going to average

the effects of one variable across the levels of the other variable, a two-variable factorial

will require fewer participants than would two one-ways for the same degree of power. Es-

sentially, we are getting something for nothing. Suppose we had no reason to expect an in-

teraction of Age and Condition. Then, with 10 old participants and 10 young participants

in each Condition, we would have 20 scores for each of the five conditions. If we instead
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ran a one-way with young participants and then another one-way with old participants, we

would need twice as many participants overall for each of our experiments to have the

same power to detect Condition differences—that is, each experiment would have to have

20 participants per condition, and we would have two experiments.

Factorial designs are labeled by the number of factors involved. A factorial design with

two independent variables, or factors, is called a two-way factorial, and one with three fac-

tors is called a three-way factorial. An alternative method of labeling designs is in terms of

the number of levels of each factor. Eysenck’s study had two levels of Age and five levels

of Condition. As such, it is a 2 3 5 factorial. A study with three factors, two of them hav-

ing three levels and one having four levels, would be called a 3 3 3 3 4 factorial. The use

of such terms as “two-way” and “2 3 5” are both common ways of designating designs,

and both will be used throughout this book.

In much of what follows, we will concern ourselves primarily with the two-way analy-

sis. Higher-order analyses follow almost automatically once you understand the two-way,

and many of the related problems we will discuss are most simply explained in terms of

two factors. For most of the chapter, we will also limit our discussion to fixed—as opposed

to random—models, as these were defined in Chapter 11. You should recall that a fixed fac-

tor is one in which the levels of the factor have been specifically chosen by the experi-

menter and are the only levels of interest. A random model involves factors whose levels

have been determined by some random process and the interest focuses on all possible lev-

els of that factor. Gender or “type of therapy” are good examples of fixed factors, whereas

if we want to study the difference in recall between nouns and verbs, the particular verbs

that we use represent a random variable because our interest is in generalizing to all verbs.

Notation

Consider a hypothetical experiment with two variables, A and B. A design of this type is

illustrated in Table 13.1. The number of levels of A is designated by a, and the number of
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Table 13.1 Representation of factorial design

B
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B
2

… B
b

X
111

X
121

… X
1b1

X
112

X
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X
1b2

A
1

… … …

X
11n

X
12n

X
1bn

X
211

X
221

… X
2b1

X
212

X
222

X
2b2

A
2

… … …

X
21n

X
22n

X
2bn

… … … … …

X
a11

X
a21

X
ab1

Xa
12

Xa
22

X
ab2

A
a

… … …

X
a1n

X
a2n

X
abn

… X..X.bX.2X.1

XabXa2Xa1

Xa.

X2bX22X21

X2.

X1bX12X11

X1.

2 3 5 factorial



levels of B is designated by b. Any combination of one level of A and one level of B is

called a cell, and the number of observations per cell is denoted n, or, more precisely, .

The total number of observations is . When any confusion might arise, an

individual observation (X) can be designated by three subscripts, , where the subscript i

refers to the number of the row (level of A), the subscript j refers to the number of the column

(level of B), and the subscript k refers to the kth observation in the ijth cell. Thus, is the

fourth participant in the cell corresponding to the second row and the third column. Means

for the individual levels of A are denoted as or and for the levels of B are denoted 

or The cell means are designated ij, and the grand mean is symbolized by . Needless

subscripts are often a source of confusion, and whenever possible they will be omitted.

The notation outlined here will be used throughout the discussion of the analysis of

variance. The advantage of the present system is that it is easily generalized to more com-

plex designs. Thus, if participants recalled at three different times of day, it should be self-

evident to what refers.

13.1 An Extension of the Eysenck Study

As mentioned earlier, Eysenck actually conducted a study varying Age as well as Recall Con-

dition. The study included 50 participants in the 18-to-30–year age range, as well as 50 par-

ticipants in the 55-to-65–year age range. The data in Table 13.2 have been created to have the

same means and standard deviations as those reported by Eysenck. The table contains all the

calculations for a standard analysis of variance, and we will discuss each of these in turn. Be-

fore beginning the analysis, it is important to note that the data themselves are approximately

normally distributed with acceptably equal variances. The boxplots are not given in the table

because the individual data points are artificial, but for real data it is well worth your effort to

compute them. You can tell from the cell and marginal means that recall appears to increase

with greater processing, and younger participants seem to recall more items than do older

participants. Notice also that the difference between younger and older participants seems to

depend on the task, with greater differences for those tasks that involve deeper processing.

We will have more to say about these results after we consider the analysis itself.

It will avoid confusion later if I take the time here to define two important terms. As

I have said, we have two factors in this experiment—Age and Condition. If we look at the

differences between means of older and younger participants, ignoring the particular con-
ditions, we are dealing with what is called the main effect of Age. Similarly, if we look at

differences among the means of the five conditions, ignoring the Age of the participants,

we are dealing with the main effect of Condition.

An alternative method of looking at the data would be to compare means of older and

younger participants for only the data from the Counting task, for example. Or we might

compare the means of older and younger participants on the Intentional task. Finally, we

might compare the means on the five conditions for only the older participants. In each of

these three examples we are looking at the effect of one factor for those observations at

only one level of the other factor. When we do this, we are dealing with a simple effect—

the effect of one factor at one level of the other factor. A main effect, on the other hand, is

that of a factor ignoring the other factor. If we say that tasks that involve more processing

lead to better recall, we are speaking of a main effect. If we say that for younger partici-

pants tasks that involve more processing lead to better recall, we are speaking about a sim-

ple effect. Simple effects are frequently referred to as being conditional on the level of the

other variable. We will have considerably more to say about simple effects and their calcu-

lation shortly. For now, it is important only that you understand the terminology.

XTime 1

X..XX.j.

XBXi..,XA

X234

Xijk

N = gnij = abn

nij
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Table 13.2 Data and computations for example from Eysenck (1974)

(a) Data:

Recall Conditions Mean
i.

Counting Rhyming Adjective Imagery Intention

Old 9 7 11 12 10

8 9 13 11 19

6 6 8 16 14

8 6 6 11 5

10 6 14 9 10

4 11 11 23 11

6 6 13 12 14

5 3 13 10 15

7 8 10 19 11

7 7 11 11 11

Mean
1j

7.0 6.9 11.0 13.4 12.0 10.06

Young 8 10 14 20 21

6 7 11 16 19

4 8 18 16 17

6 10 14 15 15

7 4 13 18 22

6 7 22 16 16

5 10 17 20 22

7 6 16 22 22

9 7 12 14 18

7 7 11 19 21

Mean
2j

6.5 7.6 14.8 17.6 19.3 13.16

Mean
.j

6.75 7.25 12.9 15.5 15.65 11.61

(b) Calculations:

(continues)

= 1945.49

= 10[(7.0 2 11.61)2 1 (6.9 2 11.61)2 1 . . . 1 (19.3 2 11.61)2]

SScells = na (Xij 2 X..)
2

= 1514.94

= 10 3 2[(6.75 2 11.61)2 1 (7.25 2 11.61)2 1 . . . 1 (15.65 2 11.61)2]

SSC = naa (X.j 2 X..)
2

= 240.25

= 10 3 5[(10.06 2 11.61)2 1 (13.16 2 11.61)2]

SSA = nca (Xi. 2 X..)
2

= 2667.79

= (9 2 11.61)2 1 (8 2 11.61)2 1 . . . 1 (21 2 11.61)2

SStotal = a (X 2 X..)
2



Calculations

The calculations for the sums of squares appear in Table 13.2b. Many of these calculations

should be familiar, since they resemble the procedures used with a one-way. For example,

is computed the same way it was in Chapter 11, which is the way it is always com-

puted. We sum all of the squared deviations of the observations from the grand mean.

The sum of squares for the Age factor ( ) is nothing but the that we would ob-

tain if this were a one-way analysis of variance without the Condition factor. In other

words, we simply sum the squared deviations of the Age means from the grand mean and

multiply by nc. We use nc as the multiplier here because each age has n participants at each

of c levels. (There is no need to remember that multiplier as a formula. Just keep in mind

that it is the number of scores upon which the relevant means are based.) The same proce-

dures are followed in the calculation of , except that here we ignore the presence of the

Age variable.

Having obtained , , and , we come to an unfamiliar term, . This term

represents the variability of the individual cell means and is in fact only a dummy term; it

will not appear in the summary table. It is calculated just like any other sum of squares. We

take the deviations of the cell means from the grand mean, square and sum them, and mul-

tiply by n, the number of observations per mean. Although it might not be readily apparent

why we want this term, its usefulness will become clear when we calculate a sum of

squares for the interaction of Age and Condition. (It may be easier to understand the calcu-

lation of if you think of it as what you would have if you viewed this as a study with

10 “groups” and calculated .)

The is a measure of how much the cell means differ. Two cell means may differ

for any of three reasons, other than sampling error: (1) because they come from different

levels of A (Age); (2) because they come from different levels of C (Condition); or (3) be-

cause of an interaction between A and C. We already have a measure of how much the cells

differ, since we know . tells us how much of this difference can be attributed to

differences in Age, and tells us how much can be attributed to differences in Condi-

tion. Whatever cannot be attributed to Age or Condition must be attributable to the interac-

tion between Age and Condition ( ). Thus, has been partitioned into its three

constituent parts— , , and . To obtain , we simply subtract and 

from . Whatever is left over is . In our example,

SSAC = SScells 2 SSA 2 SSC

        = 1945.49 2 240.25 2 1514.94 = 190.30

SSACSScells

SSCSSASSACSSACSSCSSA

SScellsSSAC

SSC

SSASScells

SScells

SSgroups

SScells

SScellsSSCSSASStotal

SSC

SStreatSSA

SStotal
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Table 13.2 (continued)

(c) Summary table

Source df SS MS F

A (Age) 1 240.25 240.250 29.94*

C (Condition) 4 1514.94 378.735 47.19*

AC 4 190.30 47.575 5.93*

Error 90 722.30 8.026

Total 99 2667.79

* p < .05

SSerror = SStotal 2 SScells = 2667.79 2 1945.49 = 722.30

SSAC = SScells 2 SSA 2 SSC = 1945.49 2 240.25 2 1514.94 = 190.30

SS
cells



All that we have left to calculate is the sum of squares due to error. Just as in the one-

way analysis, we will obtain this by subtraction. The total variation is represented by SS
total

.

Of this total, we know how much can be attributed to A, C, and AC. What is left over repre-

sents unaccountable variation or error. Thus

However, since , it is simpler to write

This provides us with our sum of squares for error, and we now have all of the necessary

sums of squares for our analysis.

A more direct, but tiresome, way to calculate exists, and it makes explicit just

what the error sum of squares is measuring. represents the variation within each cell,

and as such can be calculated by obtaining the sum of squares for each cell separately. For

example,

5 (9 2 7)2 1 (8 2 7)2 1 . . . 1 (7 2 7)2 5 30

We could perform a similar operation on each of the remaining cells, obtaining

The sum of squares within each cell is then summed over the 10 cells to produce .

Although this is the hard way of computing an error term, it demonstrates that is

in fact the sum of within-cell variation. When we come to mean squares, MS
error

will turn

out to be just the average of the variances within each of the 2 3 5 5 10 cells.

Table 13.2c shows the summary table for the analysis of variance. The source column

and the sum of squares column are fairly obvious from what has already been said. Note,

however, that we could organize the summary table somewhat differently, although we

would seldom do so in practice. Thus, we could have

Source df SS

Between cells 9 1945.49

A 1 240.25

C 4 1514.94

AC 4 190.30

Within cells 90 722.30

(Error)

Total 99 2667.79

This alternative summary table makes it clear that we have partitioned the total variation

into variation among the cell means and variation within the cells. The former is then fur-

ther partitioned into A, C, and AC.

Returning to Table 13.2c, look at the degrees of freedom. The calculation of df is

straightforward. The total number of degrees of freedom ( ) is always equal to N 2 1.

The degrees of freedom for Age and Condition are the number of levels of the variable

minus 1. Thus, and . The number of degrees ofdfC = c 2 1 = 4dfA = a 2 1 = 1

dftotal

SSerror

SSerror

SScell11
= 30.0

SScell12
= 40.9

Á   Á

SScell25

SSerror

=
64.1

722.30

SScell11

SSerror

SSerror

SSerror = SStotal 2 SScells

SSA 1 SSC 1 SSAC = SScells

SSerror = SStotal 2 (SSA 1 SSC 1 SSAC)
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freedom for any interaction is simply the product of the degrees of freedom for the com-

ponents of that interaction. Thus, .

These three rules apply to any analysis of variance, no matter how complex. The

degrees of freedom for error can be obtained either by subtraction (

), or by realizing that the error term represents variability

within each cell. Since each cell has n 21 df, and since there are ac cells, 

.

Just as with the one-way analysis of variance, the mean squares are again obtained by

dividing the sums of squares by the corresponding degrees of freedom. This same proce-

dure is used in any analysis of variance.

Finally, to calculate F, we divide each MS by . Thus for Age, ;

for Condition, ; and for AC, . To appreciate why

is the appropriate divisor in each case, we will digress briefly in a moment and con-

sider the underlying structural model and the expected mean squares. First, however, we

need to consider what the results of this analysis tell us.

Interpretation

From the summary table in Table 13.2c, you can see that there were significant effects for

Age, Condition, and their interaction. In conjunction with the means, it is clear that

younger participants recall more items overall than do older participants. It is also clear

that those tasks that involve greater depth of processing lead to better recall overall than do

tasks involving less processing. This is in line with the differences we found in Chapter 11.

The significant interaction tells us that the effect of one variable depends on the level of the

other variable. For example, differences between older and younger participants on the eas-

ier tasks such as counting and rhyming are less than age differences on tasks, such as im-

agery and intentional, that involve greater depths of processing. Another view is that

differences among the five conditions are less extreme for the older participants than they

are for the younger ones.

These results support Eysenck’s hypothesis that older participants do not perform as

well as younger participants on tasks that involve a greater depth of processing of informa-

tion, but perform about equally with younger participants when the task does not involve

much processing. These results do not mean that older participants are not capable of pro-

cessing information as deeply. Older participants simply may not make the effort that

younger participants do. Whatever the reason, however, they do not perform as well on

those tasks.

13.2 Structural Models and Expected Mean Squares

Recall that in discussing a one-way analysis of variance, we employed the structural model

where represented the effect of the jth treatment. In a two-way design we

have two “treatment” variables (call them A and B) and their interaction. These can be rep-

resented in the model by a, b, and ab, producing a slightly more complex model. This

model can be written as 

Xijk = m 1 ai 1 bj 1 abij 1 eijk

tj = mj 2 m

Xij = m 1 tj 1 eij

MSerror

FAC = MSAC>MSerrorFC = MSC>MSerror

FA = MSA>MSerrorMSerror

ac(n 2 1) = 2 3 5 3 9 = 90

dferror 5

dftotal 2 dfA 2 dfC 2 dfAC

dferror 5

dfAC = dfA 3 dfC = (a 2 1)(c 2 1) = 1 3 4 = 4
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where

From this model it can be shown that with fixed variables the expected mean squares are

those given in Table 13.3. It is apparent that the error term is the proper denominator for

each F ratio, since the E(MS) for any effect contains only one term other than .s2
e

 Xijk = any observation

    m = the grand mean

    ai = the effect of Factor Ai = mAi
2 m

   bj = the effect of Factor Bj = mBj
2 m

abij = the interaction effect of Factor Ai and Factor Bj

       = m 2 mAi
2 mBj

1 mij; ai abij = a
j

abij = 0

  eijk = the unit of error associated with observation Xijk

       = N(0, s2
e)
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Table 13.3 Expected mean squares for two-way analysis of variance (fixed)

Source E(MS)

A

B

AB

Error s2
e

s2
e 1 nu2

ab

s2
e 1 nau2

b

s2
e 1 nbu2

a

where 

Consider for a moment the test of the effect of Factor A:

If is true, then and , and thus nb , will be 0. In this case, F will have

an expectation of approximately 1 and will be distributed as the standard (central) F distri-

bution. If is false, however, will not be 0 and F will have an expectation greater than

1 and will not follow the central F distribution. The same logic applies to tests on the ef-

fects of B and AB. We will return to structural models and expected mean squares in Section

13.8 when we discuss alternative designs that we might use. There we will see that the ex-

pected mean squares can become much more complicated, but the decision on the error

term for a particular effect will reflect what we have seen here.

13.3 Interactions

One of the major benefits of factorial designs is that they allow us to examine the interac-

tion of variables. Indeed, in many cases, the interaction term may well be of greater inter-

est than are the main effects (the effects of factors taken individually). Consider, for

example, the study by Eysenck. The means are plotted in Figure 13.1 for each age group

separately. Here you can see clearly what I referred to in the interpretation of the results

when I said that the differences due to Condition were greater for younger participants than

u2
aH0

u2
au2

amA1
= mA2

= mH0

E(MSA)

E(MSerror)
=

s2
e 1 nbu2

a

s2
e

u2
a =

©a2
j

a 2 1
=

©(mi 2 m)2

a 2 1



for older ones. The fact that the two lines are not parallel is what we mean when we speak

of an interaction. If Condition differences were the same for the two Age groups, then the

lines would be parallel—whatever differences between Conditions existed for younger par-

ticipants would be equally present for older participants. This would be true regardless of

whether younger participants were generally superior to older participants or whether the

two groups were comparable. Raising or lowering the entire line for younger participants

would change the main effect of Age, but it would have no effect on the interaction because

it would not affect the degree of parallelism between the lines.

It may make the situation clearer if you consider several plots of cell means that repre-

sent the presence or absence of an interaction. In Figure 13.2 the first three plots represent

the case in which there is no interaction. In all three cases the lines are parallel, even when

they are not straight. Another way of looking at this is to say that the simple effect of Fac-

tor B at is the same as it is at and at . In the second set of three plots, the lines

clearly are not parallel. In the first, one line is flat and the other rises. In the second, the

lines actually cross. In the third, the lines do not cross, but they move in opposite direc-

tions. In every case, the simple effect of B is not the same at the different levels of A. When-

ever the lines are (significantly) nonparallel, we say that we have an interaction.

A3A2A1
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Many people will argue that if you find a significant interaction, the main effects

should be ignored. It is not reasonable, however, automatically to exclude interpretation of

main effects in the presence of any significant interaction. In the Eysenck study, we had a

significant interaction, but for both younger and older participants the tasks that involved

greater processing led to greater recall. The fact that this effect was more pronounced in

the younger group does not negate the fact that it was also clearly present in the older par-

ticipants. Here it is perfectly legitimate to speak about the main effect of Condition, even

in the presence of an interaction, though you should also be quick to point out that Condi-

tion effects also depend on the Age of the participant. However, had the younger group

shown better recall with more demanding tasks whereas the older group had shown poorer

recall, then it might actually not be of interest whether the main effect of Condition was

significant or not, and we would instead concentrate on discussing only the simple effects

of difference among Conditions for the younger and older participants separately. (Interac-

tions in which group differences reverse their sign at some level of the other variable are

sometimes referred to as “disordinal” interactions. When one group is consistently above

the other group we have an “ordinal” interaction.) In general, the interpretation depends

on common sense. If the main effects are clearly meaningful, then it makes sense to inter-

pret them, whether or not an interaction is present. However, if the main effect does not

really have any meaning, then it should be ignored.

This discussion of the interaction effects has focused on examining cell means. I have

taken that approach because it is the easiest to see and has the most to say about the results

of the experiment. Rosnow and Rosenthal (1989) have pointed out that a more accurate

way to look at an interaction is to first remove any row and column effects from the data.

They raise an interesting point, but most interactions are probably better understood in

terms of the explanation above.

13.4 Simple Effects

I earlier defined a simple effect as the effect of one factor (independent variable) at one

level of the other factor—for example, the differences among Conditions for the younger

participants. The analysis of simple effects can be an important technique for analyzing

data that contain significant interactions. In a very real sense, it allows us to “tease apart”

interactions.

I will use the Eysenck data to illustrate how to calculate and interpret simple effects.

Table 13.4 shows the cell means and the summary table reproduced from Table 13.2. The

table also contains the calculations involved in obtaining all the simple effects.

The first summary table in Table 13.4c reveals significant effects due to Age, Condi-

tion, and their interaction. We already discussed these results earlier in conjunction with

the original analysis. As I said there, the presence of an interaction means that there are dif-

ferent Condition effects for the two Ages, and there are different Age effects for the five

Conditions. It thus becomes important to ask whether our general Condition effect really

applies for older as well as younger participants, and whether there really are Age differ-

ences under all Conditions. The analysis of these simple effects is found in Table 13.4b and

the second half of Table 13.4c. I have shown all possible simple effects for the sake of com-

pleteness of the example, but in general you should calculate only those effects in which

you are interested. When you test many simple effects you either raise the familywise error

rate to unacceptable levels or else you control the familywise error rate at some reasonable

level and lose power for each simple effect test. One rule of thumb is “Don’t calculate a

contrast or simple effect unless you plan to discuss it when you write up the results.” The

more effects you test, the higher the familywise error rate will be.

Section 13.4 Simple Effects 423

disordinal

interactions

ordinal

interaction



424 Chapter 13 Factorial Analysis of Variance

Table 13.4 Illustration of calculation of simple effects (data taken from Table 13.2)

(a) Cell means (n = 10)

Counting Rhyming Adjective Imagery Intention Mean

Older 7.0 6.9 11.0 13.4 12.0 10.06

Younger 6.5 7.6 14.8 17.6 19.3 13.16

Mean 6.75 7.25 12.90 15.50 15.65 11.61

(b) Calculations:

Conditions at Each Age

Age at Each Condition

(c) Summary Tables

Overall Analysis

Source df SS MS F

A (Age) 1 240.25 240.25 29.94*

C (Condition) 4 1514.94 378.735 47.19*

AC 4 190.30 47.575 5.93*

Error 90 722.30 8.026

Total 99 2667.79

* p < .05

Simple Effects

Source df SS MS F

Conditions

C at Old 4 351.52 87.88 10.95*

C at Young 4 1353.72 338.43 42.15*

Age

A at Counting 1 1.25 1.25 <1

A at Rhyming 1 2.45 2.45 <1

A at Adjective 1 72.20 72.20 9.00*

A at Imagery 1 88.20 88.20 10.99*

A at Intentional 1 266.45 266.45 33.20*

Error 90 722.30 8.03

* p < .05

  SSA at Counting = 10 3 [(7.0 2 6.75)2 1 (6.5 2 6.75)2] = 1.25

 SSA at Rhyming = 10 3 [(6.9 2 7.25)2 1 (7.6 2 7.25)2] = 2.45

 SSA at Adjective = 10 3 [(11.0 2 12.9)2 1 (14.8 2 12.9)2] = 72.2

   SSA at Imagery = 10 3 [(13.4 2 15.5)2 1 (17.6 2 15.5)2] = 88.20

SSA at Intentional = 10 3 [(12.0 2 15.65)2 1 (19.3 2 15.65)2] = 266.45

    SSC at Old = 10 3 [(7.0 2 10.06)2 1 (6.9 2 10.06)2 1 . . . 1 (12 2 10.06)2] = 351.52

SSC at Young = 10 3 [(6.5 2 13.16)2 1 (7.6 2 13.16)2 1 . . . 1 (19.3 2 13.16)2] = 1353.72



Calculation

In Table 13.4b you can see that is calculated in the same way as any sum of

squares. We simply calculate using only the data for the older participants. If we con-

sider only those data, the five Condition means are 7.0, 6.9, 11.0, 13.4, and 12.0. Thus, the

sum of squares will be

The other simple effects are calculated in the same way, by ignoring all data in which you

are not at the moment interested. Notice that the sum of squares for the simple effect of

Condition for older participants (351.52) is the same value as that we obtained in Chapter 11

when we ran a one-way analysis of variance on only the data from older participants.

The degrees of freedom for the simple effects are calculated in the same way as for the

corresponding main effects. This makes sense because the number of means we are com-

paring remains the same. Whether we use all of the participants or only some of them, we

are still comparing five conditions and have 5 2 1 5 4 df for Condition.

To test the simple effects, we generally use the error term from the overall analysis

( ). The expected mean squares are presented in Table 13.5, and they make it clear

why this is the appropriate error term. The expected mean square for each simple effect

contains only one effect other than error (e.g., ), whereas is an estimate of

error variance ( ). In fact, the only difference between what I have done in Table 13.4 and

what I would do if I ran a standard one-way analysis of variance on the Old participants’

data (which is the way I usually calculate sums of squares for simple effects when I use

computer software) is the error term. continues to be based on all the data because

it is a better estimate with more degrees of freedom.

Interpretation

From the column labeled F in the bottom table in Table 13.4c, it is evident that differences

due to Conditions occur for both ages although the sum of squares for the older participants

is only about one-quarter of what it is for the younger ones. With regard to the Age effects,

however, no differences occur on the lower-level tasks of counting and rhyming, but differ-

ences do occur on the higher-level tasks. In other words, differences between age groups

MSerror
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e

MSerrorns2
a at bj

MSerror
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Table 13.5 Expected mean squares for simple effects

Source E(MS)
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show up on only those tasks involving higher levels of processing. This is basically what

Eysenck set out to demonstrate.

In general, we seldom look at simple effects unless a significant interaction is present.

However it is not difficult to imagine data for which an analysis of simple effects would be

warranted even in the face of a nonsignificant interaction, or to imagine studies in which

the simple effects are the prime reason for conducting the experiment.

Additivity of Simple Effects

All sums of squares in the analysis of variance (other than ) represent a partitioning

of some larger sum of squares, and the simple effects are no exception. The simple effect

of Condition at each level of Age represents a partitioning of and , whereas the

effects of Age at each level of Condition represent a partitioning of and . Thus

and

A similar additive relationship holds for the degrees of freedom. The fact that the sums of

squares for simple effects sum to the combined sums of squares for the corresponding main

effect and interaction affords us a quick and simple check on our calculations.

13.5 Analysis of Variance Applied 
to the Effects of Smoking

This next example is based on a study by Spilich, June, and Renner (1992), who investi-

gated the effects of smoking on performance. They used three tasks that differed in the

level of cognitive processing that was required to perform them, with different participants

serving in each task. The first task was a Pattern recognition task in which the participants

had to locate a target on a screen. The second was a Cognitive task in which the partici-

pants were required to read a passage and then recall it at a later time. The third task was a

Driving simulation video game. In each case the dependent variable was the number of er-

rors that the participant committed. (This wasn’t really true for all tasks in the original

study, but it allows me to treat Task as an independent variable. I am not seriously distort-

ing the results that Spilich et al. obtained.)

Participants were further divided into three Smoking groups. Group AS was composed

of people who actively smoked during or just before carrying out the task. Group DS par-

ticipants were regular smokers who had not smoked for 3 hours before the task (D stands

for delay). Group NS were nonsmokers.

The data follow, but before you look at those data you should make some predictions

the kinds of effects that you might find for Task, Smoking, and about their interaction.

Pattern Recognition

NS: 9 8 12 10 7 10 9 11 8 10 8 10 8 11 10

DS: 12 7 14 4 8 11 16 17 5 6 9 6 6 7 16

AS: 8 8 9 1 9 7 16 19 1 1 22 12 18 8 10

SSA 1 SSA3C = 240.25 1 190.30 = 430.55

aSSA at C = 1.25 1 2.45 1 72.20 1 88.20 1 266.45 = 430.55

SSC 1 SSA3C = 1514.94 1 190.30 = 1705.24

aSSC at A = 351.52 1 1353.72 = 1705.24

SSA3CSSA

SSA3CSSC

SStotal
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Cognitive Task

NS: 27 34 19 20 56 35 23 37 4 30 4 42 34 19 49

DS: 48 29 34 6 18 63 9 54 28 71 60 54 51 25 49

AS: 34 65 55 33 42 54 21 44 61 38 75 61 51 32 47

Driving Simulation

NS: 15 2 2 14 5 0 16 14 9 17 15 9 3 15 13

DS: 7 0 6 0 12 17 1 11 4 4 3 5 16 5 11

AS: 3 2 0 0 6 2 0 6 4 1 0 0 6 2 3

I will omit hand calculations here on the assumption that you can carry them out your-

self, and in fact it would be good practice to do so. In Exhibit 13.1 you will find the analy-

sis of these data using SPSS.
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(a) Summary table

Tests of Between-Subjects Effects

Dependent Variable: DV

Source Type III Sum of Squares df Mean Square F Sig.

Corrected Model 31744.726a 8 3968.091 36.798 .000

Intercept 45009.074 1 45009.074 417.389 .000

Task 28661.526 2 14330.763 132.895 .000

SmokCond 354.548 2 177.274 1.644 .197

Task * SmokCond 2728.652 4 682.163 6.326 .000

Error 13587.200 126 107.835

Total 90341.000 135

Corrected Total 45331.926 134

aR Squared 5 .700 (Adjusted R Squared 5 .681)

(b) Interaction plot

Exhibit 13.1 Analysis of Spilich et al. data



A SPSS summary table for a factorial design differs somewhat from others you have

seen in that it contains additional information. The line labeled “Corrected model” is the

sum of the main effects and the interaction. As such its sum of squares is what we earlier

called SS
cells

. The line labeled “Intercept” is a test on the grand mean, here showing that the

grand mean is significantly different from 0.00, which is hardly a surprise. Near the bottom

the line labeled “Corrected total” is what we normally label “Total,” and the line that they

label “Total” is These extra lines rarely add anything of interest.

The summary table reveals that there are significant effects due to Task and to the in-

teraction of Task and SmokeGrp, but there is no significant effect due to the SmokeGrp

variable. The Task effect is of no interest, because it simply says that people make more er-

rors on some kinds of tasks than others. This is like saying that your basketball team scored

more points in yesterday’s game than did your soccer team. You can see the effects graphi-

cally in the interaction plot, which is self-explanatory.

13.6 Multiple Comparisons

All of the multiple-comparison procedures discussed in Chapter 12 are applicable to the

analysis of factorial designs. Thus we can test the differences among the five Condition

means in the Eysenck example, or the three SmokeGrp means in the Spilich example using

the Bonferroni t test, the Tukey test, Ryan’s REGWQ, or any other procedure. Keep in

mind, however, that we must interpret the “n” that appears in the formulae in Chapter 12 to

be the number of observations on which each treatment mean was based. Since the Condi-

tion means are based on (a 3 n) observations, that is the value that you would enter into

the formula, not n.

In the Spilich smoking example, there is no significant effect due to SmokeGrp, so you

would probably not wish to run contrasts among the three levels of that variable. Because

the dependent variable (errors) is not directly comparable across groups, it makes no sense

to look for specific group differences there. We could do so, but no one would be likely to

care. (Remember the basketball and soccer teams referred to above.) However, the interac-

tion suggests that you might wish to run multiple comparisons on simple effects. In partic-

ular, you might wish to examine the effect of smoking on cognitive tasks. You could run

these tests by restricting yourself just to the data from the Cognitive task. However, I would

suggest making these contrasts using from the overall analysis, assuming that you

have no reason to think that you have heterogeneity of variance. If you run your analysis

using standard computer software, you will have to recalculate your effects by substituting

from the main summary table.

The analysis of SmokeGrp differences on the Cognitive task gives a frequent, but un-

welcome, result. Whether you use standard contrasts, Ryan’s procedure, or Tukey’s proce-

dure, you will find that the Nonsmoking group performs significantly better than the Active

group, but not significantly better than the Delayed group. The Delayed group is also not

significantly different from the Active group. Representing this graphically, we have

Nonsmoking Delayed Active

with the groups that did not differ significantly underlined.

If you just came from your class in Logic 132, you know that it does not make sense to

say A 5 B, B 5 C, but But, don’t confuse Logic, which is in some sense exact, with

Statistics, which is probabilistic. Don’t forget that a failure to reject does not mean that

the means are equal. It just means that they are not sufficiently different for us to know which

H0

A Z C.

MSerror

MSerror

(gX2>N).
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one is larger. Here we don’t have enough evidence to conclude that Delayed is different

from Nonsmoking, but we do have enough evidence (i.e., power) to conclude that there is a

significant difference between Active and Nonsmoking. This kind of result occurs fre-

quently with multiple-comparison procedures, and we just have to learn to live with a bit

of uncertainty.

13.7 Power Analysis for Factorial Experiments

Calculating power for fixed-variable factorial designs is basically the same as it was for

one-way designs. In the one-way design we defined 

and

where , k 5 the number of treatments, and n 5 the number of observa-

tions in each treatment. In the two-way and higher-order designs, we have more than one “treat-

ment,” but this does not alter the procedure in any important way. If we let , and

, where represents the parametric mean of Treatment (across all levels of

B) and represents the parametric mean of Treatment (across all levels of A), then we

can define the following terms:

and

Examination of these formulae reveals that to calculate the power against a null hypothesis

concerning A, we act as if variable B did not exist. To calculate the power of the test against

a null hypothesis concerning B, we similarly act as if variable A did not exist.

Calculating the power against the null hypothesis concerning the interaction follows

the same logic. We define

where is defined as for the underlying structural model ( ).

Given we can simply obtain the power of the test just as we did for the one-way 

design.

Calculating power for the random model is more complicated, and for the mixed model

requires a set of rather unrealistic assumptions. To learn how to obtain estimates of power

with these models, see Winer (1971, p. 334).

In certain situations a two-way factorial is more powerful than are two separate one-

way designs, in addition to the other advantages that accrue to factorial designs. Consider

two hypothetical studies, where the number of participants per treatment is held constant

across both designs.
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In Experiment 1 an investigator wishes to examine the efficacy of four different treat-

ments for post-traumatic stress disorder (PTSD) in rape victims. She has chosen to use both

male and female therapists. Our experimenter is faced with two choices. She can run a one-

way analysis on the four treatments, ignoring the sex of the therapist (SexTher) variable

entirely, or she can run a 4 3 2 factorial analysis on the four treatments and two sexes. In

this case the two-way has more power than the one-way. In the one-way design we would

ignore any differences due to SexTher and the interaction of Treatment with SexTher, and

these would go toward increasing the error term. In the two-way we would take into ac-

count differences that can be attributed to SexTher and to the interaction between Treat-

ment and SexTher, thus removing them from the error term. The error term for the two-way

would thus be smaller than for the one-way, giving us greater power.

For Experiment 2, consider the experimenter who had originally planned to use only

female therapists in her experiment. Her error term would not be inflated by differences

among SexTher and by the interaction, because neither of those exist. If she now expanded
her study to include male therapists, would increase to account for additional effects

due to the new independent variable, but the error term would remain constant because the

extra variation would be accounted for by the extra terms. Since the error term would re-

main constant, she would have no increase in power in this situation over the power she

would have had in her original study, except for an increase in n.

As a general rule, a factorial design is more powerful than a one-way design only when

the extra factors can be thought of as refining or purifying the error term. In other words,

when extra factors or variables account for variance that would normally be incorporated

into the error term, the factorial design is more powerful. Otherwise, all other things being

equal, it is not, although it still possesses the advantage of allowing you to examine the in-

teractions and simple effects.

You need to be careful about one thing, however. When you add a factor that is a ran-

dom factor (e.g., Classroom) you may well actually decrease the power of your test. As you

will see in a moment, in models with random factors the fixed factor, which may well be

the one in which you are most interested, will probably have to be tested using 

as the error term instead of . This is likely to cost you a considerable amount of

power. And you can’t just pretend that the Classroom factor didn’t exist, because then you

will run into problems with the independence of errors. For a discussion of this issue, see

Judd, McClelland, and Culhane (1995).

There is one additional consideration in terms of power that we need to discuss.

McClelland and Judd (1993) have shown that power can be increased substantially using

what they call “optimal” designs. These are designs in which sample sizes are apportioned

to the cells unequally to maximize power. McClelland has argued that we often use more

levels of the independent variables than we need, and we frequently assign equal numbers

of participants to each cell when in fact we would be better off with fewer (or no) participants

in some cells (especially the central levels of ordinal independent variables). For example,

imagine two independent variables that can take on up to five levels, denoted as

for Factor A, and for Factor B. McClelland and

Judd (1993) show that a 5 3 5 design using all five levels of each variable is only 25% as effi-

cient as a design using only , and . A 3 3 3 design using ,

and is 44% as efficient. I recommend a close reading of their paper.

13.8 Expected Mean Squares and Alternative Designs

For traditional experimental research in psychology, fixed models with crossed inde-

pendent variables have long been the dominant approach and will most likely continue

to be. In such designs the experimenter chooses a few fixed levels of each independent

B1, B3, and B5

A1, A3, and A5B1 and B5A1 and A5

B1, B2, B3, B4, and B5A1, A2, A3, A4, and A5
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MSinteraction
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variable, which are the levels that are of primary interest and would be the same levels

he or she would expect to use in a replication. In a factorial design each level of each

independent variable is paired (crossed) with each level of all other independent

variables.

However, there are many situations in psychology and education where this traditional

design is not appropriate, just as there are a few cases in traditional experimental work. In

many situations the levels of one or more independent variables are sampled at random

(e.g., we might sample 10 classrooms in a given school and treat Classroom as a factor),

giving us a random factor. In other situations one independent variable is nested within

another independent variable. An example of the latter is when we sample 10 classrooms

from school district A and another 10 classrooms from school district B. In this situation

the District A classrooms will not be found in District B and vice versa, and we call this a

nested design. Random factors and nested designs often go together, which is why they

are discussed together here, though they do not have to.

When we have random and/or nested designs, the usual analyses of variance that we

have been discussing are not appropriate without some modification. The primary problem

is that the error terms that we usually think of are not correct for one or more of the Fs that

we want to compute. In this section I will work through four possible designs, starting with

the traditional fixed model with crossed factors and ending with a random model with

nested factors. I certainly can not cover all aspects of all possible designs, but the general-

ization from what I discuss to other designs should be reasonably apparent. I am doing this

for two different reasons. In the first place, modified traditional analyses of variance, as de-

scribed below, are quite appropriate in many of these situations. In addition, there has been

a general trend toward incorporating what are called hierarchical models or mixed models

in our analyses, and an understanding of those models hinges crucially on the concepts dis-

cussed here.

In each of the following sections, I will work with the same set of data but with different

assumptions about how those data were collected, and with different names for the inde-

pendent variables. The data that I will use are the same data that we saw in Table 13.2 on

Eysenck’s study of age and recall under conditions of varying levels of processing of the

material.

One important thing to keep firmly in mind is that virtually all statistical tests operate

within the idea of the results of an infinite number of replications of the experiment. Thus

the Fs that we have for the two main effects and the interaction address the question of “If

the null hypothesis were true and we replicated this experiment 10,000 times, how often

would we obtain an F statistic as extreme as the one we obtained in this specific study?” If

that probability is small, we reject the null hypothesis. There is nothing new there. But we

need to think for a moment about what would produce different F values in our 10,000

replications of the same basic study. Given the design that Eysenck used, every time we re-

peated the study we would use one group of older subjects and one group of younger sub-

jects. There is no variability in that independent variable. Similarly, every time we repeat

the study we will have the same five recall conditions (Counting, Rhyming, Adjective, Im-

agery, Intention). So again there is no variability in that independent variable. This is why

we refer to this experiment as a fixed effect design—the levels of the independent variable

are fixed and will be the same from one replication to another. The only reason why we

would obtain different F values from one replication to another is sampling error, which

comes from the fact that each replication uses different subjects. (You will shortly see that

this conclusion does not apply with random factors.)

To review the basic structural model behind the analyses that we have been running up

to now, recall that the model was

Xijk = m 1 ai 1 bj 1 abij 1 eijk
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Over replications the only variability comes from the last term (eijk), which explains

why can be used as the denominator for all three F tests. That will be important as

we go on.

A Crossed Experimental Design with Fixed Variables

The original example is what we will class as a crossed experimental design with fixed

factors. In a crossed design each level of one independent variable (factor) is paired with

each level of any other independent variable. For example, both older and younger partici-

pants are tested under each of the five recall conditions. In addition, the levels of the fac-

tors are fixed because these are the levels that we actually want to study—they are not, for

example, a random sample of ages or of possible methods of processing information.

Simply as a frame of reference, the results of the analysis of this study are shown in

Table 13.6. We see that was used as the test term for each effect, that it was based

on 90 df, and that each effect is significant at p , .05.

A Crossed Experimental Design with a Random Variable

Now we will move from the study we just analyzed to one in which one of the factors is ran-

dom but crossed with the other factor. I will take an example based on one used by Judd and

McClelland (1989). Suppose that we want to test whether subjects are quicker to identify

capital letters than they are lower case letters. We will refer to this variable as “Case.” Case

here is a fixed factor. We want to use several different letters, so we randomly sample five of

them (e.g., A, G, D, K, W ) and present them as either upper or lower case. Here Letter is

crossed with Case (i.e., each letter appears in each case), so we have a crossed design, but

we have randomly sampled Letters, giving us a random factor. Each subject will see only

one letter and the dependent variable will be the response time to identify that letter.

In this example Case takes the place of Age in Eysenck’s study and Letter takes the

place of Condition. If you think about many replications of this experiment, you would ex-

pect to use the same levels of Case (there are only two cases after all), but you would prob-

ably think of taking a different random sample of Letters for each experiment. This means

that the F values that we calculate will vary not only on the basis of sampling error, but also

as a result of the letters that we happened to sample. What this means is that any interac-

tion between Case and Letter will show up in the expected mean squares for the fixed ef-

fect (Case). This will affect the expected mean squares for the effect of Case, and we need

to take that into account when we form our F ratios. (Maxwell & Delaney, 2004, p. 475 do

an excellent job of illustrating this phenomenon.)

To see the effect of random factors we need to consider expected mean squares, which

we discussed only briefly in Section 11.4. Expected mean squares tell us what is being

MSerror

MSerror
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Table 13.6 Analysis of variance of Eysenck’s basic fixed variable design

Source df SS MS F

A (Age) 1 240.25 240.250 29.94*

C (Condition) 4 1514.94 378.735 47.19*

AC 4 190.30 47.575 5.93*

Error 90 722.30 8.026

Total 99 2667.79

* p , .05

crossed

experimental

design

expected mean

squares



estimated by the numerator and denominator in an F statistic. Rather than providing a deri-

vation of expected mean squares, as I have in the past (See Howell, 2007 for that develop-

ment), I will simply present a table showing the expected mean squares for fixed, random,

and mixed models. Here a random model is one in which both factors are random, and is

not often found in the behavioral sciences. A mixed model is one with both a random and a

fixed factor, as we are dealing with here, and they are much more common. (I present the

expected mean squares of completely random models only to be complete.) Notice that for

fixed factors the “variance” for that term is shown as rather than as . The reason for

this is that the term is formed by dividing the sum of squared deviations by the degrees of

freedom. For example,

But since we are treating the levels of the factor that we actually used as the entire popula-

tion of that factor in which we are interested, it is not actually a variance because, as the

parameter, it would have to be divided by the number of levels of A, not the df for A. This

is not going to make any difference in what you do, but the distinction needs to be made

for accuracy. The variance terms for the random factors are represented as . Thus the

variance of Letter means is and the error variance, which is the variance due to subjects,

which is always considered a random term, is .

If you look at the column for a completely fixed model you will see that the expected

mean squares for the main effects and interaction contain a component due to error and a

single component reflecting differences among the means for the main effect or interaction.

The error term, on the other hand, contains only an error component. So if you form a ratio

of the mean squares for A, B, or AB divided by MS
error

the only reason that the expected

value of F will depart much from 1 will be if there is an effect for the term in question. (We

saw something like this when we first developed the F statistic in Section 11.4.) This means

that for all factors in fixed models MS
error

is the appropriate error term.

Look now at the column representing the mixed model, which is the one that applies to

our current example. Leaving aside the test on our fixed effect (A) for a moment, we will

focus on the other two effects. If we form the ratio

that ratio will be significantly different from 1 only if the component for the B effect ( )

is nonzero. Thus MS
error

is an appropriate denominator for the F test on B. In this case we

can divide MS
Letter

by MS
error

and have a legitimate test.

nbs2
b

E(F ) = Ea MSB

MSerror

b =
s2

e 1 nbs2
b

s2
e

s2
e

s2
b

s2

u2
a =

aa2
j

a 2 1

s2u2

Section 13.8 Expected Mean Squares and Alternative Designs 433

Table 13.7 Expected mean squares for fixed, random, and mixed models

Fixed Random Mixed

A fixed A random A fixed

Source B fixed B random B random

A
B
AB

Error
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The same kind of argument holds for our test on the interaction, because

and the result will be significant only if the interaction component is significant.1

But now look at the test on A, the fixed effect. If we form our usual F ratio

we no longer have a legitimate test on A. The ratio could be large if either the interaction is

significant or the effect of A is significant, and we can’t tell which is causing a result. This

creates a problem, and the only way we can form a legitimate F for A is to divide MSA by

MSAB, giving us

I know from experience that people are going to tell me that I made an error here be-

cause I have altered the test on the fixed effect rather than on the random effect, which is

the effect that is causing all of the problems. I wish I were wrong, but I’m not. Having a

random effect alters the test for the fixed effect. For a very nice explanation of why this

happens I strongly recommend looking at Maxwell and Delaney (2004, p. 475).

For our example we can create our F tests as

The results of this analysis are presented in Table 13.8.

FL3C =
MSL3C

MSerror

=
47.575

8.026
= 5.93

FLetter =
MSLetter

MSerror

=
378.735

8.026
= 47.19

FCase =
MSCase

MSC3L

=
240.25

47.575
= 5.05

E(F ) =
MSA

MSAB
= Ea

s2
e 1 ns2

ab 1 nbs2
a

s2
e 1 ns2

ab

b

E(F ) = Ea
s2

e 1 ns2
ab 1 nbs2

a

s2
e

b

E(F ) = Ea MSAB

MSerror

b =
s2

e 1 ns2
ab

s2
e
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1 If an interaction is the product of both a fixed and a random factor, the interaction is treated as random.
2 These results differ from those produced by some software packages, which treat the mixed model as a random
model when it comes to the denominator for F. But they are consistent with the expected mean squares given
above and with the results obtained by other texts. You can reproduce these results in SPSS by using the following
syntax: 
Manova dv by Case(1,2) Letter(1,5)

/design 5 Case vs 1
Case by Letter 5 1 vs within
Letter vs within.

Table 13.8 Analysis of variance with one fixed and

one random variable2

Source df SS MS F

Case 1 240.25 240.250 5.05*

Letter 4 1514.94 378.735 47.19*

C3L 4 190.30 47.575 5.93*

Error 90 722.30 8.026

Total 99 2667.79

*p , .05



Nested Designs

Now let’s modify our basic study again while retaining the same values of the dependent

variable so that we can compare results. Suppose that your clinical psychology program is

genuinely interested in whether female students are better therapists than male students. To

run the study the department will randomly sample 10 graduate students, split them into

two groups based on Gender, and have each of them work with 10 clients and produce a

measure of treatment effectiveness. In this case Gender is certainly a fixed variable because

every replication would involve Male and Female therapists. However, Therapist is best

studied as a random factor because therapists were sampled at random and we would want

to generalize to male and female therapists in general, not just to the particular therapists

we studied. Therapist is also a nested factor because you can’t cross Gender with Therapist—

Mary will never serve as a male therapist and Bob will never serve as a female therapist.

Over many replications of the study the variability in F will depend on random error

(MS
error

) and also on the therapists who happen to be used. This variability must be taken

into account when we compute our F statistics.3

The study as I have described it looks like our original example, but it really is not. In this

study therapists are nested within gender. (Remember that in the first example each Condi-

tion (adjective, etc.) was paired with each Age, but that is not the case here.) The fact that we

have a nested design is going to turn out to be very important in how we analyze the data. For

one thing we cannot compute an interaction. We obviously cannot ask if the differences

between Barbara, Lynda, Stephanie, Susan, and Joan look different when they are males than

when they are females. There are going to be differences among the five females, and there

are going to be differences among the five males, but this will not represent an interaction.

In running this analysis we can still compute a difference due to Gender, and for these

data this will be the same as the effect of Case is the previous example. However, when we

come to Therapist we can only compute differences due to therapists within females, and

differences due to therapist within males. These are really just the simple effects of Therapist

at each Gender. We will denote this as “Therapist within Gender” and write it as Thera-

pist(Gender). As I noted earlier, we cannot compute an interaction term for this design, so

that will not appear in the summary table. Finally we are still going to have the same source

of random error as in our previous example, which, in this case, is a measure of variability

of client scores within each of the Gender/Therapist cells.

For a nested design our model will be written as

Notice that this model has a term for the grand mean a term for differences between

genders and a term for differences among therapists, but with subscripts indicating

that Therapist was nested within Gender There is no interaction because none can

be computed, and there is a traditional error term (eijk).

Calculation for Nested Designs

The calculations for nested designs are straightforward, though they differ a bit from what

you are used to seeing. We calculate the sum of squares for Gender the same way we

always would—sum the squared deviations for each gender and multiply by the number of

observations for each gender. For the nested effect we simply calculate the simple effect of

therapist for each gender and then sum the simple effects. For the error term we just calculate

the sum of squares error for each Therapist/Gender cell and sum those. The calculations

are shown in the Table 13.9. However before we can calculate the F values for this design

(bj(i)).

(ai),

(m),

Xijk = m 1 ai 1 bj(i) 1 eijk
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3 It is possible to design a study in which a nested variable is a fixed variable, but that rarely happens in the
behavioral sciences and I will not discuss that design except to show the expected mean squares in a table.



we need to look at the expected mean squares when we have a random variable that is

nested within a fixed variable. These expected mean squares are shown in Table 13.10,

where I have broken them down by fixed and random models, even though I am only dis-

cussing a nested design with one random factor here. I don’t usually include syntax for

SPSS and SAS, but nested designs cannot be run directly from menus in SPSS, so I am in-

cluding the syntax for the analysis of these data.

SPSS Code

UNIANOVA

dv BY Gender Therapist

/RANDOM 5 Therapist

/METHOD 5 SSTYPE(3)

/INTERCEPT 5 INCLUDE

/CRITERIA 5 ALPHA(.05)

/DESIGN 5 Gender Therapist(Gender).

SAS Code

data GenderTherapist;

infile C:\Documents and Settings\David Howell\

My Documents\Methods7\Chapters\Chapter13\GenderTherapist.dat ;

input Gender Therapist dv;

Proc GLM data 5 GenderTherapist;

Class Gender Therapist;

Model dv 5 Gender Therapist(Gender);

Random Therapist Therapist(Gender);

Test H 5 Gender E 5 Therapist(Gender);

run;

¿

¿
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Table 13.9 Nested design with a random effect

SSerror = SStotal 2 SSG 2 SST(G) = 2667.79 2 240.25 2 1705.24 = 722.30

SSTherapist(Gender) = SSTherapist(Male) 1 SSTherapist(Female) = 351.52 1 1353.72 = 1705.24

= 10(135.372) = 1353.72

= 10[(6.5 2 13.16)2 1 (7.6 2 13.16)2 1 . . . 1 (19.3 2 13.16)2]

SST(Female) = na AX.j 2 X..B2
= 10(35.152) = 351.52

= 10[(7.0 2 10.06)2 1 (6.9 2 10.06)2 1 . . . 1 (12.0 2 10.06)2]

SST(Male) = na AX.j 2 X..B2
= 240.25

= 5 3 4[(10.06 2 11.61)2 1 (13.16 2 11.61)2]

SSG = nca AXi. 2 X..B2
= 550.775

= (9 2 11.61)2 1 (8 2 11.61)2 1 . . . 1 (21 2 11.61)2

SStotal = a AX 2 XB2



Notice in Table 13.10 that when we have a nested design with a random variable nested

within a fixed variable our F statistic is going to be computed differently. We can test the

effect of Therapist(Gender) by dividing MS
T(G)

by MS
error

, but when we want to test Gender

we must divide MS
G

by MS
T(G)

. The resulting Fs are shown in Table 13.11, where I have

labeled the error terms to indicate how the Fs were constructed.

Notice that the Gender effect has the same sum of squares that it had in the original

study, but the F is quite different because Therapist(Gender) served as the error term and

there was considerable variability among therapists. Notice also that SS
Therapist(Gender)

is

equal to the sum of SS
Condition

and SS
Age 3 Condition

in the first example, although I prefer to

think of it as the sum of the two simple effects.)

Having a random factor such as Therapist often creates a problem. We really set out to

study Gender differences, and that is what we most care about. We don’t really care much

about therapist differences because we know that they will be there. But the fact that Ther-

apist is a random effect, which it should be, dramatically altered our test on Gender. The F
went from nearly 30 to nearly 1.0. This is a clear case where the design of the study has a

dramatic effect on power, even with the same values for the data. Maxwell and Delaney

(2004) make the point that in designs with random factors, power depends on both the

number of subjects (here, clients) and the number of levels of the random variable (here,

therapists). Generally the number of levels of the random variable is far more important.

Summary

I have presented three experimental designs. The crossed design with fixed factors is the

workhorse for most traditional experimental studies. The nested design with a random fac-

tor is an important design in much research in education and more applied areas of psy-

chology. The crossed design with a random factor occurs occasionally but is not as

common. In general when you have crossed effects they are most often fixed, and when

you have nested effects the nested factor is most often random. This helps to explain why
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Table 13.10 Expected mean squares for nested designs

Fixed Random Mixed

A fixed A random A fixed

Source B fixed B random B random

A

B(A)

Error

s2
e 1 ns2

ab 1 nbu2
a

s2
e 1 ns2

b

s2
e

s2
e 1 ns2

b 1 nbs2
a

s2
e 1 ns2

b

s2
e

s2
e 1 nbu2

a

s2
e 1 nau2

b

s2
e

Table 13.11 Tests for a nested design with a random nested factor

Source df SS MS F

Gender 1 240.25 240.250 1.127

Error
1

8 1705.24 213.155

Therapist(Gender) 8 1705.24 213.155 26.56*

Error
2

90 722.300 8.026

Total 99 2667.79

* p , .05



when you go to other sources to look up nested (or random) designs you will often find the

two discussed together. A final point to keep in mind is that in all of the between-subjects

designs in this book subjects are nested within other factors and are considered to be a ran-

dom factor. All of our F statistics are computed taking that into account.

13.9 Measures of Association and Effect Size

We can look at the magnitude of an effect in two different ways, just as we did with the

one-way analysis. We can either calculate an r-family measure, such as , or we can cal-

culate a d-family measure such as d. Normally when we are examining an omnibus F, we

use an r-family measure. However, when we are looking at a contrast between means it is

usually more meaningful to calculate an effect size estimate (d ). We have seen both types

of measures in previous chapters.

r-Family Measures

As with the one-way design, it is possible to calculate the magnitude of effect associated

with each independent variable. The easiest, but also the most biased, way to do this is to

calculate . Here we would simply take the relevant sum of squares and divide by . Thus,

the magnitude of effect for variable A is 5 and for variable B is 

5 , whereas the magnitude of effect for the interaction is 5 .

There are two difficulties with the measure that we have just computed. In the first

place is a biased estimate of the true magnitude of effect in the population. To put this

somewhat differently, is a very good descriptive statistic, but a poor inferential statistic.

Second, , as we calculated it here, may not measure what we want to measure. We will

speak about that shortly when we discuss partial .

Although is also biased, the bias is much less than for . In addition, the statistical

theory underlying allows us to differentiate between fixed, random, and mixed models

and to act accordingly.

To develop for two-way and higher-order designs, we begin with the set of expected

mean squares given in Table 13.8, derive estimates of , and then form

ratios of each of these components relative to the total variance. Rather than derive the for-

mulae for calculating for the three different models, as I have done in previous editions

of this book, I will present the results in a simple table. I strongly suspect that no student

remembered the derivation five minutes after he or she read it, and that many students were

so numb by the end of the derivation that they missed the final result.

For a factorial analysis of variance the basic formula to estimate remains the same

whether we are looking at fixed or random variables. The only difference is in how we cal-

culate the components of that formula. We will start by letting refer to the estimate

of the variance of the independent variable we care about at the moment, such as A, B, or

AB, and by letting refer to the sum of all sources of variance. (If an effect is fixed,

replace by ) Then if we know the value of these terms we can estimate as

For the main effect of A, for example, this becomes

All we have to know is how to calculate the variance components (s2
effect).

v2
a =

sN 2
a

sN 2
total

=
sN 2

a

sN 2
a 1 sN 2

b 1 sN 2
ab 1 sN 2

e

vN 2
effect =

sN 2
effect

sN 2
total

v2
effectu2.s2

sN 2
total

sN 2
effect

v2

v2

s2
a, s2

b, s2
ab, and s2

e

v2

v2
h2v2

h2
h2

h2
h2

SSAB>SStotalhab
2SSB>SStotalhb

2

SSA>SStotalha
2

SStotalh2

h2
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Table 13.12 contains the variance components for fixed and random variables for two-

way factorial designs, where the subscripts in the leftmost column stand for fixed ( f ) or

random (r) variables.4 You simply calculate each of these terms as given, and then form the

appropriate ratio. This procedure is illustrated using the summary table from the design in

Table 13.8, where subjects were asked to identify an upper or lower case letter and the Let-

ters used were random.5

If we let represent the fixed effect of Case and b represent the random effect of Let-

ter, then we have (using the formulae in Table 13.9)

sN 2
b = (MSB 2 MSerror)>na

= (378.735 2 8.026)>10 3 5 = 7.414

sN 2
a = (a 2 1)(MSA 2 MSAB)>nab

= (2 2 1)(240.25 2 47.575)>(10 3 2 3 5) = 1.927

a
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4 If you need such a table for higher-order designs, you can find one at www.uvm.edu/~dhowell/StatPages/More_
Stuff/Effect_size_components.html. 
5 Some authors do as I do and use for effects of both random and fixed factors. Others use to refer to effects
of fixed factors and (the squared intraclass correlation coefficient) to refer to effects of random factors. r2

v2v2

Table 13.12 Estimates of variance components in two-way

factorial designs

Model Variance Component

Af Bf

Af Br

ArBr

The summary table for Eysenck’s study is reproduced below for
convenience.

Source df SS MS F

C (Case) 1 240.25 240.250 29.94*

L (Letter) 4 1514.94 378.735 47.19*

CL 4 190.30 47.575 5.93*

Error 90 722.30 8.026

Total 99 2667.79

*p , .05

s2
e = MSe

s2
ab = (MSAB 2 MSe)>n
s2

b = (MSB 2 MSAB)>na

s2
a = (MSA 2 MSAB)>nb

s2
e = MSe

uN 2
ab = (a 2 1)(MSAB 2 MSe)>na

s2
b = (MSB 2 MSe)>na

Nu2
a = (a 2 1)(MSA 2 MSAB)>nab

s2
e = MSe

Nuab
2 = (a 2 1)(b 2 1)(MSAB 2 MSe)>nab

Nub
2 = (b 2 1)(MSB 2 MSe)>nab

Nua
2 = (a 2 1)(MSA 2 MSe)>nab



Thus

We can now estimate for each effect:

Partial Effects

Both and represent the size of an effect (SS
effect

) relative to the total variability in

the experiment (SS
total

). Often it makes more sense just to consider one factor separately

from the others. For example, in the Spilich et al. (1992) study of the effects of smok-

ing under different kinds of tasks, the task differences were huge and of limited interest

in themselves. If we want a measure of the effect of smoking, we probably don’t want

to dilute that measure with irrelevant variance. Thus we might want to estimate the

effect of smoking relative to a total variability based only on smoking and error. This

can be written

We then simply calculate the necessary terms and divide. For example, in the case of the

partial effect of the smoking by task interaction, treating both variables as fixed, we

would have

This is a reasonable sized effect.

d-Family Measures

The r-family measures ( and ) make some sense when we are speaking about an om-

nibus F test involving several levels of one of the independent variables, but when we are

looking closely at differences among individual groups or sets of groups, the d-family of

measures often is more useful and interpretable. Effect sizes (d) are a bit more complicated

v2h2

v2
ST(partial) =

NsST

sNST 1 sNerror

=
38.26

38.26 1 108
= 0.26

sN  e = MSerror = 108

= (3 2 1)(3 2 1)(682 2 108)>(15)(3)(3) =
5166

135
= 38.26

sN2
SxT = (s 2 1)(t 2 1)(MSST 2 MSe)>nst

partial v2 =
sN 2

effect

sN 2
effect 1 sN 2

e

v2h2

NvCase3Letter
2 =

Nsab
2

sN total
2

=
1.977

19.344
= 0.10

NvLetter
2 =

Nsb
2

sN total
2

=
7.414

19.344
= 0.38

NvCase
2 =

Nsa
2

sN total
2

=
1.927

19.344
= 0.10

v2

sN 2
total = sN 2

a 1 sN 2
b 1 sN 2

ab 1 sN 2
e

= 1.927 1 7.414 1 1.977 1 8.026 = 19.344

sN 2
e = MSerror = 8.026

sN 2
ab = (a 2 1)(MSAB 2 MSerror)>na

= (2 2 1)(47.575 2 8.026)>(10 3 2) = 1.977
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when it comes to factorial experiments, primarily because you have to decide what to con-

sider “error.” They also become more complicated when we have unequal sample sizes

(called an “unbalanced design”). In this chapter we will deal only with estimation with

balanced, or nearly balanced, designs. The reader is referred to Kline (2004) for a more

thorough discussion of these issues.

As was the case with t tests and the one-way analysis of variance, we will define our

effect size as

where the “hats” indicate that we are using estimates based on sample data. There is no real

difficulty in estimating because it is just a linear contrast. You will see an example in a

minute in case you have forgotten what that is, but it is really just a difference between

means of two groups or sets of groups. On the other hand, our estimate of the appropriate

standard deviation will depend on our variables. Some variables normally vary in the pop-

ulation (e.g., amount of caffeine a person drinks in a day) and are, at least potentially, what

Glass, McGraw, and Smith (1981) call a “variable of theoretical interest.” Gender, extra-

version, metabolic rate, and hours of sleep are other examples. On the other hand, many

experimental variables, such as the number of presentations of a stimulus, area of cranial

stimulation, size of a test stimulus, and presence or absence of a cue during recall do not

normally vary in the population, and are of less theoretical interest. I am very aware that

the distinction is a slippery one, and if a manipulated variable is not of theoretical interest,

why are we manipulating it?

It might make more sense if we look at the problem slightly differently. Suppose that I

ran a study to investigate differences among three kinds of psychotherapy. If I just ran that

as a one-way design, my error term would include variability due to all sorts of things, one

of which would be variability between men and women in how they respond to different

kinds of therapy. Now suppose that I ran the same study but included gender as an inde-

pendent variable. In effect I am controlling for gender, and MS
error

would not include gen-

der differences because I have “pulled them out” in my analysis. So MS
error 

would be

smaller here than in the one-way. That’s a good thing in terms of power, but it may not be a

good thing if I use the square root of MS
error

in calculating the effect size. If I did, I would

have a different sized effect due to psychotherapy in the one-way experiment than I have in

the factorial experiment. That doesn’t seem right. The effect of therapy ought to be pretty

much the same in the two cases. So what I will do instead is to put that gender variability,

and the interaction of gender with therapy, back into error when it comes to computing an

effect size.

But suppose that I ran a slightly different study where I examined the same three

different therapies, but also included, as a second independent variable, whether or not

the patient sat in a tub of cold water during therapy. Now patients don’t normally sit in

a cold tub of water, but it would certainly be likely to add variability to the results. That

variability would not be there in the one-way design because we can’t imagine some

patients bringing in a tub of water and sitting in it. And it is variability that I wouldn’t

want to add back into the error term, because it is in some way artificial. The point is

that I would like the effect size for types of therapy to be the same whether I used a one-

way or a factorial design. To accomplish that I would add effects due to Gender and the

Gender X Therapy interaction back into the error term in the first study, and withhold

the effects of Water and its interaction with Therapy in the second example. What fol-

lows is an attempt to do that. The interested reader is referred to Glass et al. (1981) for

further discussion.

c

dN =
°N

sN
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We will return to working with the example from Eysenck’s (1974) study. The means

and the analysis of variance summary table are presented below for easy reference.

Counting Rhyming Adjective Imagery Intention Mean

Older 7.0 6.9 11.0 13.4 12.0 10.06

Younger 6.5 7.6 14.8 17.6 19.3 13.16

Mean 6.75 7.25 12.90 15.50 15.65 11.61

Source df SS MS F

A (Age) 1 240.25 240.25 29.94*

C(Condition) 4 1514.94 378.735 47.19*

AC 4 190.30 47.575 5.93*

Error 90 722.30 8.026

Total 99 2667.79

* p , .05

One of the questions that would interest me is the contrast between the two lower lev-

els of processing (Counting and Rhyming) and the two higher levels (Adjective and

Imagery). I don’t have any particular thoughts about the Intentional group, so we will

ignore that. My coefficients for a standard linear contrast, then, are

Counting Rhyming Adjective Imagery Intention

−
1⁄2 −

1⁄2 1⁄2 1⁄2 0

The test on this contrast is

This t is clearly significant, showing that higher levels of processing lead to greater lev-

els of recall. But I want an effect size for this difference.

I am looking for an effect size on a difference between two sets of conditions, but

I need to consider the error term. Age is a normal variable in our world, and it leads to

variability in people’s responses. (If I had just designed this experiment as a one-way on

Conditions, and ignored the age of my participants, that age variability would have been a

normal part of MS
error

). I need to have any Age effects contributing to error when it comes

to calculating an effect size. So I will add SS
age

and SSA3C back into the error.

Having computed our error term for this effect, we find

d
N
=

°N

sN
=

7.20

3.48
= 2.07

= B1152.85

95
= 212.135 = 3.48

Serror = BSSerror 1 SSAge 1 SSA3C

dferror 1 dfAge 1 dfA3C
= B722.30 1 240.25 1 190.30

90 1 1 1 4

t =
°N

B(©a2
i )MSerror

n

=
7.20

B(1)(8.026)

10

=
7.20

0.896
= 8.04

cN = a21

2
b (6 .75) 1 a21

2
b(7 .25) 1 a1

2
b (12 .90) 1 a1

2
b (15 .50) 1 (0)(11 .61) = 7.20
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The difference between recall with high levels of processing and recall with low levels of

processing is about two standard deviations, which is a considerable difference. Thinking

about the material you are studying certainly helps you to recall it.

Now suppose that you wanted to look at the effects of Age. Because we can guess that

people vary in the levels of processing that they normally bring to a memory task, then we

should add the main effect of Condition and its interaction with Age to the error term in

calculating the effect size. Thus

Because we only have two ages, the contrast ( ) is just the difference between the two

means, which is (13.16 2 10.06) 5 3.10.

In this case younger subjects differ from older participants by nearly two-thirds of a stan-

dard deviation.

Simple Effects

The effect sizes for simple effects are calculated in ways directly derived from the way we

calculate main effects. The error term in these calculations is the same error term as that

used for the corresponding main effect. Thus for the simple effect of Age for highest level

of processing (Imagery) is

Similarly, for the contrast of low levels of processing versus high levels among young par-

ticipants we would have

and the effect size is

which means that for younger participants there is nearly a 22⁄3 standard deviation differ-

ence in recall between the high and low levels of processing.

13.10 Reporting the Results

We have carried out a number of calculations to make various points, and I would certainly

not report all of them when writing up the results. What follows is the basic information

that I think needs to be presented.

In an investigation of the effects of different levels of information processing on the

retention of verbal material, participants were instructed to process verbal material in

dN =
cN

sN
=

9.15

3.48
= 2.63

c = a2
1

2
b (6.5) 1 a2

1

2
b(7.6) 1 a1

2
b (14.8) 1 a1

2
b (17.6) 1 (0)(19.3) = 9.15

dN =
°N

sN
=

(17.6 2 13.4)

4.98
=

4.20

4.98
= 0.84

dN =
°N

sN
=

3.10

4.98
= 0.62

°

= B2427.54

98
= 124.77 = 4.98

serror = BSSerror 1 SSCondition 1 SSA3C

dferror 1 dfCondition 1 dfA3C
= B722.30 1 1514.94 1 190.30

90 1 4 1 4
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one of four ways, ranging from the simple counting of letters in words to forming a

visual image of each word. Participants in a fifth Condition were not given any in-

structions about what to do with the items. A second dimension of the experiment

compared Younger and Older participants in terms of recall, thus forming a 2 3 5 fac-

torial design.

The dependent variable was the number of items recalled after three presentations of

the material. There was a significant Age effect (F(1,90) 5 29.94, p , .05, v2 5 .087),

with younger participants recalling more items than older ones. There was also a signifi-

cant effect due to Condition (F(4,90) 5 47.19, p , .05, v2 5 .554), and visual inspec-

tion of the means shows that there was greater recall for conditions in which there was a

greater degree of processing. Finally the Age by Condition interaction was significant

(F(4,90) 5 5.93, p , .05, v2 5 .059), with a stronger effect of Condition for the

younger participants.

A contrast of lower levels of processing (Counting and Rhyming) with higher levels

of processing (Adjective and Imagery) produced a clearly statistically significant effect

in favor of higher levels of processing (t(90)58.04, p , .05). This corresponds to an

effect size of 52.07, indicating that participants with higher levels of processing out-

perform those with lower levels of processing by over two standard deviations. This

effect is even greater if we look only at the younger participants, where 52.63.

13.11 Unequal Sample Sizes

Although many (but certainly not all) experiments are designed with the intention of hav-

ing equal numbers of observations in each cell, the cruel hand of fate frequently intervenes

to upset even the most carefully laid plans. Participants fail to arrive for testing, animals

die, data are lost, apparatus fails, patients drop out of treatment, and so on. When such

problems arise, we are faced with several alternative solutions, with the choice depending

on the nature of the data and the reasons why data are missing.

When we have a plain one-way analysis of variance, the solution is simple and we have

already seen how to carry that out. When we have more complex designs, the solution is

not simple. With unequal sample sizes in factorial designs, the row, column, and interac-

tion effects are no longer independent. This lack of independence produces difficulties in

interpretation, and deciding on the best approach depends both on why the data are miss-

ing and how we conceive of our model.

There has been a great deal written about the treatment of unequal sample sizes, and

we won’t see any true resolution of this issue for a long time. (That is in part because

there is no single answer to the complex questions that arise.) However, there are some

approaches that seem more reasonable than others for the general case. Unfortunately,

the most reasonable and the most common approach is available only using standard

computer packages, and a discussion of that will have to wait until Chapter 15. I will,

however, describe a pencil-and-paper solution. This approach is commonly referred to as

an unweighted means solution or an equally weighted means solution because we

weight the cell means equally, regardless of the number of observations in those cells.

My primary purpose in discussing this approach is not to make you get out your pencil

and a calculator, but to help provide an understanding of what SPSS and SAS do if you

take the default options. Although I will not work out an example, such an example can

be found in Exercise 13.17. And, if you have difficulty with that, the solution can be

found online in the Student Manual (www.uvm.edu/~dhowell/methods7/StudentManual/

StudentManual.html).

dN

dN
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The Problem

You can see what our problem is if we take a very simple 2 3 2 factorial where we know

what is happening. Suppose that we propose to test vigilance on a simple driving task when

participants are either sober or are under the influence of alcohol. The task involves using a

driving simulator and having to respond when cars suddenly come out of driveways and

when pedestrians suddenly step into the street. We would probably expect that sober driv-

ers would make many fewer errors on this task than drivers who had been plied with alco-

hol. We will have two investigators working together on this problem, one from Michigan

and one from Arizona, and each of them will run half of the participants in their own

facilities. We have absolutely no reason to believe that participants in Michigan are any dif-

ferent from participants in Arizona, nor do we have any reason to believe that there would

be an interaction between State and Alcohol condition. I constructed the data with those

expectations in mind.

Suppose that we obtained the quite extreme data shown in Table 13.13 with unequal

numbers of participants in the four cells. The dependent variable is the number of errors

each driver made in one half-hour session. From the cell means in this table you can see

that the data came out as expected. The Drinking participants made, on average, 6 more

errors than the participants in the Non-Drinking condition, and they did so whether they

came from Michigan or Arizona. Similarly, you can see that there are no differences

between Michigan and Arizona participants, whether you look at the Drinking or the Non-

Drinking column. So what’s wrong with this picture?

Well, if you look at the column means you see what you expect, but if you look at the

row means you find that the mean for Michigan is 18.3, whereas the mean for Arizona is

only 15.9. It looks as if we have a difference between States, even after we went to such

pains to make sure there wasn’t one here. What you are seeing is really a Drinking effect

disguised as a State effect. And that is allowed to happen only because you have unequal

numbers of participants in the cells. Michigan’s mean is relatively high because they have

more Drinking participants, and Arizona’s mean is relatively low because they have more

Non-Drinking participants. Now I suppose that if we had used actual people off the street,

and Michigan had more drunks, perhaps a higher mean for Michigan would make some

sort of sense. But that isn’t what we did, and we don’t usually want State effects contami-

nated by Drinking effects. So what do we do?

The most obvious thing to do would be to calculate row and column means ignoring
the differing cell sizes. We could simply average cell means, paying no attention to how

many participants are in each cell. If we did this, the means for both Michigan and Arizona

would be (14 1 20)/2 5 17, and there would be no difference due to States. You could then

substitute those means in standard formulae for a factorial analysis of variance, but what

are you going to use for the sample size? Your first thought might be that you would just
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Table 13.13 Illustration of the contaminating effects of unequal sample sizes

Non-Drinking Drinking Row Means

Michigan 13 15 16 12 18 20 22 19 21

23 17 18 22 20
1.

5 18.3

11
5 14

12
5 20

Arizona 13 15 18 14 10 24 25 17 16 18

12 16 17 15 10 14
2.

5 15.9

21
5 14

22
5 20

Col Means
.1

5 14
.2

5 20XX

XX
X

XX
X



use the average sample size, and that is actually quite close. Actually you will use the

harmonic mean of the sample sizes. The harmonic mean is defined as

where the subscript “h” stands for “harmonic” and k represents the number of observations

whose mean we are calculating. You can now use the formulae shown in Table 13.2 by re-

placing n with nh and the row and column means with the means of the cells in those rows

and columns. For the current example the row means would be 17 and 17, the column

means would be 14 and 20, and the grand mean would be the mean of the cell means. The

one difference is that the error term ( ) is not obtained by subtraction; instead, we

calculate for each cell of the design and then sum these terms to obtain the sum

of squares due to error.

I am not recommending that you solve your problem with unbalanced designs this way,

although the answer would be very close to the answer given by the solution that I will rec-

ommend in Chapter 15. I present this approach here because I think that it helps to clarify

what SPSS and SAS do when you have unequal sample sizes and select the default option

(Type III sum of squares). I think that it also makes it easier to understand how a column

effect can actually show up as a row effect even when the cell means within columns do

not differ by row.

13.12 Higher-Order Factorial Designs

All of the principles concerning a two-way factorial design apply equally well to a three-

way or higher-order design. With one additional piece of information, you should have no

difficulty running an analysis of variance on any factorial design imaginable, although the

arithmetic becomes increasingly more tedious as variables are added. We will take a sim-

ple three-way factorial as an example, since it is the easiest to use.

The only major way in which the three-way differs from the two-way is in the presence

of more than one interaction term. To see this, we must first look at the underlying struc-

tural model for a factorial design with three variables:

In this model we have not only main effects, symbolized by , , and , but also two

kinds of interaction terms. The two-variable or first-order interactions are , , and

, which refer to the interaction of variables A and B, A and C, and B and C, respec-

tively. We also have a second-order interaction term, , which refers to the joint

effect of all three variables. We have already examined the first-order interactions in dis-

cussing the two-way. The second-order interaction can be viewed in several ways. Proba-

bly the easiest way to view the ABC interaction is to think of the AB interaction itself

interacting with variable C. Suppose that we had two levels of each variable and plotted

the AB interaction separately for each level of C. We might have the result shown in

Figure 13.3. Notice that for we have one AB interaction, whereas for we have a dif-

ferent one. Thus, AB depends on C, producing an ABC interaction. This same kind of

reasoning could be invoked using the AC interaction at different levels of B, or the BC
interaction at different levels of A. The result would be the same.

As I have said, the three-way factorial is merely an extension of the two-way, with a

slight twist. The twist comes about in obtaining the interaction sums of squares. In the

C2C1

abgijk

bgjk

agikabij

gkbjai

Xijkl = m 1 ai 1 bj 1 gk 1 abij 1 agik 1 bgjk 1 abgijk 1 eijkl

SSwithin cell

SSerror

Xh =
k

1

X1

1
1

X2

1
1

X3

1 Á 1
1

Xk
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two-way, we took an A 3 B table of cell means, calculated , subtracted the main

effects, and were left with . In the three-way, we have several interactions, but we

will calculate them using techniques analogous to those employed earlier. Thus, to ob-

tain we will take a B 3 C table of cell means (averaging over A), obtain ,

subtract the main effects of B and C, and end up with . The same applies to 

and . We also follow the same procedure to obtain , but here we need to be-

gin with an A 3 B 3 C table of cell means, obtain , and then subtract the main

effects and the lower-order interactions to arrive at . In other words, for each

interaction we start with a different table of cell means, collapsing over the variable(s)

in which we are not at the moment interested. We then obtain an for that table

and subtract from it any main effects and lower-order interactions that involve terms

included in that interaction.

Variables Affecting Driving Performance

For an example, consider a hypothetical experiment concerning the driving ability of two

different types of drivers—inexperienced ( ) and experienced ( ). These people will

drive on one of three types of roads—first class ( ), second class ( ), or dirt ( ), under

one of two different driving conditions—day ( ) and night ( ). Thus we have a 2 3 3 3 2

factorial. The experiment will include four participants per condition (for a total of 48 par-

ticipants), and the dependent variable will be the number of steering corrections in a one-

mile section of roadway. The raw data are presented in Table 13.14a.

The lower part of Table 13.14a contains all the necessary matrices of cell means for the

subsequent calculation of the interaction sums of squares. These matrices are obtained sim-

ply by averaging across the levels of the irrelevant variable. Thus, the upper left-hand cell

of the AB summary table contains the sum of all scores obtained under the treatment com-

bination , regardless of the level of C (i.e., ). (Note: You should be
aware that I have rounded everything to two decimals for the tables, but the computations
were based on more decimals. Beware of rounding error.6)

Table 13.14b shows the calculations of the sums of squares. For the main effects, the

sums of squares are obtained exactly as they would be for a one-way. For the first-order

interactions, the calculations are just as they would be for a two-way, taking two vari-

ables at a time. The only new calculation is for the second-order interaction, and the

ABC111 1 ABC112AB11

C2C1

B3B2B1

A2A1

SScells

SSABC

SScells ABC

SSABCSSAC

SSABSSBC

SScells BCSSBC

SSAB

SScells
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B2

C1

A1

A2

B1 B2

C2

A1

A2

B1

Figure 13.3 Plot of second-order interaction

6 The fact that substantial rounding error accumulates when you work with means is one major reason why
formulae for use with calculators worked with totals. I am using the definitional formulae in these chapters
because they are clearer, but that means that we need to put up with occasional rounding errors. Good computing
software uses very sophisticated formulae optimized to minimize rounding error.
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Table 13.14 Illustration of calculations for 2 3 3 3 2 factorial design

(a) Data

B
1

B
2

B
3

B
1

B
2

B
3

A
1

4 23 16 21 25 32

18 15 27 14 33 42

8 21 23 19 30 46

10 13 14 26 20 40

A
2

6 2 20 11 23 17

4 6 15 7 14 16

13 8 8 6 13 25

7 12 17 16 12 12

Cell Means

B
1

B
2

B
3

B
1

B
2

B
3

Means

A
1

10.000 18.000 20.000 20.000 27.000 40.000 22.500

A
2

7.500 7.000 15.000 10.000 15.500 17.500 12.083

Means 8.750 12.500 17.500 15.000 21.250 28.750 17.292

More Cell Means

B
1

B
2

B
3

Means C
1

C
2

Means

A
1

15.000 22.500 30.000 22.500 A
1

16.000 29.000 22.500

A
2

8.750 11.250 16.250 12.083 A
2

9.833 14.333 12.083

Means 11.875 16.875 23.125 17.292 Means 12.917 21.667 17.292

B
1

B
2

B
3

Means

C
1

8.750 12.500 17.500 12.917

C
2

15.000 21.250 28.750 21.667

Means 11.875 16.875 23.125 17.292

(b) Calculations

C
1

C
2

C
1

C
2

AB Cells AC Cells

BC Cells

= 918.75

SSC = naba (X. . k 2 X...)2 = 4 3 2 3 3[(12.917 2 17.292)2 1 (21.667 2 17.292)2]

1 (23.125 2 17.292)2] = 1016.67

SSB = naca (X. j. 2 X ...)2 = 4 3 2 3 2[(11.875 2 17.292)2 1 Á

=  1302.08

SSA = nbca (Xi . . 2 X ... )2 = 4 3 3 3 2[(22.50 2 17.292)2 1 (12.083 2 17.292)2]

SStotal = a (X 2 X ...)2 = (4 2 17.292)2 1 Á 1 (12 2 17.292)2 = 4727.92

(continues)



difference is only a matter of degree. Here we first obtain the for the three-

dimensional matrix. This sum of squares represents all of the variation among the cell

means in the full-factorial design. From this, we must subtract all of the variation that

can be accounted for by the main effects and by the first-order interactions. What

remains is the variation that can be accounted for by only the joint effect of all three vari-

ables, namely .

The final sum of squares is . This is most easily obtained by subtracting

from . Since represents all of the variation that can be attributa-

ble to differences among cells (

), subtracting it from will leave us with only that variation within the

cells themselves.

SStotalSSBC 1 SSABC

SScells ABC = SSA 1 SSB 1 SSC 1 SSAB 1 SSAC 1

SScells ABCSStotalSScells ABC

SSerror

SSABC

SScells
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Table 13.14 (continued)

(c) Summary table

Source df SS MS F

A (Experience) 1 1302.08 1302.08 48.78*

B (Road) 2 1016.67 508.33 19.04*

C (Conditions) 1 918.75 918.75 34.42*

AB 2 116.67 58.33 2.19

AC 1 216.75 216.75 8.12*

BC 2 50.00 25.00 ,1

ABC 2 146.00 73.00 2.73

Error 36 961.00 26.69

Total 47 4727.92

*p , .05

SSerror = SStotal 2 SSCell ABC = 4727.92 2 3766.92 = 961.00

= 146.00

= 3766.92 2 1302.08 2 1016.67 2 918.75 2 116.67 2 216.75 2 50.00

SSABC = SSCell ABC 2 SSA 2 SSB 2 SSC 2 SSAB 2 SSAC 2 SSBC

= 3766.92

SSCell ABC = na (Xijk 2 X ... )2 = 4[(10.00 2 17.292)2 1 Á 1 (17.50 2 17.292)2]

= 50.00

SSBC = SSCell BC 2 SSB 2 SSC = 1985.42 2 1016.67 2 918.75

= 1985.42

SSCell BC = naa (X.jk 2 X ... )2 = 4 3 2[(8.75 2 17.292)2 1 Á 1 (28.75 2 17.292)2]

= 216.75

SSAC = SSCell AC 2 SSA 2 SSC = 2437.58 2 1302.08 2 918.75

= 2437.58

SSCell AC = nba (Xi.k 2 X ... )2 = 4 3 3[(16.00 2 17.292)2 1 Á 1 (14.333 2 17.292)2]

SSAB = SSCell AB 2 SSA 2 SSB = 2435.42 2 1302.08 2 1016.67 = 116.67

= 2435.42

SSCell AB = nca (Xij. 2 X ... )2 = 4 3 2[(15.00 2 17.292)2 1 Á 1 (16.25 2 17.292)2



The summary table for the analysis of variance is presented in Table 13.14c. From this

we can see that the three main effects and the A 3 C interaction are significant. None of

the other interactions is significant.7

Simple Effects

Since we have a significant interaction, the main effects of A and C should be interpreted

with caution, if at all. To this end, the AC interaction has been plotted in Figure 13.4. When

plotted, the data show that for the inexperienced driver, night conditions produce consider-

ably more steering corrections than do day conditions, whereas for the experienced driver

the difference in the number of corrections made under the two conditions is relatively

slight. Although the data might give us some confidence in reporting a significant effect for

A (the difference between experienced and inexperienced drivers), they should leave us a

bit suspicious about differences due to variable C. At a quick glance, it would appear that

there is a significant C effect for the inexperienced drivers, but possibly not for the experi-

enced drivers. To examine this question more closely, we must consider the simple effects

of C under and separately. This analysis is presented in Table 13.15, from which we

can see that there is a significant effect between day and night condition, not only for the

inexperienced drivers, but also for the experienced drivers. (Note that we can again check

the accuracy of our calculations; the simple effects should sum to .)

From this hypothetical experiment, we would conclude that there are significant differ-

ences among the three types of roadway, and between experienced and inexperienced driv-

ers. We would also conclude that there is a significant difference between day and night

conditions, for both experienced and inexperienced drivers.

SSC 1 SSAC

A2A1
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7 You will notice that this analysis of variance included seven F values and thus seven hypothesis tests. With so
many hypothesis tests, the familywise error rate would be quite high. Most people ignore the problem and simply
test each F at a per-comparison error rate of a 5 .05. However, if you are concerned about error rates, it would
be appropriate to employ the equivalent of either the Bonferroni or multistage Bonferroni t procedure. This is
generally practical only when you have the probability associated with each F, and can compare this probability
against the probability required by the Bonferroni (or multistage Bonferroni) procedure. An interesting example
of this kind of approach is found in Rosenthal and Rubin (1984). I suspect that most people will continue to
evaluate each F on its own, and not worry about familywise error rates.
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Figure 13.4 AC interaction for data in Table 13.14



Simple Interaction Effects

With higher-order factorials, not only can we look at the effects of one variable at individual

levels of some other variable (what we have called simple effects but what should more accu-

rately be called simple main effects), but we can also look at the interaction of two variables

at individual levels of some third variable. This we will refer to as a simple interaction effect.

Although our second-order interaction (ABC) was not significant, you might have a

theoretical reason to expect an interaction between Experience (A) and Road (B) under

night conditions, because driving at night is more difficult, but would expect no AB inter-

action during the day. As an example, I will break down the ABC interaction to get at those

two simple interaction effects. (I should stress, however, that it is not good practice to test

everything in sight just because it is possible to do so.)

In Figure 13.5 the AB interaction has been plotted separately for each level of C. It ap-

pears that there is no AB interaction under C
1
, but there may be an interaction under C

2
. We

can test this hypothesis by calculating the AB interaction at each level of C, in a manner

logically equivalent to the test we used for simple main effects. Essentially, all we need to

do is treat the C
1

(day) and C
2

(night) data separately, calculating for C
1

data and then

for C
2

data. These simple interaction effects are then tested using from the overall

analysis. This has been done in Table 13.16.

From the analysis of the simple interaction effects, it is apparent that the AB interaction

is not significant for the day data, but it is for the night data. When night conditions ( ) and

dirt roads ( ) occur together, differences between experienced ( ) and inexperienced ( )

drivers are magnified.

A1A2B3

C2

MSerror

SSAB
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Table 13.15 Simple effects for data in Table 13.14

(a) Data

C
1

C
2

Mean

A
1

16.000 29.000 22.500

A
2

9.833 14.333 12.083

(b) Computations

(c) Summary table

Source df SS MS F

C at A
1

1 1014.00 1014.00 37.99*

C at A
2

1 121.50 121.50 4.55*

Error 36 961.00 26.69

*p , .05

(d) Decomposition of sums of squares

1135.50 = 1135.50

1014.00 1 121.50 = 918.75 1 216.75

SSC at A1
1 SSC at A2

= SSC 1 SSAC

= 4 3 3[(9.833 2 12.083)2 1 (14.333 2 12.083)2] = 121.50

SSC at A2
= nba (X2.k 2 X2..)

2

= 4 3 3[(16.000 2 22.500)2 1 (29.000 2 22.500)2] = 1014.00

SSC at A1
= nba (X1.k 2 X1..)

2

simple main

effects

simple

interaction effect
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Figure 13.5 ABC interaction for data in Table 13.14

Table 13.16 Simple interaction effects for data in Table 13.16

(a) Data and Computations for SS
AB at C1

C
1

Means

B
1

B
2

B
3

Mean

A
1

10.00 18.00 20.00 16.000

A
2

7.50 7.00 15.00 9.833

8.75 12.50 17.50 12.917

(b) Data and Computations for SS
AB at C2

C
2

Means

B
1

B
2

B
3

Mean

A
1

20.00 27.00 40.00 29.000

A
2

10.00 15.50 17.50 14.333

Mean 15.00 21.25 28.75 21.667

= 612.83 2 228.17 2 308.33 = 76.33

SSAB at C1
= SSCells AB at C1

2 SSA at C1
2 SSB at C1

= 4 3 [(10.000 2 12.917)2 1 Á 1 (15.000 2 17.500)2] = 612.83

SSCells AB at C1
= na (Xij1 2 X..1)2

= 4 3 2[(8.750 2 12.917)2 1 Á 1 (17.500 2 12.917)2] = 308.33

SSB at C1
= naa (X.j1 2 X..1)2

= 4 3 3[(16.000 2 12.917)2 1 (9.833 2 12.917)2] = 228.17

SSA at C1
= nba (Xi.1 2 X..1)2

(continues)



Although there is nothing to prevent someone from examining simple interaction

effects in the absence of a significant higher-order interaction, cases for which this would

make any logical sense are rare. If, however, the experimenter has a particular reason for

looking at, for example, the AB interaction at each level of C, he is perfectly free to do so.

On the other hand, if a higher-order interaction is significant, the experimenter should cast

a wary eye on all lower-order effects and consider testing the important simple effects.

However, to steal a line from Winer (1971, p. 442), “Statistical elegance does not necessar-

ily imply scientifically meaningful inferences.” Common sense is at least as important as

statistical manipulations.

13.13 A Computer Example

The following example illustrates the analysis of a three-way factorial design with unequal

numbers of participants in the different cells. It is roughly based on a study by Seligman,

Nolen-Hoeksema, Thornton, and Thornton (1990), although the data are contrived and one

of the independent variables (Event) is fictitious. The main conclusions of the example are

in line with the results reported. Note that we will not discuss how SPSS handles unequal

sample sizes in this example until we come to Chapter 15.

The study involved collegiate swimming teams. At a team practice, all participants

were asked to swim their best event as fast as possible, but in each case the time that was

reported was falsified to indicate poorer than expected performance. Thus each swimmer

was disappointed at receiving a poor result. Half an hour later, each swimmer was asked to

perform the same event, and their times were again recorded. The authors predicted that on

the second trial more pessimistic swimmers would do worse than on their first trial,

whereas optimists would do better.

Participants were classified by their explanatory Style (optimism versus pessimism),

Sex, and the preferred Event. The dependent variable was the ratio of , so a

value greater than 1.00 means that the swimmer did better on the second trial. The data and

results are given in Table 13.17. The results were obtained using SPSS. In examining the

results remember that SPSS prints several lines out output that we rarely care about, and

they can just be ignored.

Time1>Time2
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Table 13.16 (continued)

= 2235.33 2 1290.67 2 758.33 = 186.33

SSAB at C2
= SSCells BC at C2

2 SSA at C2
2 SSB at C2

= 4 3 [(20.00 2 21.667)2 1 Á 1 (15.00 2 21.667)2] = 2235.33

SSCells AB at C2
= na (Xij2 2 X..3)2

= 4 3 2[(15.00 2 21.667)2 1 Á 1 (28.75 2 21.667)2] = 758.33

SSB at C2
= naa (X.j2 2 X..2)2

= 4 3 3[(29.00 2 21.667)2 1 (14.33 2 21.667)2] = 1290.67

SSA at C2
= nba (Xi.2 2 X..2)2
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(b) Summary Table from SPSS

Tests of Between-Subjects Effects

Dependent Variable: PERFORM

Type III Sum Mean

Source of Squares df Square F Sig.

Corrected Model 6.804E-02a 11 6.186E-03 1.742 .094

Corrected Model 48.779 1 48.779 13738.573 .000

OPTIM 2.412E-02 1 2.412E-02 6.793 .012

SEX 7.427E-03 1 7.427E-03 2.092 .155

STROKE 4.697E-03 2 2.348E-03 .661 .521

OPTIM * SEX 1.631E-02 1 1.631E-02 4.594 .037

OPTIM * STROKE 5.612E-03 2 2.806E-03 .790 .460

SEX * STROKE 1.142E-02 2 5.708E-03 1.608 .211

OPTIM * SEX * STROKE 1.716E-03 2 8.578E-04 .242 .786

Error .163 46 3.550E-03

Total 57.573 58

Corrected Total .231 57

a R Squared 5 .294 (Adjusted R Squared 5 .125)

Table 13.17 Analysis of variance on responses to failure by optimists and pessimists

(a) Data

Optimists Pessimists

Male Female Male Female

Free Breast Back Free Breast Back Free Breast Back Free Breast Back

0.986 1.026 1.009 1.108 1.048 1.004 0.983 0.962 0.936 0.997 1.045 1.045

1.108 1.045 1.065 0.985 1.027 0.936 0.947 0.944 0.995 0.983 1.095 0.864

1.080 0.996 1.053 1.001 1.040 0.932 0.941 0.872 1.105 0.944 0.982

0.952 0.923 0.924 1.078 0.831 1.116 1.039 0.915

0.998 1.000 0.968 0.914 0.997 0.927 1.047

1.017 1.003 0.955 0.960 0.988

1.080 0.934 1.015

1.032 0.990 1.042 0.997 1.038 0.993 0.968 0.920 0.934 1.026 1.008 0.971X

(continues)
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Optimism/Pessimism

PessimistOptimist

M
ea

n
 P

er
fo

rm
a

n
ce

 R
a

ti
o

1.04

1.02

1.00

0.98

0.96

0.94

0.92

Sex of subject

Male

Female

(c) Plot by Sex 3 Optim interaction

8 To be fair to Seligman et al. (1990), I should say that this is not a result they appeared to have analyzed for, and
therefore not one they found. I built it in to illustrate a point.

Key Terms

Factors (Introduction)

Two-way factorial design (Introduction)

Factorial design (Introduction)

Repeated-measures design

(Introduction)

Interaction (Introduction)

2 3 5 factorial (Introduction)

Cell (Introduction)

Main effect (13.1)

Simple effect (13.1)

SS
cells

(13.1)

Disordinal interactions (13.3)

Ordinal interaction (13.3)

Crossed (13.8)

Random factor (13.8)

Nested design (13.8)

Random design (13.8)

Hierarchical models (13.8)

Mixed models (13.8)

Crossed experimental design (13.8)

Expected mean squares (13.8)

Partial effect (13.9)

Unbalanced design (13.9)

Unweighted means (13.11)

Equally weighted means (13.11)

First-order interactions (13.12)

Second-order interaction (13.12)

Simple main effects (13.12)

Simple interaction effect (13.12)

From the SPSS computer output you can see that there is a significant effect due to the

attributional style, with Optimists showing slightly improved performance after a perceived

failure, and pessimists doing worse. The difference in means may appear to be small, but

when you consider how close a race of this type usually is, even a tiny difference is impor-

tant. You can also see that there is a Optim 3 Sex interaction. Looking at the means we see

that there is almost no difference between Optimistic males and females, but this is not true

of pessimists. Pessimistic males appear in these data to be much more affected by a perceived

loss than are females. This Optim 3 Sex interaction is plotted as a bar chart following the

summary table. This plot has collapsed across Event, because that variable had no effect.8

Table 13.17 (continued)
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not this was their first child (primiparous versus multiparous) and on the basis of whether

this was a low-birthweight (LBW) infant or normal-birthweight (NBW) infant. Mothers of

LBW infants were further classified on the basis of whether or not they were under 18 years

old. The data represent a score on a 12-point scale; a higher score represents better

mother–infant interaction. Run and interpret the appropriate analysis of variance.

Primiparous Multiparous Primiparous Multiparous

LBW LBW LBW LBW LBW LBW LBW LBW

,18 .18 NBW ,18 .18 NBW ,18 .18 NBW ,18 .18 NBW

4 6 8 3 7 9 7 6 2 7 2 10

6 5 7 4 8 8 4 2 5 1 1 9

5 5 7 3 8 9 5 6 8 4 9 8

3 4 6 3 9 9 4 5 7 4 9 7

3 9 7 6 8 3 4 5 7 4 8 10

13.2 In Exercise 13.1 the design may have a major weakness from a practical point of view. No-

tice the group of multiparous mothers under 18 years of age. Without regard to the data,

would you expect this group to lie on the same continuum as the others?

13.3 Refer to Exercise 13.1. It seems obvious that the sample sizes do not reflect the relative fre-

quency of age and parity characteristics in the population. Under what conditions would this

be a relevant consideration, and under what conditions would it not be?

13.4 Use simple effects to compare the three groups of multiparous mothers in Exercise 13.1.

13.5 In a study of memory processes, animals were tested in a one-trial avoidance-learning task.

The animals were presented with a fear-producing stimulus on the learning trial as soon as

they stepped across a line in the test chamber. The dependent variable was the time it took

them to step across the line on the test trial. Three groups of animals differed in terms of the

area in which they had electrodes implanted in their cortex (Neutral site, Area A, or Area B).

Each group was further divided and given electrical stimulation 50, 100, or 150 millisec-

onds after crossing the line and being presented with the fear-inducing stimulus. If the brain

area that was stimulated is involved in memory, stimulation would be expected to interfere

with memory consolidation and retard learning of the avoidance response, and the animal

should not show any hesitancy in recrossing the line. The data on latency to recross the line

are as follows:

Stimulation Area

Neutral Site Area A Area B

50 100 150 50 100 150 50 100 150

25 30 28 11 31 23 23 18 28

30 25 31 18 20 28 30 24 21

28 27 26 26 22 35 18 9 30

40 35 20 15 23 27 28 16 30

20 23 35 14 19 21 23 13 23

Run the analysis of variance.

Exercises

The following problems can all be solved by hand, but any of the standard computer software

packages will produce the same results.

13.1 In a study of mother–infant interaction, mothers are rated by trained observers on the qual-

ity of their interactions with their infants. Mothers are classified on the basis of whether or
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13.6 Plot the cell means in Exercise 13.5.

13.7 For the study in Exercise 13.5, to what would refer (if A were used to represent Area)?

13.8 Use simple effects to clarify the results for the Area factor in Exercise 13.5. Show that these

simple effects sum to the correct figure.

13.9 Use the Bonferroni test to compare the neutral site to each of the other areas in 

Exercise 13.5, ignoring the length of stimulation. (Hint: Follow the procedures outlined

in Chapters 11 and 12, but be sure that you take n as the number of scores on which the

mean is based.)

13.10 Use simple effects to examine the effect of delay of stimulation in area A for the data in

Exercise 13.5.

13.11 Refer to Exercise 11.3a in Chapter 11. You will see that it forms a 2 3 2 factorial. Run the

factorial analysis and interpret the results.

13.12 In Exercise 11.3 you ran a test between Groups 1 and 3 combined versus Groups 2 and 4

combined. How does that compare to testing the main effect of Level of processing in

Exercise 13.11? Is there any difference?

13.13 Make up a set of data for a 2 3 2 design that has two main effects but no interaction.

13.14 Make up a set of data for a 2 3 2 design that has no main effects but does have an interaction.

13.15 Describe a reasonable experiment for which the primary interest would be in the interaction

effect.

13.16 Assume that in Exercise 13.1 the last three participants in cell
12

(Primiparous, LBW . 18)

and the last two participants in cell
23

(Multiparous, NBW) refused to give consent for their

data to be used. Rerun the analysis.

13.17 Klemchuk, Bond, and Howell (1990) examined role-taking ability in younger and older

children depending on whether or not they attended daycare. The dependent variable was a

scaled role-taking score. The sample sizes were distinctly unequal. The data follow

Younger Older

No Daycare 20.139 22.002 21.631 22.173 0.179 20.167 20.285 0.851 20.397

20.829 21.503 0.009 21.934  21.448 0.351 20.240 0.160 20.535

21.470 21.54520.137 22.302 20.102 0.273 0.277 0.714

Daycare 21.412 20.681 0.638 20.222 0.668 0.859 0.782 0.851 20.158

20.896 20.464 21.659 22.096 0.493

Run the analysis of variance and draw the appropriate conclusions.

13.18 Use any standard computer software to analyze the data in Exercise 13.17. Compare your

results with those you obtained previously.

13.19 Calculate and for Exercise 13.1.

13.20 Calculate for the data in Exercise 13.1.

13.21 Calculate and for Exercise 13.5.

13.22 Calculate for the data in Exercise 13.5.

13.23 To study the effects of early experience on conditioning, an experimenter raised four groups

of rats in the presence of (1) no special stimuli, (2) a tone stimulus, (3) a vibratory stimulus,

and (4) both a tone and a vibratory stimulus. The rats were later classically conditioned us-

ing either a tone or a vibratory stimulus as the conditioned stimulus and one of three levels

of foot shock as the unconditioned stimulus. This is a 4 3 2 3 3 factorial design. The cell

means, rather than the raw data, follow. The SS
total 

5 41,151.00 and 5 5. The dependent

variable was the number of trials to a predetermined criterion.

nijk

dN

vN 2h2

dN

vN 2h2

a1
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Conditioned Stimulus

Tone Vibration

High Med Low High Med Low

Control 11 16 21 19 24 29

Tone 25 28 34 21 26 31

Vibration 6 13 20 40 41 52

Tone and Vibration 22 30 30 35 38 48

Analyze the data and interpret the results.

13.24 In Chapter 2 we considered Sternberg’s experiment on the time it takes to report whether a test

stimulus was part of a prior stimulus display. The independent variables were the number of

stimuli in the display (1, 3, or 5) and whether the test stimulus had been included in the dis-

play (Yes or No). The data are found in RxTime.dat on the Web site (www.uvm.edu/

~dhowell/methods). This is a two-way analysis of variance. Run the analysis and interpret the

results, including mention and interpretation of effect sizes.

13.25 Use any statistical package to run the two-way analysis of variance on Interval and Dosage

for the data in Epineq.dat. Compare the results you obtain here with the results you obtained

in Chapter 11, Exercises 11.28–11.30.

13.26 In Exercise 11.30 you calculated the average of the nine cell variances. How does that

answer compare to the from Exercise 13.25?

13.27 Obtain the Tukey test for Dosage from the analysis of variance in Exercise 13.25. Interpret

the results.

13.28 The data for the three-way analysis of variance given in Table 13.14 are found on the Web.

They are named Tab13–14.dat. The first three entries in each record represent the coding for

A (Experience), B (Road), and C (Conditions). The fourth entry is the dependent variable.

Use any analysis of variance package to reproduce the summary table found in Table 13.14c.

13.29 Using the data from Exercise 13.28, reproduce the simple effects shown in Table 13.14.

13.30 A psychologist interested in esthetics wanted to compare composers from the classical

period to composers from the romantic period. He randomly selected four composers from

each period, played one work from each of them, and had 5 subjects rate each of them. Dif-

ferent subjects were used for each composer. The data are given below. (Note that this is a

nested design.) Run the appropriate analysis of variance.

Classical Period Romantic Period

Composer A B C D E F G H

12 10 15 21 10 9 8 12

14 9 18 17 11 12 7 14

15 10 16 16 9 7 11 9

11 12 18 18 8 15 12 7

16 13 17 17 13 8 8 8

MSerror
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13.31 An educational researcher wanted to test the hypothesis that schools that implemented strict

dress codes produced students with higher academic performance. She randomly selected

7 schools in the state with dress codes and 7 schools that had no dress code. She then ran-

domly selected 10 students within each school and noted their performance on a standard-

ized test. The results follow.

Dress Code No Dress Code

School 1 2 3 4 5 6 7 8 9 10 11 12 13 14

91 75 80 84 59 62 87 69 72 78 66 67 52 63

78 73 77 92 67 93 78 74 56 77 55 82 71 65

86 65 70 78 68 83 83 67 71 75 58 76 73 75

70 68 68 78 64 78 79 64 92 56 73 78 68 82

78 70 70 77 75 65 53 61 88 84 55 87 65 77

48 60 69 76 74 71 66 76 64 83 70 87 69 81

89 72 64 74 67 65 76 74 79 67 64 63 79 67

90 77 73 81 56 85 67 71 73 70 52 68 67 73

85 75 70 75 61 74 74 62 72 31 64 86 66 72

82 80 74 81 67 83 72 67 70 70 79 84 64 56

13.32 Rerun the analysis in Exercise 13.31 but treat both variables as fixed and crossed. Show that

the SS
school(code)

in Exercise13.31 is the sum of SS
school

and SS
school*code

in this analysis. (Hint:

If you run this using SPSS you will have to have both sets of schools numbered 1–7.)

Discussion Questions

13.33 In the analysis of Seligman et al. (1990) data on explanatory style (Table 13.15) you will

note that there are somewhat more males than females in the Optimist group and more

females than males in the Pessimist group. Under what conditions might this affect the way

you would want to deal with unequal sample sizes, and when might you wish to ignore it?

13.34 Think of a nonstatistical example that could be used to explain to a student in an introduc-

tory statistics course why it is possible with any of the pairwise comparison tests to show

that Group 1 is not different from Group 2, Group 2 is not different from Group 3, but

Group 1 is different from Group 3.

13.35 Find an example of a three-way factorial in the research literature in which at least one of

the interactions is significant and meaningful. Then create a data set that mirrors those

results.
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CHAPTER 14

Repeated-Measures

Designs

Object ives

To discuss the analysis of variance by considering experimental designs

in which the same subject is measured under all levels of one or more

independent variables.

Contents

14.1 The Structural Model

14.2 F Ratios

14.3 The Covariance Matrix

14.4 Analysis of Variance Applied to Relaxation Therapy

14.5 Contrasts and Effect Sizes in Repeated Measures Designs

14.6 Writing Up the Results

14.7 One Between-Subjects Variable and One Within-Subjects Variable

14.8 Two Between-Subjects Variables and One Within-Subjects Variable

14.9 Two Within-Subjects Variables and One Between-Subjects Variable

14.10 Intraclass Correlation

14.11 Other Considerations

14.12 Mixed Models for Repeated-Measures Designs

461



IN OUR DISCUSSION OF THE ANALYSIS OF VARIANCE, we have concerned ourselves with exper-

imental designs that have different subjects in the different cells. More precisely, we have

been concerned with designs in which the cells are independent, or uncorrelated. (Under

the assumptions of the analysis of variance, independent and uncorrelated are synonymous

in this context.) In this chapter we are going to be concerned with the problem of analyzing

data where some or all of the cells are not independent. Such designs are somewhat more

complicated to analyze, and the formulae become more complex. Most, or perhaps even

all, readers will approach the problem using computer software such as SPSS or SAS.

However, to understand what you are seeing, you need to know something about how you

would approach the problem by hand; and that leads to lots and lots of formulae. I urge you

to treat the formulae lightly, and not feel that you have to memorize any of them. This

chapter needs to be complete, and that means we have to go into the analysis at some depth,

but remember that you can always come back to the formulae when you need them, and

don’t worry about the calculations too much until you do need them.

If you think of a typical one-way analysis of variance with different subjects serving

under the different treatments, you would probably be willing to concede that the correla-

tions between treatments 1 and 2, 1 and 3, and 2 and 3 have an expectation of zero.

Treatment 1 Treatment 2 Treatment 3

However, suppose that in the design diagrammed here the same subjects were used in

all three treatments. Thus, instead of 3n subjects measured once, we have n subjects meas-

ured three times. In this case, we would be hard put to believe that the intercorrelations of

the three treatments would have expectancies of zero. On the contrary, the better subjects

under treatment 1 would probably also perform well under treatments 2 and 3, and the

poorer subjects under treatment 1 would probably perform poorly under the other condi-

tions, leading to significant correlations among treatments.

This lack of independence among the treatments would cause a serious problem if it

were not for the fact that we can separate out, or partition, and remove the dependence im-

posed by repeated measurements on the same subjects. (To use a term that will become

much more familiar in Chapter 15, we can say that we are partialling out effects that cause

the dependence.) In fact, one of the main advantages of repeated-measures designs is that

they allow us to reduce overall variability by using a common subject pool for all treat-

ments, and at the same time allow us to remove subject differences from our error term,

leaving the error components independent from treatment to treatment or cell to cell.

As an illustration, consider the highly exaggerated set of data on four subjects over

three treatments presented in Table 14.1. Here the dependent variable is the number of tri-

als to criterion on some task. If you look first at the treatment means, you will see some

slight differences, but nothing to get too excited about. There is so much variability within

each treatment that it would at first appear that the means differ only by chance. But look

at the subject means. It is apparent that subject 1 learns quickly under all conditions, and

that subjects 3 and 4 learn remarkably slowly. These differences among the subjects are

producing most of the differences within treatments, and yet they have nothing to do with

the treatment effect. If we could remove these subject differences we would have a better

(and smaller) estimate of error. At the same time, it is the subject differences that are creat-

ing the high positive intercorrelations among the treatments, and these too we will partial

out by forming a separate term for subjects.

X3nX2nX1n

ÁÁÁ
X32X22X12

X31X21X11
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One laborious way to do this would be to put all the subjects’ contributions on a com-

mon footing by equating subject means without altering the relationships among the scores

obtained by that particular subject. Thus, we could set , where is the

mean of the ith subject. Now subjects would all have the same means ( ), and any

remaining differences among the scores could be attributable only to error or to treatments.

Although this approach would work, it is not practical. An alternative, and easier, approach

is to calculate a sum of squares between subjects (denoted as either or ) and

remove this from before we begin. This can be shown to be algebraically equivalent

to the first procedure and is essentially the approach we will adopt.

The solution is represented diagrammatically in Figure 14.1. Here we partition the

overall variation into variation between subjects and variation within subjects. We do the

same with the degrees of freedom. Some of the variation within a subject is attributable to

the fact that his scores come from different treatments, and some is attributable to error;

this further partitioning of variation is shown in the third line of the figure. We will always

think of a repeated-measures analysis as first partitioning the into and

. Depending on the complexity of the design, one or both of these partitions may

then be further partitioned.

The following discussion of repeated-measures designs can only begin to explore the

area. For historical reasons, the statistical literature has underemphasized the importance

of these designs. As a result, they have been developed mostly by social scientists, particu-

larly psychologists. By far the most complete coverage of these designs is found in Winer,

Brown, and Michels (1991). Their treatment of repeated-measures designs is excellent and

extensive, and much of this chapter reflects the influence of Winer’s work.

SSwithin subj

SSbetween subjSStotal

SStotal

SSsSSbetween adj

X¿i. = 0

 XiX¿ij = Xij 2 Xi
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Table 14.1 Hypothetical data for simple repeated-measures designs

Treatment

Subject 1 2 3 Mean

1 2 4 7 4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

Mean 16 19 21 18.67

Figure 14.1 Partition of sums of squares and degrees of freedom

Partition of Sums of Squares Partition of Degrees of Freedom

Total variation

Between subjects

Between treatments Error

Within subjects

kn 2 1

n(k 2 1)

(n 2 1)(k 2 1)

n 2 1

k 2 1



14.1 The Structural Model

First, some theory to keep me happy. Two structural models could underlie the analysis of

data like those shown in Table 14.1. The simplest model is

where

the grand mean

a constant associated with the ith person or subject, representing how much

that person differs from the average person

a constant associated with the jth treatment, representing how much that

treatment mean differs from the average treatment mean

the experimental error associated with the ith subject under the jth treatment

The variables are assumed to be independently and normally distributed around zero

within each treatment. Their variances, and , are assumed to be homogeneous across

treatments. (In presenting expected means square, I am using the notation developed in the

preceding chapters. The error term and subject factor are considered to be random, so

those variances are presented as and . (Subjects are always treated as random.) How-

ever, the treatment factor is generally a fixed factor, so its variation is denoted as ) With these

assumptions it is possible to derive the expected mean squares shown in Model I of Table 14.2.

An alternative and probably more realistic model is given by

Here we have added a Subject 3 Treatment interaction term to the model, which allows

different subjects to change differently over treatments. The assumptions of the first model

will continue to hold, and we will also assume the to be distributed around zero inde-

pendently of the other elements of the model. This second model gives rise to the expected

mean squares shown in Model II of Table 14.2.

The discussion of these two models and their expected mean squares may look as if it is

designed to bury the solution to a practical problem (comparing a set of means) under a

mountain of statistical theory. However, it is important to an explanation of how we will run

our analyses and where our tests come from. You’ll need to bear with me only a little longer.

14.2 F Ratios

The expected mean squares in Table 14.2 indicate that the model we adopt influences the F
ratios we employ. If we are willing to assume that there is no Subject 3 Treatment interac-

tion, we can form the following ratios:

E(MSbetween subj)

E(MSerror)
=

s2
e 1 ks2

p

s2
e

ptij

Xij = m 1 pi 1 tj 1 ptij 1 eij

u2
t

s2
es2

p

s2
es2

p

 pi and eij

eij =

tj =

pi =
m =

Xij = m 1 pi 1 tj 1 eij
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Table 14.2 Expected mean squares for simple repeated-measures designs

Model I Model II

Source E(MS) Source E(MS)

Subjects Subjects

Treatments Treatments

Error Error s2
e 1 s2

pts2
e

s2
e 1 s2

pt 1 nu2
ts2

e 1 nu2
t

s2
e 1 ks2

ps2
e 1 ks2

p

Xij = m 1 pi 1 tj 1 ptij 1 eijXij = m 1 pi 1 tj 1 eij



and

Given an additional assumption about sphericity, which we will discuss in the next

section, both of these lead to respectable F ratios that can be used to test the relevant null

hypotheses.

Usually, however, we are cautious about assuming that there is no Subject 3 Treatment

interaction. In much of our research it seems more reasonable to assume that different sub-

jects will respond differently to different treatments, especially when those “treatments”

correspond to phases of an ongoing experiment. As a result we usually prefer to work with

the more complete model.

The full model (which includes the interaction term) leads to the following ratios:

and

Although the resulting F for treatments is appropriate, the F for subjects is biased. If

we did form this latter ratio and obtained a significant F, we would be fairly confident that

subject differences really did exist. However, if the F were not significant, the interpreta-

tion would be ambiguous. A nonsignificant F could mean either that or that

. Because we usually prefer this second model, and hate ambiguity,

we seldom test the effect due to Subjects. This represents no great loss, however, since we

have little to gain by testing the Subject effect. The main reason for obtaining 

in the first place is to absorb the correlations between treatments and thereby remove sub-

ject differences from the error term. A test on the Subject effect, if it were significant,

would merely indicate that people are different—hardly a momentous finding. The impor-

tant thing is that both underlying models show that we can use as the denominator

to test the effect of treatments.

14.3 The Covariance Matrix

A very important assumption that is required for any F ratio in a repeated-measures design

to be distributed as the central (tabled) F is that of compound symmetry of the covariance

matrix.1 To understand what this means, consider a matrix ( ) representing the covariances

among the three treatments for the data given in Table 14.1.

a
N

=

A1 A2 A3

A1 154.67 160.00 160.00

A2 160.00 176.67 170.67

A3 160.00 170.67 170.00

gN

MSerror

SSbetween subj

ks2
p . 0  but  … s2

pt
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1 This assumption is overly stringent and will shortly be relaxed somewhat. It is nonetheless a sufficient assumption,
and it is made often.



On the main diagonal of this matrix are the variances within each treatment ( ).

Notice that they are all more or less equal, indicating that we have met the assumption

of homogeneity of variance. The off-diagonal elements represent the covariances among

the treatments ( ). Notice that these are also more or less equal. (The

fact that they are also of the same magnitude as the variances is irrelevant, reflecting

merely the very high intercorrelations among treatments.) A pattern of constant variances

on the diagonal and constant covariances off the diagonal is referred to as compound

symmetry. (Again, the relationship between the variances and covariances is irrelevant.)

The assumption of compound symmetry of the (population) covariance matrix ( ), of

which is an estimate, represents a sufficient condition underlying a repeated-measures

analysis of variance. The more general condition is known as sphericity, and you will often

see references to that broader assumption. If we have compound symmetry we will meet the

sphericity assumption, but it is possible, though not likely in practice, to have sphericity with-

out compound symmetry. (Older textbooks generally make reference to compound symmetry,

even though that is too strict an assumption. In recent years the trend has been toward refer-

ence to “sphericity,” and that is how we will generally refer to it here, though we will return to

compound symmetry when we consider mixed models at the end of this chapter.) Without this

sphericity assumption, the F ratios may not have a distribution given by the distribution of F in

the tables. Although this assumption applies to any analysis of variance design, when the cells

are independent the covariances are always zero, and there is no problem—we merely need to

assume homogeneity of variance. With repeated-measures designs, however, the covariances

will not be zero and we need to assume that they are all equal. This has led some people (e.g.,

Hays, 1981) to omit serious consideration of repeated-measures designs. However, when we

do have sphericity, the Fs are valid; and when we do not, we can use either very good approxi-

mation procedures (to be discussed later in this chapter) or alternative methods that do not

depend on assumptions about . One alternative procedure that does not require any assump-

tions about the covariance matrix is multivariate analysis of variance (MANOVA). This is a

multivariate procedure, which is essentially one that deals with multiple dependent variables

simultaneously. This procedure, however, requires complete data and is now commonly being

replaced by analyses of mixed models, which are introduced in Section 14.12.

Many people have trouble thinking in terms of covariances because they don’t have a

simple intuitive meaning. There is little to be lost by thinking in terms of correlations. If

we truly have homogeneity of variance, compound symmetry reduces to constant correla-

tions between trials.

14.4 Analysis of Variance Applied 
to Relaxation Therapy

As an example of a simple repeated-measures design, we will consider a study of the

effectiveness of relaxation techniques in controlling migraine headaches. The data described

here are fictitious, but they are in general agreement with data collected by Blanchard,

Theobald, Williamson, Silver, and Brown (1978), who ran a similar, although more

complex, study.

In this experiment we have recruited nine migraine sufferers and have asked them to

record the frequency and duration of their migraine headaches. After 4 weeks of baseline

recording during which no training was given, we had a 6-week period of relaxation train-

ing. (Each experimental subject participated in the program at a different time, so such

things as changes in climate and holiday events should not systematically influence the

data.) For our example we will analyze the data for the last 2 weeks of baseline and the last

3 weeks of training. The dependent variable is the duration (hours/week) of headaches in

g

gN
g

cov12, cov13, and cov23

uN2
Aj
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Table 14.3 Analysis of data on migraine headaches

(a) Data

Baseline Training
Subject

Subject Week 1 Week 2 Week 3 Week 4 Week 5 Means

1 21 22 8 6 6 12.6

2 20 19 10 4 4 11.4

3 17 15 5 4 5 9.2

4 25 30 13 12 17 19.4

5 30 27 13 8 6 16.8

6 19 27 8 7 4 13.0

7 26 16 5 2 5 10.8

8 17 18 8 1 5 9.8

9 26 24 14 8 9 16.2

Week 22.333 22.000 9.333 5.778 6.778 13.244

Means

(b) Calculations

(c) Summary table

Source df SS MS F

Between subjects 8 486.71

Within subjects 36 2679.60 85

Weeks 4 2449.20 612.30

Error 32 230.40 7.20

Total 44 3166.31

*p , .05

SSerror = SStotal 2 SSsubjects 2 SSweeks = 3166.31 2 486.71 2 2449.20 = 230.40

SSweeks = na (XW 2 X..)
2 = 93(22.333 2 13.244)2 1 Á 1 (6.778 2 13.244)24 = 2449.20

SSsubjects = wa (XS 2 X..)
2 = 53(12.6 2 13.244)2 1 Á 1 (16.2 2 13.244)24 = 486.71

SStotal = a (X 2 X..)
2 = (21 2 13.244)2 1 Á 1 (9 2 13.244)2 = 3166.31

2 Because I have rounded the means to three decimal places, there is rounding error in the answers. The answers
given here have been based on more decimal places.

each of those 5 weeks. The data and the calculations are shown in Table 14.3.2 It is impor-

tant to note that I have identified the means with a subscript naming the variable. Thus in-

stead of using the standard “dot notation” (e.g., for the Week means), I have used the

letter indicating the variable name as the subscript (e.g., the means for Weeks are denoted

and the means for Subjects are denoted ). As usual, the grand mean is denoted ,

and X represents the individual observations.

Look first at the data in Table 14.3a. Notice that there is a great deal of variability, but much

of that variability comes from the fact that some people have more and/or longer-duration

headaches than do others, which really has very little to do with the intervention program. As I

have said, what we are able to do with a repeated-measures design but were not able to do with

between-subjects designs is to remove this variability from , producing a smaller 

than we would otherwise have.

MSerrorSSerror

X..XSXW

Xi.



From Table 14.3b you can see that is calculated in the usual manner. Similarly,

and are calculated just as main effects always are (take the sum of the

squared deviations from the grand mean and multiply by the appropriate constant [i.e., the

number of observations contributing to each mean]). Finally, the error term is obtained by

subtracting and from .

The summary table is shown in Table 14.3c and looks a bit different from ones you

have seen before. In this table I have made a deliberate split into Between-Subject factors

and Within-Subject factors. The terms for Weeks and Error are parts of the Within-Subject

term, and so are indented under it. (In this design the Between-Subject factor is not further

broken down, which is why nothing is indented under it. But wait a few pages and you will

see that happen too.) Notice that I have computed an F for Weeks but not for subjects, for

the reasons given earlier. The F value for Weeks is based on 4 and 32 degrees of freedom,

and . We can therefore reject H
0
: and conclude

that the relaxation program led to a reduction in the duration per week of headaches

reported by subjects. Examination of the means in Table 14.3 reveals that during the last

three weeks of training, the amount of time per week involving headaches was about one-

third of what it was during baseline.

You may have noticed that no Subject 3 Weeks interaction is shown in the summary

table. With only one score per cell, the interaction term is the error term, and in fact some

people prefer to label it S 3 W instead of error. To put this differently, in the design discussed

here it is impossible to separate error from any possible Subject 3 Weeks interaction, because

they are completely confounded. As we saw in the discussion of structural models, both of

these effects, if present, are combined in the expected mean square for error.

I spoke earlier of the assumption of sphericity, or compound symmetry. For the data in

the example, the variance-covariance matrix follows, represented by the notation , where

the is used to indicate that this is an estimate of the population variance-covariance 

matrix .

21.000 11.750 9.250 7.833 7.333

11.750 28.500 13.750 16.375 13.375

9.250 13.750 11.500 8.583 8.208

7.833 16.375 8.583 11.694 10.819

7.333 13.375 8.208 10.819 16.945

Visual inspection of this matrix suggests that the assumption of sphericity is reason-

able. The variances on the diagonal range from 11.5 to 28.5, whereas the covariances off

the diagonal range from 7.333 to 16.375. Considering that we have only nine subjects,

these values represent an acceptable level of constancy. (Keep in mind that the variances

do not need to be equal to the covariances; in fact, they seldom are.) A statistical test of this

assumption of sphericity was developed by Mauchly (1940) and is given in Winer (1971,

p. 596). It would in fact show that we have no basis for rejecting the sphericity hypothesis.

Box (1954b), however, showed that regardless of the form of , a conservative test on null

hypotheses in the repeated-measures analysis of variance is given by comparing 

against —that is, by acting as though we had only two treatment levels. This

test is exceedingly conservative, however, and for most situations you will be better ad-

vised to evaluate F in the usual way. We will return to this problem later when we consider

a much better solution found in Greenhouse and Geisser’s (1959) extension of Box’s work.

As already mentioned, one of the major advantages of the repeated-measures design is

that it allows us to reduce the error term by using the same subject for all treatments. Sup-

pose for a moment that the data illustrated in Table 14.3 had actually been produced by five

independent groups of subjects. For such an analysis, would equal 717.11. In this

case, we would not be able to pull out a subject term because would beSSbetween subj

SSerror

F.05(1, n 2 1)

Fobt

g

a
N

=

g

N

gN

m1 =  m2 = Á = m5F.05(4,32) = 2.68

SStotalSSweeksSSsubjects

SSweeksSSsubjects

SStotal
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synonymous with . (A subject total and an individual score are identical.) As a result,

differences among subjects would be inseparable from error, and in fact would be

the sum of what, for the repeated-measures design, are and (5 230.4 1

486.71 5 717.11 on 32 1 8 5 40 df ). This would lead to

which, although still significant, is less than one-half of what it was in Table 14.3.

To put it succinctly, subjects differ. When subjects are observed only once, these sub-

ject differences contribute to the error term. When subjects are observed repeatedly, we can

obtain an estimate of the degree of subject differences and partial these differences out of

the error term. In general, the greater the differences among subjects, the higher the corre-

lations between pairs of treatments. The higher the correlations among treatments, the

greater the relative power of repeated-measures designs.

We have been speaking of the simple case in which we have one independent variable

(other than subjects) and test each subject on every level of that variable. In actual practice,

there are many different ways in which we could design a study using repeated measures.

For example, we could set up an experiment using two independent variables and test each

subject under all combinations of both variables. Alternatively, each subject might serve

under only one level of one of the variables, but under all levels of the other. If we had three

variables, the possibilities are even greater. In this chapter we will discuss only a few of the

possible designs. If you understand the designs discussed here, you should have no diffi-

culty generalizing to even the most complex problems.

14.5 Contrasts and Effect Sizes in 
Repeated Measures Designs

As we did in the case of one-way and factorial designs, we need to consider how to run

contrasts among means of repeated measures variables. Fortunately there is not really

much that is new here. We will again be comparing the mean of a condition or set of condi-

tions against the mean of another condition or set of conditions, and we will be using the

same kinds of coefficients that we have used all along.

In our example the first two weeks were Baseline measures, and the last three weeks

were Training measures. Our omnibus F told us that there were statistically significant dif-

ferences among the five Weeks, but not where those differences lie. Now I would like to

contrast the means of the set of Baseline weeks with the mean of the set of Training weeks.

The coefficients that will do this are shown below, along with the means.

Week 1 Week 2 Week 3 Week 4 Week 5

Coefficient 1/2 1/2 21/3 21/3 21/3

Mean 22.333 22.000 9.333 5.778 6.778

Just as we have been doing, we will define our contrast as

= 22.166 2 7.296 = 14.870

=
22.333 1 22.000

2
2

9.333 1 5.778 1 6.778

3
=

44.333

2
2

21.889

3

= a1

2
b (22.333) 1 a1

2
b (22.000) 1 a21

3
b (9.333) 1 a21

3
b (5.778) 1 a21

3
b (6.778)

cN = aaiXi

F =
MSweeks

MSerror

=
612.30

17.93
= 34.15

SSbetween subjSSerror

SSerror

SStotal
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We can test this contrast with either a t or an F, but I will use t here. (F is just the square of t.)

This is a t on df
error

532 df, and is clearly statistically significant.

Notice that in calculating my t, I used the MS
error

from the overall analysis. And this

was the same error term that was used to test the Weeks effect. I point that out only because

when we come to more complex analyses we will have multiple error terms, and the one to

use for a specific contrast is the one that was used to test the main effect of that independ-

ent variable.

Effect Sizes

Although there was a direct translation from one-way designs to repeated measures designs

in terms of testing contrasts among means, the situation is a bit more complicated when it

comes to estimating effect sizes. We will continue to define our effect size as

There should be no problem with , because it is the same contrast that we computed

above—the difference between the mean of the baseline weeks and the mean of the train-

ing weeks. But there are several choices for s
error

. Kline (2004) gives 3 possible choices

for our denominator, but points out that two of these are unsatisfactory either because

they ignore the correlation between weeks or because they standardize by a standard

deviation that is not particularly meaningful. What we will actually do is create an error

term that is unique to the particular contrast. We will form a contrast for each subject.

That means that for each subject we will calculate the difference between his mean on

the baseline weeks and his mean on the training weeks. These are difference scores,

which are analogous to the difference scores we computed for a paired sample t test. The

standard deviation of these difference scores is analogous to the denominator we dis-

cussed for computing effect size with paired data when we just had two repeated meas-

ures with the t test. It is important to note that there is room for argument about the

proper term to use to standardize contrasts with repeated measures. See Kline (2004) and

Olejnik and Algina (2000).

For our migraine example the first subject would have a difference score of

(21 1 22)/2 2 (8 1 6 1 6)/3 5 21.5 2 6.667 5 14.833. The complete set of difference

scores would be

[14.833, 13.500, 11.333, 13.500, 19.500, 16.667, 17.000, 12.833, 14.667]

The mean of these difference scores is 14.879, which is . The standard deviation of these

difference scores is 2.49. Then our effect size measure is

This tells us that the severity of headaches during baseline is nearly 6 standard devia-

tions greater than the severity of head aches during training. That is a very large difference,

and we can see that just by looking at the data. Remember, in calculating this effect size

we have eliminated the variability between participants (subjects) in terms of headache

severity. We are in a real sense comparing each individual to himself or herself.

d
N
=

cN

serror

=
14.87

2.49
= 5.97.

cN

cN

cN

dN =
cN

s
error

t =
cN

B(aa2
i )MSerror

n

=
14.870

B0.833(7.20)

9

=
14.87010.667

=
14.870

0.816
= 18.21
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14.6 Writing Up the Results

In writing up the results of this experiment we could simply say:

To investigate the effects of relaxation therapy on the severity of migraine headaches,

9 participants rated the severity of headaches on each of two weeks before receiving

relaxation therapy and for three weeks while receiving therapy. An overall analysis

of variance for repeated measures showed a significant difference between weeks

(F(4,32) 5 85.04, p , .05). The mean severity rating during baseline weeks was 22.166,

which dropped to a mean of 7.296 during training, for a difference of 14.87. A contrast

on this difference was significant (t(32) 5 18.21, p , .05). Using the standard deviation

of contrast differences for each participant produced an effect size measure of d 5 5.97,

documenting the importance of relaxation therapy in treating migraine headaches.

14.7 One Between-Subjects Variable and One 
Within-Subjects Variable

Consider the data presented in Table 14.4. These are actual data from a study by King

(1986). This study in some ways resembles the one on morphine tolerance by Siegel (1975)

that we examined in Chapter 12. King investigated motor activity in rats following injection

of the drug midazolam. The first time that this drug is injected, it typically leads to a distinct

decrease in motor activity. Like morphine, however, a tolerance for midazolam develops

rapidly. King wished to know whether that acquired tolerance could be explained on the

basis of a conditioned tolerance related to the physical context in which the drug was ad-

ministered, as in Siegel’s work. He used three groups, collecting the crucial data (presented

in Table 14.4) on only the last day, which was the test day. During pretesting, two groups of

animals were repeatedly injected with midazolam over several days, whereas the Control

group was injected with physiological saline. On the test day, one group—the “Same”

group—was injected with midazolam in the same environment in which it had earlier been

injected. The “Different” group was also injected with midazolam, but in a different envi-

ronment. Finally, the Control group was injected with midazolam for the first time. This

Control group should thus show the typical initial response to the drug (decreased ambula-

tory behavior), whereas the Same group should show the normal tolerance effect—that is,

they should decrease their activity little or not at all in response to the drug on the last trial.

If King is correct, however, the Different group should respond similarly to the Control

group, because although they have had several exposures to the drug, they are receiving it in

a novel context and any conditioned tolerance that might have developed will not have the

necessary cues required for its elicitation. The dependent variable in Table 14.4 is a measure

of ambulatory behavior, in arbitrary units. Again, the first letter of the name of a variable is

used as a subscript to indicate what set of means we are referring to.

Because the drug is known to be metabolized over a period of approximately 1 hour,

King recorded his data in 5-minute blocks, or Intervals. We would expect to see the effect

of the drug increase for the first few intervals and then slowly taper off. Our analysis uses

the first six blocks of data. The design of this study can then be represented diagrammati-

cally as shown in next page.

Here we have distinguished those effects that represent differences between subjects from

those that represent differences within subjects. When we consider the between-subjects

term, we can partition it into differences between groups of subjects (G) and differences

between subjects in the same group (Ss w/in groups). The within-subject term can similarly
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Table 14.4 Ambulatory behavior by Group and Trial

(a) Data

Interval

1 2 3 4 5 6 Mean

Control 150 44 71 59 132 74 88.333

335 270 156 160 118 230 211.500

149 52 91 115 43 154 100.667

159 31 127 212 71 224 137.333

159 0 35 75 71 34 62.333

292 125 184 246 225 170 207.000

297 187 66 96 209 74 154.833

170 37 42 66 114 81 85.000

Mean 213.875 93.250 96.500 128.625 122.875 130.125 130.875

Same 346 175 177 192 239 140 211.500

426 329 236 76 102 232 233.500

359 238 183 123 183 30 186.000

272 60 82 85 101 98 116.333

200 271 263 216 241 227 236.333

366 291 263 144 220 180 244.000

371 364 270 308 219 267 299.833

497 402 294 216 284 255 324.667

Mean 354.625 266.250 221.000 170.000 198.625 178.625 231.521

Different 282 186 225 134 189 169 197.500

317 31 85 120 131 205 148.167

362 104 144 114 115 127 161.000

338 132 91 77 108 169 152.500

263 94 141 142 120 195 159.167

138 38 16 95 39 55 63.500

329 62 62 6 93 67 103.167

(continues)

Total variation

Between subjects

G
(Groups)

Ss w/in

Groups 

Within subjects

I 3 Ss w/in

Groups

I 
(Intervals)

I 3 G



be subdivided into three components—the main effect of Intervals (the repeated measure)

and its interactions with the two partitions of the between-subject variation. You will see this

partitioning represented in the summary table when we come to it.

Partitioning the Between-Subjects Effects

Let us first consider the partition of the between-subjects term in more detail. From the de-

sign of the experiment, we know that this term can be partitioned into two parts. One of

these parts is the main effect of Groups (G), since the treatments (Control, Same, and Dif-

ferent) involve different groups of subjects. This is not the only source of differences

among subjects, however. We have eight different subjects within the control group, and

differences among them are certainly between-subjects differences. The same holds for the

subjects within the other groups. Here we are speaking of differences among subjects in

the same group—that is, Ss within groups.
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Table 14.4 (continued)

Interval

1 2 3 4 5 6 Mean

292 139 104 184 193 122 172.333

Mean 290.125 98.250 108.500 109.000 123.500 138.625 144.667

Interval 286.208 152.583 142.000 135.875 148.333 149.125 169.021

mean

(b) Calculations

(c) Summary Table

Source df SS MS F

Between subjects 23 670,537.1

Groups 2 285,815.0 142,907.5 7.80*

Ss w/in groups** 21 384,722.0 18,320.1

Within subjects** 120 761,755.8

Intervals 5 399,736.5 79,947.3 29.85*

I 3 G 10 80,820.0 8,082.0 3.02*

I 3 Ss w/in groups** 105 281,199.3 2,678.1

Total 143 1,432,292.9

* p , .05
** Calculated by subtraction

SSI3G = SScells 2 SSinterval 2 SSgroups = 766,371.5 2 285,815.0 2 399.736.5 = 80,820.0

SScells = na (XGI 2 X...)
2 = 83(213.875 2 169.021)2 1 Á 1 (138.625 2 169.021)24 = 766,371.5

SSintervals = nga (XI 2 X...)
2 = 8 3 33(286.208 2 169.021)2 1 Á 1 (149.125 2 169.021)24 = 399,736.5

SSgroups = nia (XG 2 X...)
2 = 8 3 63(130.875 2 169.021)2 1 Á 1 (144.667 2 169.021)24 = 285,815.0

SSsubj = ia (XS 2 X...)
2 = 6[(88.333 2 169.021)2 1 Á 1 (172.333 2 169.021)2] = 670,537.1

SStotal = a (X 2 X...)
2 = (150 2 169.021)2 1 Á 1 (122 2 169.021)2 = 1,432,292.9



If we temporarily ignore intervals entirely (e.g., we simply collect our data over the en-

tire session rather than breaking it down into 5-minute intervals), we can think of the study

as producing the following data:
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Control Same Different

88.333 211.500 197.500

211.500 233.500 148.167

100.667 186.000 161.000

137.333 116.333 152.500

62.333 236.333 159.167

207.000 244.000 63.500

154.833 299.833 103.167

85.000 324.667 172.333

130.875 231.521 144.667

where the “raw scores” in this table are the subject means from Table 14.4. Because each sub-

ject is represented only once in these totals, the analysis we will apply here is the same as a

one-way analysis of variance on independent groups. Indeed, except for a constant represent-

ing the number of scores per subject (which cancels out in the end), the sums of squares for

the simple one-way on these data would be the same as those in the actual analysis. The F that

tests the main effect of Groups if this were a simple one-way on subject totals would be equal

to the one that we will obtain from the full analysis. Thus, the between-subjects partition of

the total variation can be seen as essentially a separate analysis of variance, with its own error

term (sometimes referred to as error
between

) independent of the within-subjects effects.

Partitioning the Within-Subjects Effects

Next consider the within-subjects element of the partition of . As we have already seen,

this is itself partitioned into three terms. A comparison of the six intervals involves compar-

isons of scores from the same subject, and thus Intervals is a within-subjects term—it depends

on differences within each subject. Since Intervals is a within-subjects term, the interaction of

Intervals with Groups is also a within-subjects effect. The third term (Intervals 3 Ss within

groups) is sometimes referred to as since it is the error term for the within-subjects

effects. The term is actually the sum of the sums of squares for the

I 3 S interactions calculated separately for each group. Thus, it can be seen as logically equiv-

alent to the error term used in the previous design.

The Analysis

Before considering the analysis in detail, it is instructive to look at the general pattern of re-

sults. Although there are not enough observations in each cell to examine the distributions

in any serious way, it is apparent that on any given interval there is substantial variability

within groups. For example, for the second interval in the control group, scores range from

0 to 270. There do not appear to be any extreme outliers, however, as often happens in this

kind of research, and the variances within cells, although large, are approximately equal.

You can also see that there are large individual differences, with some of the animals consis-

tently showing relatively little ambulatory behavior and some showing a great deal. These

are the kinds of differences that will be partialled out by our analysis. Looking at the Interval

means, you will see that, as expected, behavior decreased substantially after the first 

5-minute interval and then increased slightly during the rest of the session. Finally, looking

at the difference between the means for the Control and Same groups, you will see the

SSIntervals 3  Ss w/in groups

errorwithin

SStotal

error
between

error
within



anticipated tolerance effect, and looking at the Different group, you see that it is much more

like the Control group than it is like the Same group. This is the result that King predicted.

Very little needs to be said about the actual calculations in Table 14.4b, since they are

really no different from the usual calculations of main and interaction effects. Whether a

factor is a between-subjects or within-subjects factor has no bearing on the calculation of

its sum of squares, although it does affect its placement in the summary table and the ulti-

mate calculation of the corresponding F.

In the summary table in Table 14.4c, the source column reflects the design of the ex-

periment, with first partitioned into and . Each of these sums

of squares is further subdivided. The double asterisks next to the three terms show we cal-

culate these by subtraction ( , , and ), based on the

fact that sums of squares are additive and the whole must be equal to the sum of its parts.

This simplifies our work considerably. Thus

These last two terms will become error terms for the analysis.

The degrees of freedom are obtained in a relatively straightforward manner. For each

of the main effects, the number of degrees of freedom is equal to the number of levels

of the variable minus 1. Thus, for Subjects there are 24 2 1 5 23 df, for Groups there are

3 2 1 5 2 df, and for Intervals there are 6 2 1 5 5 df. As for all interactions, the df for I 3 G
is equal to the product of the df for the component terms. Thus, .

The easiest way to obtain the remaining degrees of freedom is by subtraction, just as we

did with the corresponding sums of squares.

These df can also be obtained directly by considering what these terms represent. Within

each subject, we have 6 2 1 5 5 df. With 24 subjects, this amounts to 

Within each level of the Groups factor, we have 8 2 1 5 7 df between subjects, and with three

Groups we have . I 3 Ss w/in groups is really an interaction term, and

as such its df is simply the product of and .

Skipping over the mean squares, which are merely the sums of squares divided by their

degrees of freedom, we come to F. From the column of F it is apparent that, as we anticipated,

Groups and Intervals are significant. The interaction is also significant, reflecting, in part, the

fact that the Different group was at first intermediate between the Same and the Control group,

but that by the second 5-minute interval it had come down to be equal to the Control group.

This finding can be explained by a theory of conditioned tolerance. The really interesting find-

ing is that, at least for the later intervals, simply injecting an animal in an environment different

from the one in which it had been receiving the drug was sufficient to overcome the tolerance

that had developed. These animals respond almost exactly as do animals that had never experi-

enced midazolam. We will return to the comparison of Groups at individual Intervals later.

Assumptions

For the F ratios actually to follow the F distribution, we must invoke the usual assumptions

of normality, homogeneity of variance, and sphericity of . For the between-subjects term(s),

this means that we must assume that the variance of subject means within any one level of

gN

(5)(21) = 105dfSs w/in groups 5dfI

(7)(3) = 21 dfw/in groups

120 dfw/in subj.(5)(24) 5

dfI3Ss w/in groups = dfw/in subj 2 dfintervals 2 dfIG

dfSs w/in groups = dfbetween subj 2 dfgroups

dfw/in subj = dftotal 2 dfbetween subj

dfIG = (6–1)(3–1) = 10

SSI3Ss w/in groups = SSw/in subj 2 SSintervals 2 SSIG

SSSs w/in groups = SSbetween subj 2 SSgroups

SSw/in subj = SStotal 2 SSbetween subj

SSI3Ss w/in groupsSSSs w/in groupsSSw/in subj

SSw/in subjSSbetween subjSStotal
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Group is the same as the variance of subject means within every other level of Group. If

necessary, this assumption can be tested by calculating each of the variances and testing 

using either or, preferably, the test proposed by Levene (1960) or

O’Brien (1981), which were referred to in Chapter 7. In practice, however, the analysis of

variance is relatively robust against reasonable violations of this assumption (see Collier,

Baker, and Mandeville, 1967; and Collier, Baker, Mandeville, and Hayes, 1967). Because the

groups are independent, compound symmetry, and thus sphericity, of the covariance matrix is

assured if we have homogeneity of variance, since all off-diagonal entries will be zero.

For the within-subjects terms we must also consider the usual assumptions of homo-

geneity of variance and normality. The homogeneity of variance assumption in this case is

that the I 3 S interactions are constant across the Groups, and here again this can be tested

using . (You would simply calculate an I 3 S interaction

for each group—equivalent to the error term in Table 14.3—and test the largest against the

smallest.) For the within-subjects effects, we must also make assumptions concerning the

covariance matrix.

There are two assumptions on the covariance matrix (or matrices). Again, we will let

represent the matrix of variances and covariances among the levels of I (Intervals). Thus

with six intervals,

I
1

I
2

I
3

I
4

I
5

I
6

5

For each Group we would have a separate population variance-covariance matrix .

( and are estimated by and , respectively.) For to be an appro-

priate error term, we will first assume that the individual variance–covariance matrices ( )

are the same for all levels of G. This can be thought of as an extension (to covariances) of

the common assumption of homogeneity of variance.

The second assumption concerning covariances deals with the overall matrix , where

is the pooled average of the . (For equal sample sizes in each group, an entry in will

be the average of the corresponding entries in the individual matrices.) A common and

sufficient, but not necessary, assumption is that the matrix exhibits compound symmetry—

meaning, as I said earlier, that all the variances on the main diagonal are equal, and all the co-

variances off the main diagonal are equal. Again, the variances do not have to equal the

covariances, and usually will not. This assumption is in fact more stringent than necessary.

All that we really need to assume is that the standard errors of the differences between pairs

of Interval means are constant—in other words, that is constant for all i and j ( j i).

This sphericity requirement is met automatically if exhibits compound symmetry, but other

patterns of will also have this property. For a more extensive discussion of the covariance

assumptions, see Huynh and Feldt (1970) and Huynh and Mandeville (1979); a particularly

good discussion can be found in Edwards (1985, pp. 327–329, 336–339).

Adjusting the Degrees of Freedom

Box (1954a) and Greenhouse and Geisser (1959) considered the effects of departure from this

sphericity assumption on . They showed that regardless of the form of , the F ratio from thegg

g
g

±sIi2Ij

2

gGi

ggGi
g

g

gGi

MSI3Ss w/in groupsgN Gi
gNgGi

g
gGi

sN 66sN 65sN 64sN 63sN 62sN 61

sN 56sN 55sN 54sN 53sN 52sN 51

sN 46sN 45sN 44sN 43sN 42sN 41

sN 36sN 35sN 34sN 33sN 32sN 31g
N

sN 26sN 25sN 24sN 23sN 22sN 21

sN 16sN 15sN 14sN 13sN 12sN 11

gN

Fmax on g and (n 2 1)(i 2 1) df

Fmax on (g, n 2 1) df
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within-subjects portion of the analysis of variance will be approximately distributed as F on

(i 2 1) , g(n 2 1)(i 2 1)

df for the Interval effect and

(g 2 1)(i 2 1) , g(n 2 1)(i 2 1)

df for the I 3 G interaction, where i 5 the number of intervals and is estimated by

Here,

the mean of the entries on the main diagonal of 

the mean of all entries in 

the jkth entry in 

the mean of all entries in the jth row of 

The effect of using is to decrease both and from what they would nor-

mally be. Thus is simply the proportion by which we reduce them. Greenhouse and

Geisser recommended that we adjust our degrees of freedom using . They further showed

that when the sphericity assumptions are met, 5 1, and as we depart more and more from

sphericity, approaches 1/(i 2 1) as a minimum.

There is some suggestion that for large values of , even using to adjust the degrees of

freedom can lead to a conservative test. Huynh and Feldt (1976) investigated this correction

and recommended a modification of when there is reason to believe that the true value of

lies near or above 0.75. Huynh and Feldt, as later corrected by Lecoutre (1991), defined

where N 5 n 3 g. (Chen and Dunlap [1994] later confirmed Lecoutre’s correction to

the original Huynh and Feldt formula.3) We then use or , depending on our estimate

of the true value of . (Under certain circumstances, will exceed 1, at which point it is

set to 1.)

A test on the assumption of sphericity has been developed by Mauchly (1940) and eval-

uated by Huynh and Mandeville (1979) and by Keselman, Rogan, Mendoza, and Breen

(1980), who point to its extreme lack of robustness. This test is available on SPSS, SAS,

and other software, and is routinely printed out. Because tests of sphericity are likely to

have serious problems when we need them the most, it has been suggested that we always
use the correction to our degrees of freedom afforded by or , whichever is appropriate,

or use a multivariate procedure to be discussed later. This is a reasonable suggestion and

one worth adopting.

For our data, the F value for Intervals (F 5 29.85) is such that its interpretation would

be the same regardless of the value of , since the Interval effect will be significant even

for the lowest possible df. If the assumption of sphericity is found to be invalid, however,

alternative treatments would lead to different conclusions with respect to the I 3 G interac-

tion. For King’s data, the Mauchly’s sphericity test, as found from SPSS, indicates that the

assumption has been violated, and therefore it is necessary to deal with the problem resulting

from this violation.

´

~́Ń

~́´

~́Ń

~́ =
(N 2 g 1 1)(i 2 1) Ń 2 2

(i 2 1)[N 2 g 2 (i 2 1) Ń ]
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Ń

Ń´

´

´

Ń

Ń

dferrordfeffect
Ń

gNsj =

gNsjk =
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Ń =
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We can calculate and and evaluate F on the appropriate df. The pooled variance-

covariance matrix (averaged across the separate matrices) is presented in Table 14.5. 

(I have not presented the variance–covariance matrices for the several groups because they

are roughly equivalent and because each of the elements of the matrix is based on only

eight observations.)

From Table 14.5 we can see that our values of and are .6569 and .8674, respec-

tively. Since these are in the neighborhood of .75, we will follow Huynh and Feldt’s sug-

gestion and use . In this case, the degrees of freedom for the interaction are

(g 2 1)(i 2 1)(0.7508) 5 7.508

and

g(n 2 1)(i 2 1)(0.7508) 5 78.834

The exact critical value of , which means that we will reject the

null hypothesis for the interaction. Thus, regardless of any problems with sphericity, all

F.05(7.508, 78.834) is2.09

~́

~́Ń

~́Ń
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Table 14.5 Variance-covariance matrix and calculation of and 

Interval

1 2 3 4 5 6 Mean

6388.173 4696.226 2240.143 681.649 2017.726 1924.066 2991.330

4696.226 7863.644 4181.476 2461.702 2891.524 3531.869 4271.074

2240.143 4181.476 3912.380 2696.690 2161.690 3297.762 3081.690

681.649 2461.702 2696.690 4601.327 2248.600 3084.589 2629.093

2017.726 2891.524 2161.690 2248.600 3717.369 989.310 2337.703

1924.066 3531.869 3297.762 3084.589 989.310 5227.649 3009.208

=
(24 2 3 1 1)(5)(0.6569) 2 2

5325 2 3 2 5(0.6569)4 =
70.259

5322 2 5(0.6569)4 = 0.7508

~́ =
(N 2 g 1 1)(i 2 1) Ń 2 2

(i 2 1)3N 2 g 2 (i 2 1) Ń 4

=
179,303,883

53416,392,330 2 697,431,120 1 335,626,0644 = 0.6569

=
36(5285.090 2 3053.350)2

(6 2 1)3416,392,330 2 (2)(6)(58,119,260) 1 (36)(3053.3502)4

Ń =
i2(sjj 2 s)2

(i 2 1)(gs2
jk 2 2igs2

j 1 i2s2)

a s2
j = 2991.3302 1 Á 1 3009.2082 = 58,119,260

a s2
jk = 6388.1732 1 4696.2262 1 Á 1 5227.6492 = 416,392,330

s =
6388.173 1 4696.226 1 Á 1 989.310 1 5227.649

36
= 3053.350

sjj =
6388.173 1 7863.644 1 Á 1 5227.649

6
= 5285.090

~́Ń
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the effects in this analysis are significant. (They would also be significant if we used 

instead of .)

Simple Effects

The Interval 3 Group interaction is plotted in Figure 14.2; the interpretation of the data is

relatively clear. It is apparent that the Same group consistently performs above the level of

the other two groups—that is, the conditioned tolerance to midazolam leads to greater ac-

tivity in that group than in the other groups. It is also clear that activity decreases notice-

ably after the first 5-minute interval (during which the drug is having its greatest effect).

The interaction appears to be produced by the fact that the Different group is intermediate

between the other two groups during the first interval, but it is virtually indistinguishable

from the Control group thereafter. In addition, the Same group continues declining until at

least the fourth interval, whereas the other two groups drop precipitously and then level off.

Simple effects will prove useful in interpreting these results, especially in terms of examin-

ing group differences during the first and the last intervals. Simple effects will also be used

to test for differences between intervals within the Control group, but only for purposes of

illustration—it should be clear that Interval differences exist within each group.

As I have suggested earlier, the Greenhouse and Geisser and the Huynh and Feldt ad-

justments to degrees of freedom appear to do an adequate job of correcting for problems

with the sphericity assumption when testing for overall main effects or interactions. How-

ever, a serious question about the adequacy of the adjustment arises when we consider

within-subjects simple effects (Boik, 1981; Harris, 1985). The traditional approach to test-

ing simple effects (see Howell, 1987) involves testing individual within-subjects contrasts

against a pooled error term ( ). If there are problems with the underlying as-

sumption, this error term will sometimes underestimate and sometimes overestimate what

would be the proper denominator for F, playing havoc with the probability of a Type I error.

For that reason we are going to adopt a different, and in some ways simpler, approach.

The approach we will take follows the advice of Boik that a separate error term be de-

rived for each tested effect. Thus, when we look at the simple effect of Intervals for the

Control condition, for example, the error term will speak specifically to that effect and will

MSI3Ss w/in groups
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not pool other error terms that apply to other simple effects. In other words, it will be based

solely on the Control group. We can test the Interval simple effects quite easily by running

separate repeated-measures analyses of variance for each of the groups. For example, we

can run a one-way repeated-measures analysis on Intervals for the Control group, as dis-

cussed in Section 14.4. We can then turn around and perform similar analyses on Intervals

for the Same and Different groups separately. These results are shown in Table 14.6. In

each case the Interval differences are significant, even after we correct the degrees of free-

dom using or , whichever is appropriate.

If you look at the within-subject analyses in Table 14.6, you will see that the average

is (2685.669 1 3477.571 1 1871.026)/3 5 2678.089, which is 

from the overall analysis found on page 473. Here these denominators for the F ratios are

noticeably different from what they would have been had we used the pooled term, which

is the traditional approach. You can also verify with a little work that the terms

for each analysis are the same as those that we would compute if we followed the usual

procedures for obtaining simple effects mean squares.

For the between-subjects simple effects (e.g., Groups at Interval 1) the procedure is

more complicated. Although we could follow the within-subject example and perform sep-

arate analyses at each Interval, we would lose considerable degrees of freedom unnecessarily.

Here it is usually legitimate to pool error terms, and it is generally wise to do so.

MSInterval

MSI3Ss w/in groupsMSerror

~́Ń
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Table 14.6 Calculation of within-subjects simple effects for data from King (1986)

(a) Interval at Control

Source df SS MS F

Between subjects 7 134,615.58

Interval 5 76,447.25 15,289.45 5.69*

Error 35 93,998.42 2685.67

Total 47 305,061.25

*p , .05; 5 .404; 5 .570

(b) Interval at Same

Source df SS MS F

Between subjects 7 175,600.15

Interval 5 193,090.85 38,618.17 11.10*

Error 35 121,714.98 3477.57

Total 47 490,405.98

*p , .05; 5 .578; 5 1.00

(c) Interval at Different

Source df SS MS F

Between subjects 7 74,506.33

Interval 5 211,018.42 42,203.68 22.56*

Error 35 65,485.92 1871.03

Total 47 351,010.67

*p , .05; 5 .598; 5 1.00~́Ń

~́Ń

~́Ń



For this example we will examine the simple effects of Group at Interval 1 and Group

at Interval 6. The original data can be found in Table 14.4 on page 472. The sums of

squares for these effects are

Testing the simple effects of between-subjects terms is a little trickier. Consider for a

moment the simple effect of Group at Interval 1. This is essentially a one-way analysis of

variance with no repeated measures, since the Group means now represent the average of

single—rather than repeated—observations on subjects. Thus, subject differences are con-

founded with experimental error. In this case, the appropriate error sum of squares is

, where, from Table 14.4,

and

It may be easier for you to understand why we need this special error term if

you think about what it really represents. If you were presented with only the data for In-

terval 1 in Table 14.4 and wished to test the differences among the three groups, you would

run a standard one-way analysis of variance, and the would be the average of the

variances within each of the three groups. Similarly, if you had only the data from Interval 2,

Interval 3, and so on, you would again average the variances within the three treatment

groups. The that we have just finished calculating is in reality the average of the

error terms for these six different sets (Intervals) of data. As such, it is the average of the

variance within each of the 18 cells.

We can now proceed to form our F ratios.

A further difficulty arises in the evaluation of F. Since also represents the

sum of two heterogeneous sources of error [as can be seen by examination of the E(MS)

for Ss w/in groups and I 3 Ss w/in groups], our F will not be distributed on 2 and 126 df.
We will get ourselves out of this difficulty in the same way we did when we faced a simi-

lar problem concerning t in Chapter 7. We will simply calculate the relevant df against

which to evaluate F—more precisely; we will calculate a statistic denoted as and evaluatef ¿

MSw/in cell

FG at Int. 6 =
MSG at Int. 6

MSw/in cell

=
10,732>2
5285.09

= 1.02

FG at Int. 1 =
MSG at Int. 1

MSw/in cell

=
79,426.33>2

5285.09
= 7.51

MSw/in cell

MSerror

MSw/in cell

=
665,921.37

21 1 105
= 5285.09

MSw/in cell =
SSw/in cell

dfSs w/in group 1 dfI3Ss w/in group

= 384,722.03 1 281,199.34 = 665,921.37

SSw/in cell = SSSs w/in group 1 SSI3Ss w/in groups

SSw/in cell

= 10,732.00

1 (138.625 2 149.125)24
SSG at Int. 6 = 83(130.125 2 149.125)2 1 (178.625 2 149.125)2

= 79,426.33

1 (290.125 2 286.208)24
SSG at Int. 1 = 83(213.875 2 286.208)2 1 (354.625 2 286.208)2
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against . In this case, the value of is given by Welch (1938) and

Satterthwaite (1946) as

where

and are the corresponding degrees of freedom. For our example,

Rounding to the nearest integer gives 5 57. Thus, our F is distributed on (g 2 1, ) 5

(2, 57) df under . For 2 and 57 df, F
.05

5 3.16. Only the difference at Interval 1 is signif-

icant. By the end of 30 minutes, the three groups were performing at equivalent levels. It is

logical to conclude that somewhere between the first and the sixth interval the three groups

become nonsignificantly different, and many people test at each interval to find that point.

However, I strongly recommend against this practice as a general rule. We have already run

a number of significance tests, and running more of them serves only to increase the error

rate. Unless there is an important theoretical reason to determine the point at which the

group differences become nonsignificant—and I suspect that there are very few such

cases—then there is nothing to be gained by testing each interval. Tests should be carried

out to answer important questions, not to address idle curiosity or to make the analysis look

“complete.”

Multiple Comparisons

Several studies have investigated the robustness of multiple-comparison procedures for

testing differences among means on the within-subjects variable. Maxwell (1980) studied a

simple repeated-measures design with no between-subject component and advised adopt-

ing multiple-comparison procedures that do not use a pooled error term. We discussed such

a procedure (the Games-Howell procedure) in Chapter 12. (I did use a pooled error term in

the analysis of the migraine study, but there it was reasonable to assume homogeneity of

variance and I was using all of the weeks. If I had only been running a contrast involving

three of the weeks, I would seriously consider calculating an error term based on just the

data from those weeks.)

Keselman and Keselman (1988) extended Maxwell’s work to designs having one be-

tween-subject component and made a similar recommendation. In fact, they showed that

when the Groups are of different sizes and sphericity is violated, familywise error rates can

become very badly distorted. In the simple effects procedures that we have just considered,

I recommended using separate error terms by running one-way repeated-measures analy-

ses for each of the groups. For subsequent multiple-comparison procedures exploring those

simple effects, especially with unequal sample sizes, it would probably be wise to employ

H0

f ¿f ¿

f ¿ =
(384,722.03 1 281,199.34)2

384,722.032

21
1

281,199.342

105

= 56.84

dfv = 105v = 281,199.34

dfu = 21u = 384,722.03

dfu and dfv

v = SSI3Ss w/in groups

u = SSSs w/in groups

f ¿ =
(u 1 v)2

u2

dfu
1

v2

dfv

f ¿F.05(a 2 1, f ¿)Fobt
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the Games-Howell procedure using those separate covariance matrices. In other words, to

compare Intervals 3 and 4 for the Control group, you would generate your error term using

only the Intervals 3 and 4 data from just the Control group.

Myers (1979) has suggested making post hoc tests on a repeated measure using paired

t-tests and a Bonferroni correction. (This is essentially what I did for the migraine exam-

ple, though a Bonferroni correction was not necessary because I ran only one contrast.)

Maxwell (1980) showed that this approach does a good job of controlling the familywise

error rate, and Baker and Lew (1987) showed that it generally compared well against

Tukey’s test in terms of power. Baker proposed a simple modification of the Bonferroni

(roughly in line with that of Holm) that had even greater power.

14.8 Two Between-Subjects Variables and 
One Within-Subjects Variable

The basic theory of repeated-measures analysis of variance has already been described in

the discussion of the previous designs. However, experimenters commonly plan experi-

ments with three or more variables, some or all of which represent repeated measures on

the same subjects. We will briefly discuss the analysis of these designs. The calculations

are straight forward, because the sums of squares for main effects and interactions are ob-

tained in the usual way and the error terms are obtained by subtraction.

We will not consider the theory behind these designs at any length. Essentially, it

amounts to the extrapolation of what has already been said about the two-variable case. For

an excellent discussion of the underlying statistical theory see Winer (1971) or Maxwell

and Delaney (2004).

I will take as an example a study by St. Lawrence, Brasfield, Shirley, Jefferson, Alleyne,

and O’Bannon (1995) on an intervention program to reduce the risk of HIV infection among

African-American adolescents. The study involved a comparison of two approaches, one of

which was a standard 2-hour educational program used as a control condition (EC) and the

other was an 8-week behavioral skills training program (BST). Subjects were Male and

Female adolescents, and measures were taken at Pretest, Posttest, and 6 and 12 months

follow-up (FU6 and FU12). There were multiple dependent variables in the study, but the

one that we will consider is log(freq 1 1), where freq is the frequency of condom-protected

intercourse.4 This is a 2 3 2 3 4 repeated-measures design, with Intervention and Sex as

between-subjects factors and Time as the within-subjects factor. This design may be dia-

grammed as follows, where represents the ith group of subjects. 

Behavioral Skills Training Educational Control

Pretest Posttest FU6 FU12 Pretest Posttest FU6 FU12

Male

Female

The raw data and the necessary summary tables of cell totals are presented in Table 14.7a.

(These data have been generated to closely mimic the data reported by St. Lawrence et al.,

though they had many more subjects. Decimal points have been omitted.) In Table 14.7b are

the calculations for the main effects and interactions. Here, as elsewhere, the calculations are

carried out exactly as they are for any main effects and interactions.

G4G4G4G4G3G3G3G3

G2G2G2G2G1G1G1G1

Gi
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Table 14.7 Data and analysis of study by St. Lawrence et al. (1995)

(a) Data

Male Female

Pretest Posttest FU6 FU12 Pretest Posttest FU6 FU12

7 22 13 14 0 6 22 26

25 10 17 24 0 16 12 15

Behavioral 50 36 49 23 0 8 0 0

Skill 16 38 34 24 15 14 22 8

Training 33 25 24 25 27 18 24 37

10 7 23 26 0 0 0 0

13 33 27 24 4 27 21 3

22 20 21 11 26 9 9 12

4 0 12 0 0 0 14 1

17 16 20 10 0 0 12 0

0 0 0 0 15 28 26 15

69 56 14 36 0 0 0 0

5 0 0 5 6 0 23 0

4 24 0 0 0 0 0 0

Educational 35 8 0 0 25 28 0 16

Control 7 0 9 37 36 22 14 48

51 53 8 26 19 22 29 2

25 0 0 15 0 0 5 14

59 45 11 16 0 0 0 0

40 2 33 16 0 0 0 0

Group 3 Sex 3 Time means

Pretest Posttest FU6 FU12 Mean

BST Male 19.7 20.7 24.0 18.1 20.625

BST Female 7.2 9.8 13.6 10.2 10.200

EC Male 29.5 18.8 7.5 15.1 17.725

EC Female 10.1 10.0 9.7 9.5 9.825

Mean 16.625 14.825 13.700 13.225 14.594

Group 3 Sex means

Male Female Mean

BST 20.625 10.200 15.412

EC 17.725 9.825 13.775

Mean 19.175 10.012 14.594

(b) Calculations

SSSex = ntga (XSex 2 X )2 = 10 3 4 3 23(19.175 2 14.594)2 1 (10.012 2 14.594)24 = 3358.056

SSgroup = ntsa (XG 2 X )2 = 10 3 4 3 23(15.412 2 14.594)2 1 (13.775 2 14.594)24 = 107.256

SSsubj = ta (XSubj 2 X )2 = 43(14 2 14.594)2 1 Á 1 (0 2 14.594)24 = 21490.344

SStotal = a (X 2 X )2 = (7 2 14.594)2 1 Á 1 (0 2 14.594)2 = 35404.594

(continues)
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Table 14.7 (continued)

(c) Summary Table

Source df SS MS F

Between subjects 39 21,490.344

Group (Condition) 1 107.256 107.256 0.21

Sex 1 3358.056 3358.056 6.73*

G 3 S 1 63.757 63.757 0.13

Ss win groups** 36 17,961.275 498.924

Within subjects** 120 13,914.250

Time 3 274.069 91.356 0.90

T 3 G 3 1377.819 459.273 4.51*

T 3 S 3 779.919 259.973 2.55

T 3 G 3 S 3 476.419 158.806 1.56

T 3 Ss w/in groups** 108 11,006.025 101.908

Total 159 35,404.594

*p , .05

** Obtained by subtraction

= 6437.294 2 107.256 2 274.069 2 3358.056 2 1377.819 2 63.757 2 779.919 = 476.419

SSGTS = SScells GTS 2 SSG 2 SST 2 SSS 2 SSGT 2 SSGS 2 SSTS

SScells GTS = na (Xcells GTS 2 X )2 = 103(19.7–14.594)2 1 Á 1 (9.50–14.594)24 = 6437.294

SSTS = SScells TS 2 SST 2 SSS = 4412.044 2 274.069 2 3358.056 = 779.919

SScells TS = nga (Xcells TS 2 X )2 = 10 3 23(24.60 2 14.594)2 1 Á 1 (9.85 2 14.594)24 = 4412.044

SSTG = SScells TG 2 SST 2 SSG = 1759.144 2 274.069 2 107.256 = 1377.819

SScells TG = nsa (Xcells TG 2 X )2 = 10 3 23(13.45 2 14.594)2 1 Á 1 (12.300 2 14.594)24 = 1759.144

SStime = ngsa (XT 2 X )2 = 10 3 2 3 23(16.625 2 14.594)2 1 Á 1 (13.225 2 14.594)24 = 274.069

SSGS = SScells GS 2 SSG 2 SSS = 3529.069 2 107.256 2 3358.056 = 63.757

SScells GS = nta (Xcells GS 2 X )2 = 10 3 43(20.625 2 14.594)2 1 Á 1 (9.825 2 14.594)24 = 3529.069

The summary table for the analysis of variance is presented in Table 14.7c. In this table,

the ** indicate terms that were obtained by subtraction. Specifically,

These last two terms are the error terms for between-subjects and within-subjects effects,

respectively. That these error terms are appropriate is shown by examining the expected

mean squares presented in Table 14.8 on page 486.5 For the expected mean squares of ran-

dom and mixed models, see Kirk (1968) or Winer (1971).

SST3Ss w/in groups = SSw/in subj 2 SST 2 SSTG 2 SSTS 2 SSTGS

SSSs w/in groups = SSbetween subj 2 SSG 2 SSS 2 SSGS

SSw/in subj = SStotal 2 SSbetween subj

5 As in earlier tables of expected mean squares, we use the to refer to the variance of random terms and to
refer to the variability of fixed terms. Subjects are always treated as random, whereas in this study the two main
independent variables are fixed.

u2s2



From the column of F in the summary table of Table 14.7c, we see that the main effect of

Sex is significant, as is the Time 3 Group interaction. Both of these results are meaningful.

As you will recall, the dependent variable is a measure of the frequency of use of condoms

(log(freq 1 1)). Examination of the means reveals adolescent girls report a lower frequency

of use than adolescent boys. That could mean either that they have a lower frequency of in-

tercourse, or that they use condoms a lower percentage of the time. Supplementary data

supplied by St. Lawrence et al. show that females do report using condoms a lower percent-

age of the time than males, but not enough to account for the difference that we see here.

Apparently what we are seeing is a reflection of the reported frequency of intercourse.

The most important result in this summary table is the Time 3 Group interaction. This

is precisely what we would be looking for. We don’t really care about a Group effect, be-

cause we would like the groups to be equal at pretest, and that equality would dilute any

overall group difference. Nor do we particularly care about a main effect of Time, because

we expect the Control group not to show appreciable change over time, and that would

dilute any Time effect. What we really want to see is that the BST group increases their use

over time, whereas the EC group remains constant. That is an interaction, and that is what

we found.

Simple Effects for Complex Repeated-Measures Designs

In the previous example we saw that tests on within-subjects effects were occasionally dis-

rupted by violations of the sphericity assumption, and we took steps to work around this

problem. We will have much the same problem with this example.

The cell means plotted in Figure 14.3 reveal the way in which frequency of condom

use changes over time for the two treatment conditions and for males and females sepa-

rately. It is clear from this figure that the data do not tell a simple story.

We are again going to have to distinguish between simple effects on between-subject

factors and simple effects on within-subject factors. We will start with between-subject

simple effects. We have three different between-subjects simple effects that we could

examine—namely: the simple main effects of Condition and Sex at each Time, and the

Sex 3 Condition simple interaction effect at each Time. For example, we might wish to

check that the two Conditions (BST and EC) do not differ at pretest. Again, we might also

want to test that they do differ at FU6 and/or at FU12. Here we are really dissecting the

Condition 3 Time interaction effect, which we know from Table 14.7 to be significant.
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Table 14.8 Expected mean squares with A, B, and C fixed

Source df SS

Between subjects abn 2 1

A a 2 1

B b 2 1

AB (a 2 1)(b 2 1)

Ss w/in groups ab(n 2 1)

Within subjects abn(c 2 1)

C c 2 1

AC (a 2 1)(c 2 1)

BC (b 2 1)(c 2 1)

ABC (a 2 1) (b 2 1)(c 2 1)

C 3 Ss w/in groups ab(n 2 1)(c 2 1)

Total N 2 1

s2
e 1 s2

gp

s2
e 1 s2

gp 1 nu2
abg

s2
e 1 s2

gp 1 nau2
bg

s2
e 1 s2

gp 1 nbu2
ag

s2
e 1 s2

gp 1 nabu2
g

s2
e 1 cs2

p

s2
e 1 cs2

p 1 ncu2
ab

s2
e 1 cs2

p 1 nacu2
b

s2
e 1 cs2

p 1 nbcu2
a



By far the easiest way to test these between-subjects effects is to run separate two-way

(Condition 3 Sex) analyses at each level of the Time variable. These four analyses will

give you all three simple effects at each Time with only minor effort. You can then accept

the F values from these analyses, as I have done here for convenience, or you can pool the

error terms from the four separate analyses and use that pooled error term in testing the

mean square for the relevant effect. If these terms are heterogeneous, you would be wise

not to pool them. On the other hand, if they represent homogeneous sources of variance,

they may be pooled, giving you more degrees of freedom for error. For these effects you

don’t need to worry about sphericity because each simple effect is calculated on only one

level of the repeated-measures variable.

The within-subjects simple effects are handled in much the same way. For example,

there is some reason to look at the simple effects of Time for each Condition separately to

see whether the EC condition shows changes over time in the absence of a complete inter-

vention. Similarly, we would like to see how the BST condition changes with time. How-

ever, we want to include Sex as an effect in both of these analyses so as not to inflate the

error term unnecessarily. We also want to use a separate error term for each analysis, rather

than pooling these across Conditions.

The relevant analyses are presented in Table 14.9 for simple effects at one level of the

other variable. Tests at the other levels would be carried out in the same way. Although this

table has more simple effects than we care about, they are presented to illustrate the way in

which tests were constructed. You would probably be foolish to consider all of the tests that

result from this approach, because you would seriously inflate the familywise error rate.

Decide what you want to look at before you run the analyses, and then stick to that deci-

sion. If you really want to look at a large number of simple effects, consider adopting one

of the Bonferroni approaches discussed in Chapter 12.

From the between-subjects analysis in Table14.9a we see that at Time 1 (Pretest) there

was a significant difference between males and females (females show a lower frequency

of use). But there were no Condition effects nor was there a Condition 3 Sex interaction.

Males exceed females by just about the same amount in each Condition. The fact that there

is no Condition effect is reassuring, because it would not be comforting to find that our two

conditions differed before we had applied any treatment.

From the results in Table 14.9b we see that for the BST condition there is again a signif-

icant difference due to Sex, but there is no Time effect, nor a Time 3 Sex interaction. This

is discouraging: It tells us that when we average across Sex there is no change in frequency

of condom use as a result of our intervention. This runs counter to the conclusion that we

might have drawn from the overall analysis where we saw a significant Condition by Time
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interaction, and speaks to the value of examining simple effects. The fact that an effect we

seek is significant does not necessarily mean that it is significant in the direction we desire.

14.9 Two Within-Subjects Variables and 
One Between-Subjects Variable

The design we just considered can be seen as a straightforward extension of the case of one

between- and one within-subjects variable. All that we needed to add to the summary table

was another main effect and the corresponding interactions. However, when we examine a

design with two within-subjects main effects, the problem becomes slightly more compli-

cated because of the presence of additional error terms. To use a more generic notation, we

will label the independent variables as A, B, and C.

Suppose that as a variation on the previous study we continued to use different subjects

for the two levels of variable A (Gender), but we ran each subject under all combinations

of variables B (Condition) and C (Trials). This design can be diagrammed as
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Table 14.9 Analysis of simple effects

(a) Between-subjects effects (Condition, Sex, and Condition 3 Sex) at Pretest

Source df SS MS F

Condition 1 403.225 403.225 1.45

Sex 1 2544.025 2544.025 9.13*

Condition 3 Sex 1 119.025 119.025 0.43

Error 36 10027.100 278.530

Total 39 13093.375

(b) Within-subject effects (Sex, Time, Time 3 Sex) at BST

Source df SS MS F

Between subjects 19 7849.13

Sex 1 2173.61 2173.61 6.89*

Error (between) 18 5675.52 315.30

Within subjects 60 3646.26

Time 3 338.94 112.98 1.88

T 3 S 3 54.54 18.18 0.30

Error (within) 54 3252.78 60.24

Total 79 11495.39

*p , .05
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Table 14.10 Expected mean squares

Source df E(MS)

Between subjects an 2 1

A (groups) a 2 1

Ss w/in groups a(n 2 1)

Within subjects na(bc 2 1)

B b 2 1

AB (a 2 1)(b 2 1)

B 3 Ss w/in groups a(b 2 1)(n 2 1)

C c 2 1

AC (a 2 1)(c 2 1)

C 3 Ss w/in groups a(c 2 1)(n 2 1)

BC (b 2 1)(c 2 1)

ABC (a 2 1) (b 2 1)(c 2 1)

BC 3 Ss w/in groups a(b 2 1)(c 2 1)(n 2 1)

Total N 2 1

s2
e 1 ns2

bgp

s2
e 1 ns2

bgp 1 ns2
abg

s2
e 1 ns2

bgp 1 nau2
bg

s2
e 1 bs2

gp

s2
e 1 bs2

gp 1 nbu2
ag

s2
e 1 bs2

gp 1 nabu2
g

s2
e 1 cs2

bp

s2
e 1 cs2

bp 1 ncu2
ab

s2
e 1 cs2

bp 1 nacu2
b

s2
e 1 bcs2

p

s2
e 1 bcs2

p 1 nbcu2
a

Before we consider an example, we will examine the expected mean squares for this

design. These are presented in Table 14.10 for the case of the model in which all factors

other than subjects are fixed. (subjects are treated as a random factor.) From the expected

mean squares it is evident that we will have four error terms for this design. As before, the

is used to test the between-subjects effect. When it comes to the within-

subjects terms, however, B and the interaction of B with A are tested by B 3 Ss within

groups; C and its interaction with A are tested by C 3 Ss within groups; and BC and its in-

teraction with A are tested by BC 3 Ss within groups. Why this is necessary is apparent

from the expected mean squares.

An Analysis of Data on Conditioned Suppression

Assume that a tiny “click” on your clock radio always slightly precedes your loud and intru-

sive alarm going off. Over time that click (psychologists would call it a “CS”) could come

to elicit the responses normally produced by the alarm (the “US”). Moreover, it is possible

that simply presenting the click might lead to the suppression of an ongoing behavior, even

if that click is not accompanied by the alarm. (If you were lying there reading, you might

pause in your reading.) In a laboratory investigation of how the click affects (suppresses)

ongoing behavior, Bouton and Swartzentruber (1985) investigated the degree to which a

tone, which had previously been paired with shock, would suppress the rate of an ongoing

bar-pressing response in rats. Suppression was measured by taking the ratio of the number

of bar presses during a 1-minute test period following the tone to the total number of bar

presses during both a baseline period and the test period. For all groups, behavior was

assessed in two Phases—a Shock Phase (shock accompanied the tone) and a No-shock Phase

(shock did not accompany the tone) repeated over a series of four Cycles of the experiment.

It may be easier to understand the design of the study if you first glance at the layout of

Table 14.11. During Phase I, Group A-B was placed in Box A. After a 1-minute baseline inter-

val, during which the animal bar-pressed for food, a tone was presented for 1 minute and was

followed by a mild shock. The degree of suppression of the bar-pressing response when the

tone was present (a normal fear response) was recorded. The animal was then placed in Box B

MSSs w/in groups



for Phase II of the cycle, where, after 1 minute of baseline bar-pressing, only the tone stimulus

was presented. Since the tone was previously paired with shock, it should suppress bar-pressing

behavior to some extent. Over a series of A-B cycles, however, the subject should learn that

shock is never administered in Phase II and that Box B is therefore a “safe” box. Thus, for later

cycles there should be less suppression on the no-shock trials.

Group L-A-B was treated in the same way as Group A-B except that these animals pre-

viously had had experience with a situation in which a light, rather than a tone, had been

paired with shock. Because of this previous experience, the authors expected the animals
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Table 14.11 Analysis of conditioned suppression (Lower scores represent greater suppression.)

(a
1
) Data

Cycle

1 2 3 4

Phase Phase Phase Phase

Subject

Group I II I II I II I II Mean

A-B 1* 28 22 48 22 50 14 48 29.125

21 21 16 40 15 39 11 56 27.375

15 17 13 35 22 45 1 43 23.875

30 34 55 54 37 57 57 68 49.000

11 23 12 33 10 50 8 53 25.000

16 11 18 34 11 40 5 40 21.875

7 26 29 40 25 50 14 56 30.875

0 22 23 45 18 38 15 50 26.375

MeanAB 12.625 22.750 23.500 41.125 20.000 46.125 15.625 51.750 29.188

A-A 1 6 16 8 9 14 11 33 12.250

37 59 28 36 34 32 26 37 36.125

18 43 38 50 39 15 29 18 31.250

1 2 9 8 6 5 5 15 6.375

44 25 28 42 47 46 33 35 37.500

15 14 22 32 16 23 32 26 22.500

0 3 7 17 6 9 10 15 8.375

26 15 31 32 28 22 16 15 23.125

MeanAA 17.750 20.875 22.375 28.125 23.125 20.750 20.250 24.250 22.188

L-A-B 33 43 40 52 39 52 38 48 43.125

4 35 9 42 4 46 23 51 26.750

32 39 38 47 24 44 16 40 35.000

17 34 21 41 27 50 13 40 30.375

44 52 37 48 33 53 33 43 42.875

12 16 9 39 9 59 13 45 25.250

18 42 3 62 45 49 60 57 42.000

13 29 14 44 9 50 15 48 27.750

MeanLAB 21.625 36.250 21.375 46.875 23.750 50.375 26.375 46.500 34.141

Total 17.333 26.625 22.417 38.708 22.292 39.083 20.750 40.833 28.505

* Decimal points have been omitted in the table, but included in the calculations.
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6 For those who want to see the calculations, the corresponding pages from the previous edition can be found at
www.uvm.edu/~dhowell/method7/More_Stuff/Table14-11Analysis.html.

to perform slightly better (less suppression during Phase II) than did the other group, espe-

cially on the first cycle or two.

Group A-A was also treated in the same way as Group A-B except that both Phases were

carried out in the same box—Box A. Because there were no differences in the test boxes to

serve as cues (i.e., animals had no way to distinguish the no-shock from the Shock Phases),

this group would be expected to show the most suppression during the No-shock Phases.

Bouton and Swartzentruber predicted that overall there would be a main effect due to

Phase (i.e., a difference between shock and No-shock Phases), a main effect due to Groups

(A-B and L-A-B showing less suppression than A-A), and a main effect due to Cycles (ani-

mals tested in Box B would learn over time that it was a safe location). They also predicted

that each of the interactions would be significant. (One reason I chose to use this example,

even though it is difficult to describe concisely, is that it is one of those rare studies in

which all effects are predicted to be significant and meaningful.)

The data and analysis of variance for this study are presented in Table 14.11. The analy-

sis has not been elaborated in detail because it mainly involves steps that you already know

how to do. The results are presented graphically in Figure 14.4 for convenience, and for the

most part they are clear-cut and in the predicted direction. Keep in mind that for these data a

lower score represents more suppression—that is, the animals are responding more slowly.

Rather than present literally three pages of tables and calculations, which few people

would have the patience to work through, I have chosen to carry out the analysis using

SPSS.6 The data would be entered just as they appear in Table 14.11, with a column for

Groups on the left. You would select Analyze, General Linear Model, Repeated Mea-

sures from the drop-down menus and specify that there were two repeated measures

(Cycles with 4 levels and Phases with 2 levels). Then click on Define and specify the vari-

ables that are associated with each of the cells and the variable(s) that define the Between-

Subject Factor(s). This dialogue box follows, where C1P1 – C4P2 would be moved to

the Within-Subjects Variables box and Group would be moved to the Between-Subjects

Factor(s) box.

55

50

L A B

45

40

35

30

25

20

15

10

S
u

p
p

re
ss

io
n

 r
a

ti
o

Shock

Cycle 1 2 3 4

A A
A B

Figure 14.4 Conditioned suppression data



492 Chapter 14 Repeated-Measures Designs

From the bottom row of that dialogue box you can specify what plots you would like to

see, what contrasts you would like to run, and any descriptive statistics you want printed

out. Then click on OK to run the analysis.

An abbreviated summary table appears below. I have omitted entries in the table related

to Greenhouse and Geisser and related corrections to condense the table. Notice that SPSS

presents separate tables for Within-Subjects factors and Between-Subjects factors, though I

would prefer to have them combined into one table with appropriate indentations.

Notice that there are multiple error terms in the table. The Group effect is tested by the

Error term in the Between-Subjects table. Then Cycle and Cycle 3 Group are tested by

Error(Cycle), Phase and Phase 3 Group are tested by Error(Phase), and Cycle 3 Phase and

Cycle 3 Phase 3 Group are tested by Error(Cycle 3 Phase).

From the summary table in Table 14.12, it is clear that nearly all the predictions were

supported. The only effect that was not significant was the main effect of Groups, but that

effect is not crucial because it represents an average across the shock and the No-shock

phases, and the experimenters had predicted little or no group differences in the Shock

phase. In this context, the Phase 3 Group interaction is of more interest, and it is clearly

significant.

The presence of an interpretable three-way interaction offers the opportunity to give

another example of the use of simple interaction effects. We would have predicted that all

groups would show high levels of suppression of the shock trials on all Cycles, because

anticipated shock is clearly disruptive. On No-shock trials, however, Groups A-B and L-A-B
should show less suppression (higher scores) than Group A-A, and this latter difference

should increase with Cycles. In other words, there should be a Groups 3 Cycles interac-

tion for the No-shock trials, but no such interaction for the shock trials. The simple effects

are shown in Table 14.13. (In these tables I have left in the corrections based on Green-

house-Geisser, Huynh-Feldt, and Lower-bound solutions to illustrate how they are pre-

sented by SPSS. Whether or not we choose to implement the corrections does not affect



the conclusions. The calculation of the appropriate tests was carried out the same way it

was earlier, by running a reduced analysis of variance using only the Phase 1 (or Phase 2)

cells. Here again we are using separate error terms to test the Shock and No-shock effects,

thus reducing problems with the sphericity assumption. (Again, just because the analyses

also give simple effects due to Groups and Cycles is no reason to feel an obligation to

interpret them. If they don’t speak to issues raised by the experimental hypotheses, they

should neither be reported nor interpreted unless you take steps to minimize the increase in

the experimentwise error rate.)

Section 14.9 Two Within-Subjects Variables and One Between-Subjects Variable 493

Table 14.12 SPSS output of the analysis of conditioned suppression data

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source

Type III Sum

of Squares df Mean Square F Sig.

Cycle Sphericity

Assumed

2726.974 3 908.991 12.027 .000

Cycle * Group Sphericity

Assumed

1047.073 6 174.512 2.309 .044

Error(Cycle) Sphericity

Assumed

4761.328 63 75.77

Phase Sphericity

Assumed

11703.130 1 11703.130 129.855 .000

Phase * Group Sphericity

Assumed

4054.385 2 2027.193 22.493 .000

Error(Phase) Sphericity

Assumed

1892.609 21 90.124

Cycle * Phase Sphericity

Assumed

741.516 3 247.172 4.035 .011

Cycle * 

Phase * 

Group

Sphericity

Assumed

1273.781 6 212.297 3.466 .005

Error(Cycle *

Phase)

Sphericity

Assumed

3859.078 63 61.255

Source

Type III Sum

of Squares df Mean Square F Sig.

Intercept 156009.005 1 156009.005 208.364 .000

Group 4616.760 2 2308.380 3.083 .067

Error 15723.359 21 748.731



Source

Type III Sum

of Squares df Mean Square F Sig.

Cycle Sphericity

Assumed

403.615 3 134.538 1.740 .168

Greenhouse-

Geisser

403.615 2.391 168.788 1.740 .180

Huynh-Feldt 403.615 2.977 135.598 1.740 .168

Lower-bound 403.615 1.000 403.615 1.740 .201

Cycle * Group Sphericity

Assumed

415.604 6 69.267 .896 .504

Greenhouse-

Geisser

415.604 4.783 86.901 .896 .488

Huynh-Feldt 415.604 5.953 69.813 .896 .503

Lower-bound 415.604 2.000 207.802 .896 .423

Error(Cycle) Sphericity

Assumed

4871.031 63 77.318

Greenhouse-

Geisser

4871.031 50.216 97.001

Huynh-Feldt 4871.031 62.508 77.927

Lower-bound 4871.031 21.000 231.954

Source

Type III Sum of

Squares df Mean Square F Sig.

Intercept 41126.760 1 41126.760 73.845 .000

Group 458.396 2 229.198 .412 .668

Error 11695.594 21 556.933
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Table 14.13 Simple interaction effects on conditioned suppression data

(a) Within-subjects effects (Group 3 Cycle at Phase I)

Test of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Tests of Within-Subjects Effects

Measure: MEASURE_1

(continues)



Source

Type III Sum

of Squares df Mean Square F Sig.

Cycle Sphericity

Assumed

3064.875 3 1021.625 17.166 .000

Greenhouse-

Geisser

3064.875 2.275 1347.224 17.166 .000

Huynh-Feldt 3064.875 2.809 1091.085 17.166 .000

Lower-bound 3064.875 1.000 3064.875 17.166 .000

Cycle * Group Sphericity

Assumed

1905.250 6 317.542 5.336 .000

Greenhouse-

Geisser

1905.250 4.550 418.744 5.336 .001

Huynh-Feldt 1905.250 5.618 339.131 5.336 .000

Lower-bound 1905.250 2.000 952.625 5.336 .013

Error(Cycle) Sphericity

Assumed

3749.375 63 59.514

Greenhouse-

Geisser

3749.375 47.774 78.481

Huynh-Feldt 3749.375 59.989 63.560

Lower-bound 3749.375 21.000 178.542

Source

Type III Sum of

Squares df Mean Square F Sig.

Intercept 126585.375 1 126585.375 449.008 .000

Group 8212.750 2 4106.375 14.566 .000

Error 5920.375 21 281.923
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Table 14.13 (continued )

b) Within-subject effects (Group 3 Cycle at Phase II)

Test of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Tests of Within-Subjects Effects

Measure: MEASURE_1

From the simple interaction effects of Group 3 Cycle at each level of Phase, you can

see that Bouton and Swartzentruber’s predictions were upheld. There is no Cycle 3 Group

interaction on Shock trials, but there is a clear interaction on No-shock trials.

14.10 Intraclass Correlation

One of the important issues in designing experiments in any field is the question of the re-

liability of the measurements. Most of you would probably expect that the last place to

look for anything about reliability is in a discussion of the analysis of variance, but that is



exactly where you will find it. (For additional material on the intraclass correlation, go to

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/icc/icc.html.)

Suppose that we are interested in measuring the reliability with which judges rate the

degree of prosocial behavior in young children. We might investigate this reliability by

having two or more judges each rate a behavior sample of a number of children, assigning

a number from 1 to 10 to reflect the amount of prosocial behavior in each behavior sample.

I will demonstrate the procedure with some extreme data that were created to make a point.

Look at the data in Table 14.14.

In Table 14.14a the judges are in almost perfect agreement. They all see wide differ-

ences among children, they all agree on which children show high levels of prosocial

behavior and which show low levels, and they are nearly in agreement on how high or

low those levels are. In this case nearly all of the variability in the data involves differ-

ences among children—there is almost no variability among judges and almost no ran-

dom error.

In Table 14.14b we see much the same pattern, but with a difference. The judges do see

overall differences among the children, and they do agree on which children show the high-

est (and lowest) levels of the behavior. But the judges disagree in terms of the amount of

prosocial behavior they see. Judge II sees slightly less behavior than Judge I (his mean is

1 point lower), and Judge III sees relatively more behavior than do the others. In other

words, while the judges agree on ordering children, they disagree on level. Here the data

involve both variability among children and variability among judges. However, the

random error component is still very small. This is often the most realistic model of how

people rate behavior because each of us has a different understanding of how much behav-

ior is required to earn a rating of “7,” for example. Our assessment of the reliability of a

rating system must normally take variability among judges into account.

Finally, Table 14.14c shows a pattern where not only do the judges disagree in level,

they also disagree in ordering children. A large percentage of the variability in these data is

error variance.

So what do we do when we want to talk about reliability? One way to measure relia-

bility when judges use only a few levels or categories is to calculate the percentage of

times that two judges agree on their rating, but this measure is biased because of high lev-

els of chance agreement whenever one or two categories predominate. (But see the dis-

cussion earlier of Cohen’s kappa.) Another common approach is to correlate the ratings of

two judges, and perhaps average pairwise correlations if you have multiple judges. But

this approach will not take differences between judges into account. (If one judge always

rates five points higher than another judge the correlation will be 1.00, but the judges are

saying different things about the subjects.) A third way is to calculate what is called the

intraclass correlation, taking differences due to judges into account. That is what we will

do here.
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Table 14.14 Data for intraclass correlation examples

(a) (b) (c)

Judge Judge Judge

Child I II III I II III I II III

1 1 1 2 1 0 3 1 3 7

2 3 3 3 3 2 5 3 1 5

3 5 5 5 5 4 7 5 7 4

4 5 6 6 5 4 7 5 5 5

5 7 7 7 7 6 8 7 6 7

intraclass

correlation



You can calculate an intraclass correlation coefficient in a number of different ways,

depending on whether you treat judges as a fixed or random variable and whether judges

evaluate the same or different subjects. The classic reference for intraclass correlation is

Shrout and Fleiss (1979), who discuss several alternative approaches. I am going to discuss

only the most common approach here, one in which we consider our judges to be a random

sample of all judges we could have used and in which each judge rates the same set of sub-

jects once. (In what follows I am assuming that judges are rating “subjects,” but they could

be rating pictures, cars, or the livability of cities. Take the word “subject” as a generic term

for whatever is being rated.)

We will start by assuming that the data in Table 14.14 can be represented by the fol-

lowing model:

In this model stands for the effect of the ith judge, stands for the effect of the jth sub-

ject (person), is the interaction between the ith judge and the jth subject (the degree to

which the judge changes his or her rating system when confronted with that subject), and

stands for the error associated with that specific rating. Because each judge rates each

subject only once, it is not possible in this model to estimate and separately, but it

is necessary to keep them separate in the model.

If you look back to the previous chapter you will see that when we calculated a magnitude-

of-effect measure (which was essentially an r2-family measure), we took the variance esti-

mate for the effect in question (in this case differences among subjects) relative to the sum

of the estimates of the several sources of variance. That is precisely what we are going to

do here. We will let

If most of the variability in the data is due to differences between subjects, with only a

small amount due to differences between judges, the interaction of judges and subjects, and

error, then this ratio will be close to 1.00. If judges differ from one another in how high or

low they rate people in general, or if there is a judge by subject interaction (different judges

rate different people differently), or if there is a lot of error in the ratings, the denominator

will be substantially larger than the numerator and the ratio will be much less than 1.00.

To compute the intraclass correlation we are first going to run a Subjects 3 Judges

analysis of variance with Judges as a repeated measure. Because each judge rates each sub-

ject only once, there will not be an independent estimate of error, and we will have to use

the Judge 3 Subject interaction as the error term. From the summary table that results, we

will compute our estimate of the intraclass correlation as

where j represents the number of judges and n represents the number of subjects.

To illustrate this, I have run the analysis of variance on the data in Table14.14b, which

is the data set where I have deliberately built in some differences due to subjects and

judges. The summary table for this analysis follows.

Source df SS MS F

Between subjects 4 57.067 14.267

Within subjects 10 20.666 2.067

Judge 2 20.133 10.067 150.25

Judge × Subjects 8 0.533 0.067

Total 14 77.733 

Intraclass correlation =
MSSubjects 2 MSJ3S

MSSubjects 1 ( j 2 1)MSJ3S 1 j(MSJudge 2 MSJ3S)>n

Intraclass correlation = s2
p>(s2

a 1 s2
p 1 s2

ap 1 s2
e)

eijapij

eij

apij

pjai

Xij = m 1 ai 1 pj 1 apij 1 eij
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We can now calculate the intraclass correlation as

Thus our measure of reliability is .70, which is probably not as good as we would like to

see it. But we can tell from the calculation that the main thing that contributed to low relia-

bility was not error, but differences among judges. This would suggest that we need to have

our judges work together to decide on a consistent scale where a “7” means the same thing

to each judge.

14.11 Other Considerations

Sequence Effects

Repeated-measures designs are notoriously susceptible to sequence effects and carryover

(practice) effects. Whenever the possibility exists that exposure to one treatment will influ-

ence the effect of another treatment, the experimenter should consider very seriously be-

fore deciding to use a repeated-measures design. In certain studies, carryover effects are

desirable. In learning studies, for example, the basic data represent what is carried over

from one trial to another. In most situations, however, carryover effects (and especially dif-

ferential carryover effects) are considered a nuisance—something to be avoided.

The statistical theory of repeated-measures designs assumes that the order of adminis-

tration is randomized separately for each subject, unless, of course, the repeated measure is

something like trials, where it is impossible to have trial 2 before trial 1. In some situations,

however, it makes more sense to assign testing sequences by means of a Latin square or

some other device. Although this violates the assumption of randomization, in some situa-

tions the gains outweigh the losses. What is important, however, is that random assignment,

Latin squares, and so on do not in themselves eliminate sequence effects. Ignoring analy-

ses in which the data are analyzed by means of a Latin square or a related statistical proce-

dure, any system of assignment simply distributes sequence and carryover effects across

the cells of the design, with luck lumping them into the error term(s). The phrase “with

luck” implies that if this does not happen, the carryover effects will be confounded with

treatment effects and the results will be very difficult, if not impossible, to interpret.

For those students particularly interested in examining sequence effects, Winer (1971),

Kirk (1968), and Cochran and Cox (1957) present excellent discussions of Latin square

and related designs.

Unequal Group Sizes

One of the pleasant features of repeated-measures designs is that when a subject fails to 

arrive for an experiment, it often means that that subject is missing from every cell in which

he was to serve. This has the effect of keeping the cell sizes proportional, even if unequal. If

you are so unlucky as to have a subject for whom you have partial data, the common proce-

dure is to eliminate that subject from the analysis. If, however, only one or two scores are

missing, it is possible to replace them with estimates, and in many cases this is a satisfactory

approach. For a discussion of this topic, see Federer (1955, pp. 125–126, 133ff ), and especially

Little and Rubin (1987), and Howell (2008) and the discussion in Section 14.12.

=
14.200

14.267 1 0.134 1 6
=

14.2

20.401
= .70

Intraclass correlation =
14.267 2 0.067

14.267 1 (3 2 1)0.067 1 3(10.067 2 0.067)>5
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Matched Samples and Related Problems

In discussing repeated-measures designs, we have spoken in terms of repeated measure-

ments on the same subject. Although this represents the most common instance of the use

of these designs, it is not the only one. The specific fact that a subject is tested several times

really has nothing to do with the matter. Technically, what distinguishes repeated-measures

designs (or, more generally, randomized blocks designs, of which repeated-measures de-

signs are a special case) from the common factorial designs with equal ns is the fact that

for repeated-measures designs, the off-diagonal elements of do not have an expectation

of zero—that is, the treatments are correlated. Repeated use of the same subject leads to

such correlations, but so does use of matched samples of subjects. Thus, for example, if

we formed 10 sets of three subjects each, with the subjects matched on driving experience,

and then set up an experiment in which the first subject under each treatment came from

the same matched triad, we would have correlations among treatments and would thus have

a repeated-measures design. Any other data-collection procedure leading to nonzero corre-

lations (or covariances) could also be treated as a repeated-measures design.

14.12 Mixed Models for Repeated-Measures Designs

Earlier in the chapter I said that the standard repeated-measures analysis of variance

requires an assumption about the variance–covariance matrix known as sphericity, a spe-

cific form of which is known as compound symmetry. When we discussed and we were

concerned with correction factors that we could apply to the degrees of freedom to circum-

vent some of the problems associated with a failure of the sphericity assumption.

There is a considerable literature on repeated-measures analyses and their robustness

in the face of violations of the underlying assumptions. Although there is not universal

agreement that the adjustments proposed by Greenhouse and Geisser and by Huynh and

Feldt are successful, the adjustments work reasonably well as long as we focus on overall

main or interaction effects, or as long as we use only data that relate to specific simple

effects (rather than using overall error terms). Where we encounter serious trouble is when

we try to run individual contrasts or simple effects analyses using pooled error terms. Boik

(1981) has shown that in these cases the repeated-measures analysis is remarkably sensi-

tive to violations of the sphericity assumption unless we adopt separate error terms for each

contrast, as I did for the simple effects tests in Table 14.13. However there is another way

of dealing with assumptions about the covariance matrix, and that is to not make such

assumptions. But to do that we need to take a different approach to the analysis itself.

Standard repeated measures analysis of variance has two problems that we have lived

with for many years and will probably continue to live with. It assumes both compound

symmetry (or sphericity) and complete data. If a participant does not appear for a follow-

up session, even if he appears for all of the others, he must be eliminated from the analy-

sis. There is an alternative approach to the analysis of repeated measures designs that

does not hinge on either sphericity assumptions or complete data. This analysis is often

referred to as mixed models, multilevel modeling, or hierarchical modeling. There is a

bit of confusion here because we have already used the phrase “mixed models” to refer

to any experimental design that involves both fixed and random factors. That is a per-

fectly legitimate usage. But when we are speaking of a method of analysis, such as we

are here, the phrase “mixed models” refers more to a particular type of solution, in-

volving both fixed and random factors, using a different approach to the arithmetic.

More specifically, when someone claims to have done their analysis using mixed mod-

els, they are referring to a solution that employs maximum likelihood or, more likely,

~́Ń

g
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restricted maximum likelihood (REML) in place of the least squares approaches that

we have focused on up to now and will focus on again in the next two chapters.7

In this section I will discuss a small part of the broader topic of hierarchical or multi-

level models. For these models the repeated measure (e.g., Time or Trials) is a fixed factor

while Subjects is a random factor. The between-subjects factor is also usually a fixed fac-

tor. By approaching the problem using restricted maximum likelihood (REML) as the

method of parameter estimation, the solution can take cognizance from the very beginning

of the analysis that one or more factors are fixed and one or more factors are random. Least

squares solutions of standard analysis of variance treats all factors as fixed until it comes to

determining error terms for F statistics.

No one would seriously attempt to do a mixed model analysis by hand. You must use

computer software to perform the analysis. However, there are many software programs

available, some of them even free. The ones that you will have most access to are probably

SPSS Mixed and SAS Proc Mixed. I will use SPSS for our example, though SAS proc

mixed is probably more flexible. A more complete discussion of the analysis of alternative

designs can be found at http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_

Data/Mixed Models for Repeated Measures.pdf. For an example I have chosen a design with

one between subject variable and one within subject variable. The example has missing data

because that will illustrate an analysis that you can not do with standard analysis of variance.

The Data

I created data to have a number of characteristics. There are two groups—a Control group

and a Treatment group, measured at 4 times. These times are labeled as 0 (pretest), 1 (one

month posttest), 3 (three months follow-up), and 6 (six months follow-up). I had a study of

treatment of depression in mind, so I created the treatment group to show a sharp drop in

depression at post-test and then sustain that drop (with slight regression) at 3 and 6 months.

The Control group declines slowly over the 4 intervals but does not reach the low level of

the Treatment group.

The data are shown in Table 14.15. A period is used to indicate missing values.
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Table 14.15 Data for mixed model analysis

Group Subj Time0 Time1 Time3 Time6

1 1 296 175 187 242

1 2 376 329 236 126

1 3 309 238 150 173

1 4 222 60 82 135

1 5 150 . 250 266

1 6 316 291 238 194

1 7 321 364 270 358

1 8 447 402 . 266

1 9 220 70 95 137

1 10 375 335 334 129

1 11 310 300 253 .

1 12 310 245 200 170

7 In previous editions I used the MANOVA approach under SPSS/Univariate/Repeated measures as a way of
avoiding assumptions of compound symmetry. This approach does not require compound symmetry, but it does
require balanced designs. I have dropped it in favor of the mixed model precisely because the mixed model will
handle missing data much better.

(continues)

SPSS Mixed

SAS Proc Mixed

restricted

maximum
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One difference between data files for mixed models and others is that we use what is often

called a “long form.” Instead of putting each subject’s data on one line, we have a separate

line for every value of the dependent variance. Thus our data file will be structured like the

one in Table 14.16

Instead of showing you how to use the graphical interface in SPSS, which would take

quite a bit of space, I am simply giving you the syntax for the commands.8 After you have

entered your data, open a new Syntax window, paste in the following commands, and

select Run from the toolbar. I have left out a number of commands that do fine tuning, but

what I have will run your analysis nicely.

MIXED

dv BY Group Time

/FIXED 5 Group Time Group * Time | SSTYPE(3)

/METHOD 5 REML

/PRINT 5 DESCRIPTIVES SOLUTION

/REPEATED 5 Time | SUBJECT(Subj) COVTYPE(CS)

/EMMEANS 5 TABLES(Group)

/EMMEANS 5 TABLES(Time)

/EMMEANS 5 TABLES(Group * Time).
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Table 14.15 (continued )

Group Subj Time0 Time1 Time3 Time6

2 13 282 186 225 134

2 14 317 31 85 120

2 15 362 104 . .

2 16 338 132 91 77

2 17 263 94 141 142

2 18 138 38 16 95

2 19 329 . . 6

2 20 292 139 104 .

2 21 275 94 135 137

2 22 150 48 20 85

2 23 319 68 67 .

2 24 300 138 114 174

Table 14.16 Data restructured into a long form

Subj Time Group dv

1 0 1 296

1 1 1 175

1 3 1 187

1 6 1 242

. . . . . . . . . . . .

24 3 2 114

24 6 2 174

8 The following is quick description of using the menu selections. Select analysis/mixed/linear, specify Subj for
the Subjects box and Time for the Repeated box. Click continue and move to the next screen. Specify the
dependent variable (dv) and the factors (Group and Time). Select fixed from the bottom of the box, highlight both
Group and Time and click the add button,  click continue. Now click on the random button and add Subj to the
bottom box. Then click paste to make sure that you have syntax similar to what I gave above. 



I am only presenting the most important parts of the printout, but you can see the rest by

running the analysis yourself. (The data are available on the book’s Web site as

WickMiss.dat.)
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Information Criteriaa

–2 Restricted Log Likelihood 905.398

Akaike’s Information Criterion (AIC) 909.398

Hurvich and Tsai’s Criterion (AICC) 909.555
Bozdogan’s Criterion 916.136

Schwarz’s Bayesian Criterion (BIC) 914.136

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: dv

Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 22.327 269.632 .000

Group 1 22.327 16.524 .001

Time 3 58.646 32.453 .000

Group * Time 3 58.646 6.089 .001

a Dependent Variable: dv

Covariance Parameters

Estimates of Covariance Parametersa

Parameter Estimate Std. Error

Repeated Measures CS diagonal offset 2954.544 551.1034

CS covariance 2558.656 1026.581

a Dependent Variable: dv

I will not discuss the section labeled “Information criteria” here, but will come back to

it when we compare the fit of different models. The fixed effects part of the table looks just

like one that you would see in most analyses of variance except that it does not include

sums of squares and mean squares. That is because of the way that maximum likelihood

solutions go about solving the problem. In some software it is possible to force them into

the printout. Notice the test on the Intercept. That is simply a test that the grand mean is 0,

and is of no interest to us. The other three effects are all significant. We don’t really care

very much about the two main effects. The groups started off equal on pre-test, and those

null differences would influence any overall main effect of groups. Similarly, we don’t care

a great deal about the Time effect because we expect different behavior from the two

groups. What we do care about, however, is the interaction. This tells us that the two groups

perform differently over Time, which is what we hoped to see. You can see this effect in

Figure 14.5.

There are two additional results in the printout that need to be considered. The section

headed “Covariance Parameters” is the random part of the model. The term labeled “CS

diagonal offset” represents the residual variance and, with balanced designs, would be the

error term for the within-subject tests. The term labeled “CS covariance” is the variance of

the intercepts, meaning that if you plot the dependent variable against time for each sub-

ject, the differences in intercepts of those lines would represent differences due to subjects



(some lines are higher than others) and it is this variance that we have here. For most of us

that variance is not particularly important, but there are studies in which it is.

As I said earlier, mixed model analyses do not require an assumption of compound

symmetry. In fact, that assumption is often incorrect. In Table 14.17 you can see the pat-

tern of correlations among trials. These are averaged over the separate groups, but give you

a clear picture that the structure is not one of compound symmetry.

There are a number of things that we could do to alter the model that we just ran, which

requested a solution based on compound symmetry. We could tell SPSS to solve the problem

without assuming anything about the correlations or covariances. (That is essentially what

the MANOVA approach to repeated measures does.) The problem with this approach is

that the solution has to derive estimates of those correlations and that will take away

degrees of freedom, perhaps needlessly. There is no point in declaring that you are to-

tally ignorant when you are really only partially ignorant. Another approach would be to

assume a specific (but different) form of the covariance matrix. For example, we could

use what is called an autoregressive solution. Such a solution assumes that correlations

between observations decrease as the times move further apart in time. It further assumes

that each correlation depends only on the preceding correlation plus some (perhaps

much) error. If the correlation between adjacent trials is, for example 0.5121 (as it is in

the study we are discussing), then times that are two steps apart are assumed to correlate

.51212 and times three steps apart are assumed to correlate .51213. This leads to a matrix
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Figure 14.5 Means across trials for the two conditions

Table 14.17 Correlations among trials

Estimated R Correlation Matrix for Subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5121 0.4163 20.08840

2 0.5121 1.0000 0.8510 0.3628

3 0.4163 0.8510 1.0000 0.3827

4 20.08840 0.3628 0.3827 1.0000



of correlations that decrease regularly the more removed the observations are from each

other. That sounds like a logical expectation for what we would find when we measure

depression over time. For now we are going to consider the autoregressive covariance

structure.

Having decided on a correlational (or covariance) structure we simply need to tell

SPSS to use that structure and solve the problem as before. The only change we will

make is to the repeated command, where we will replace covtype(cs) with covtype(AR1).

MIXED

dv BY Group Time

/FIXED 5 Group Time Group * Time | SSTYPE(3)

/METHOD 5 REML

/PRINT 5 DESCRIPTIVES SOLUTION

/REPEATED 5 Time | SUBJECT(Subj) COVTYPE(AR1)

/EMMEANS 5 TABLES(Group)

/EMMEANS 5 TABLES(Time)

/EMMEANS 5 TABLES(Group * Time).

Information Criteriaa
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22 Restricted Log Likelihood 895.066

Akaike’s Information Criterion (AIC) 899.066

Hurvich and Tsai’s Criterion (AICC) 899.224

Bozdogan’s Criterion (CAIC) 905.805

Schwarz’s Bayesian Criterion (BIC) 903.805

The information criteria are displayed in smaller-is-better
forms.
a Dependent Variable: dv

Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intecept 1 26.462 270.516 .000

Group 1 26.462 17.324 .000

Time 3 57.499 30.821 .000

Group * Time 3 57.499 7.721 .000

a Dependent Variable: dv

Covariance Parameters

Estimates of Covariance Parametersa

Parameter Estimate Std. Error

Repeated Measures AR1 diagonal 5349.879 1060.035

AR1 rho .618198 .084130

a DependentVariable: dv

Here we see that all effects are still significant, which is encouraging. But which of

these two models (one assuming a compound symmetry structure to the covariance matrix

and the other assuming a first order autoregressive structure) is the better choice. We are

going to come to the same conclusion with either model in this case, but that is often not



true, and we still want to know which model is better. One way of doing that is to compare

the sections labeled “Information Criteria” for each analysis. These are reproduced below

for the two models.

Section 14.12 Mixed Models for Repeated-Measures Designs 505

Compound Symmetry Autoregressive (1)

Information Criteriaa Information Criteriaa

2 Restricted Log Likelihood 905.398 2 Restricted Log Likelihood 895.066

Akaike’s Information Akaike’s Information 

Criterion (AIC) 909.398 Criterion (AIC) 899.066

Hurvich and Tsai’s Criterion Hurvich and Tsai’s Criterion 

(AICC) 909.555 (AICC) 899.224

Bozdogan’s Criterion 916.136 Bozdogan’s Criterion (CAIC) 905.805

Schwarz’s Bayesian Schwarz’s Bayesian 

Criterion (BIC) 914.136 Criterion (BIC) 903.805

The information criteria The information criteria are 

are displayed in displayed in smaller-is- 

smaller-is-better forms. better forms.

a Dependent Variable: dv a Dependent Variable: dv

22

A good way to compare models is to compare either the Akaike’s Information Crite-

rion (AIC) or the Bayesian Information Criterion (BIC). In general a model with a smaller

value is better. For our examples the two AIC criteria are 909.398 and 899.066. It would

appear that the Autoregressive (1) model is to be preferred, which is in line with what our

eyes told us about the covariance structures. (If we had rerun the analysis using an unstruc-

tured covariance matrix (COVTYPE(UN)), AIC would be 903.691 and BIC would be

927.385, so we would still choose the autoregressive model.)

Mixed models have a great deal to offer in terms of fitting data to models and allow us

to compare underlying models to best interpret our data. They also can be very valuable in

the presence of missing data. However, they are more difficult to work with and the soft-

ware, while certainly improving, is far from intuitive in some cases. Nevertheless, I think

that this is the direction that more and more analyses will take over the next decade, and it

is important to understand them.

Papers by Overall, Tonidandel, and others illustrate the problems with mixed models.

The major problem is the fact that it is very difficult to know how to correctly specify your

model, and different specifications can lead to different results and sometimes rather low

power. An excellent paper in this regard is by Overall and Shivakumar (1997) and another

by Overall and Tonidandel (2007). I recommend that you look at those papers when con-

sidering the use of mixed models, although those authors used SAS Proc Mixed for their

analyses and it is not entirely clear how those models relate to models you would have us-

ing SPSS. What seems to be critically important is the case where missing data depend on

the participant’s initial response at baseline and attempts to use this measure as a covariate.
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Exercises

14.1 It is at least part of the folklore that repeated experience with any standardized test leads

to better scores, even without any intervening study. Suppose that we obtain eight subjects

and give them a standardized admissions exam every Saturday morning for 3 weeks. The

data follow: 

S First Second Third

1 550 570 580

2 440 440 470

3 610 630 610

4 650 670 670

5 400 460 450

6 700 680 710

7 490 510 510

8 580 550 590

a. Write the statistical model for these data.

b. Run the analysis of variance.

c. What, if anything, would you conclude about practice effects on the GRE?

14.2 Using the data from Exercise 14.1,

a. Delete the data for the third session and run a (matched-sample) t test between Sessions

1 and 2.

b. Now run a repeated-measures analysis of variance on the two columns you used in part

(a) and compare this F with the preceding t.

14.3 To demonstrate the practical uses of basic learning principles, a psychologist with an inter-

est in behavior modification collected data on a study designed to teach self-care skills to

severely developmentally handicapped children. An experimental group received reinforce-

ment for activities related to self-care. A second group received an equivalent amount of

attention, but no reinforcement. The children were scored (blind) by a rater on a 10-point
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Exercises 507

scale of self-sufficiency. The ratings were done in a baseline session and at the end of training.

The data follow:

Reinforcement No Reinforcement

Baseline Training Baseline Training

8 9 3 5

5 7 5 5

3 2 8 10

5 7 2 5

2 9 5 3

6 7 6 10

5 8 6 9

6 5 4 5

4 7 3 7

4 9 5 5

Run the appropriate analysis and state your conclusions.

14.4 An experimenter with only a modicum of statistical training took the data in Exercise 14.3

and ran an independent-groups t test instead, using the difference scores (training minus

baseline) as the raw data.

a. Run that analysis.

b. Square the value of t and compare it to the Fs you obtained in Exercise 14.3.

c. Explain why is not equal to F for Groups.

14.5 To understand just what happened in the experiment involving the training of severely

developmentally handicapped children (Exercise 14.3), our original experimenter evaluated

a third group at the same times as he did the first two groups, but otherwise provided no spe-

cial treatment. In other words, these children did not receive reinforcement, or even the 

extra attention that the control group did. Their data follow:

Baseline: 3 5 8 5 5 6 6 6 3 4

Training: 4 5 6 6 4 7 7 3 2 2

a. Add these data to those in Exercise 14.3 and rerun the analysis.

b. Plot the results.

c. What can you conclude from the results you obtained in parts (a) and (b)?

d. Within the context of this three group experiment, run the contrast of the two conditions

that you have imported from Exercise 14.3.

e. Compute the effect size for the contrast in part (d).

14.6 For 2 years I carried on a running argument with my daughter concerning hand calculators.

She wanted one. I maintained that children who use calculators never learn to do arithmetic

correctly, whereas she maintained that they do. To settle the argument, we selected five of

her classmates who had calculators and five who did not, and made a totally unwarranted

assumption that the presence or absence of calculators was all that distinguished these chil-

dren. We then gave each child three 10-point tests (addition, subtraction, and multiplica-

tion), which they were required to do in a very short time in their heads. The scores are as

follows:

Addition Subtraction Multiplication

Calculator owners 8 5 3

7 5 2 

9 7 3 

6 3 1 

8 5 1

t2

(continues)
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Addition Subtraction Multiplication

Non-calculator owners 10 7 6 

7 6 5

6 5 5

9 7 8

9 6 9

a. Run the analysis of variance.

b. Do the data suggest that I should have given in and bought my daughter a calculator? (I did

anyway. She is now in her late 30s and is a fully certified actuary—so what do I know?)

14.7 For the data in Exercise 14.6,

a. Calculate the variance–covariance matrices.

b. Calculate using your answers to part (a).

14.8 From the results in Exercise 14.7, do we appear to have reason to believe that we have met

the assumptions required for the analysis of repeated measures?

14.9 For the data in Exercise 14.6,

a. Calculate all possible simple effects after first plotting the results.

b. Test the simple effects, calculating test terms and adjusted degrees of freedom where

necessary.

14.10 In a study of the way children and adults summarize stories, we selected 10 fifth graders

and 10 adults. These were further subdivided into equal groups of good and poor readers

(on the hypothesis that good and poor readers may store or retrieve story information differ-

ently). All subjects read 10 short stories and were asked to summarize the story in their own

words immediately after reading it. All summaries were content analyzed, and the numbers

of statements related to Settings, Goals, and inferred Dispositions were recorded. The data

are collapsed across the 10 stories:

Age
Adults Children

Items Setting Goal Disp. Setting Goal Disp.

Good readers 8 7 6 5 5 2

5 6 4 7 8 4

5 5 5 7 7 4

7 8 6 6 4 3

6 4 4 4 4 2

Poor readers 7 6 3 2 2 2

5 3 1 2 0 1

6 6 2 5 4 1

4 4 1 4 4 2

5 5 3 2 2 0

Run the appropriate analysis.

14.11 Refer to Exercise 14.10.

a. Calculate the simple effect of reading ability for children.

b. Calculate the simple effect of items for adult good readers.

14.12 Calculate the within-groups covariance matrices for the data in Exercise 14.10.

14.13 Suppose we had instructed our subjects to limit their summaries to 10 words. What effect

might that have on the data in Exercise 14.10?

14.14 In an investigation of cigarette smoking, an experimenter decided to compare three different

procedures for quitting smoking (tapering off, immediate stopping, and aversion therapy).

She took five subjects in each group and asked them to rate (on a 10-point scale) their 

desire to smoke “right now” in two different environments (home versus work) both before

and after quitting. Thus, we have one between-subjects variable (Treatment group) and two

within-subjects variables (Environment and Pre/Post).

gN
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Pre Post

Home Work Home Work

Taper 7 6 6 4 

5 4 5 2

8 7 7 4

8 8 6 5

6 5 5 3

Immediate 8 7 7 6

5 5 5 4

7 6 6 5

8 7 6 5

7 6 5 4

Aversion 9 8 5 4

4 4 3 2

7 7 5 3

7 5 5 0

8 7 6 3

a. Run the appropriate analysis of variance.

b. Interpret the results.

14.15 Plot the results you obtained in Exercise 14.14.

14.16 Run simple effects on the data in Exercise 14.14 to clarify the results.

14.17 The abbreviated printout in Exhibit 14.1 represents the analysis of the data in Exercise 14.5.

a. Compare this printout with the results you obtained in Exercise 14.5.

b. What does a significant F for “MEAN” tell us?

c. Relate to the table of cell standard deviations.MSw/in cell

BMDP2V – ANALYSIS OF VARIANCE AND COVARIANCES

WITH REPEATED MEASURES.

PROGRAM CONTROL INFORMATION

/PROBLEM TITLE IS ‘BMDP2V ANALYSIS OF EXERCISE 14.5’.

/INPUT VARIABLES ARE 3.

FORMAT IS ‘(3F2.0)’.

CASES ARE 30.

/VARIABLE NAMES ARE GROUP, PRE, POST

/DESIGN DEPENDENT ARE 2, 3.

LEVELS ARE 2.

NAME IS TIME.

GROUP = 1.

/END

CELL MEANS FOR 1-ST DEPENDENT VARIABLE

MARGINAL

GROUP = * 1.0000 * 2.0000 * 3.0000

TIME

PRE 1 4.80000 4.70000 5.10000 4.86667

POST 2 7.00000 6.40000 4.60000 6.00000

Exhibit 14.1

(continues)
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14.18 The SPSS printout in Exhibit 14.2 was obtained by treating the data in Exercise 14.10 as

though all variables were between-subjects variables (i.e., as though the data represented a

standard three-way factorial). Show that the error terms for the correct analysis represent a

partition of the error term for the factorial analysis.

MARGINAL 5.90000 5.55000 4.85000 5.43333

COUNT 10 10 10 30

STANDARD DEVIATIONS FOR 1-ST DEPENDENT VARIABLE

GROUP = * 1.0000 * 2.000 * 3.0000

TIME

PRE 1 1.68655 1.76698 1.52388

POST 2 2.16025 2.45855 1.89737

SUM OF DEGREES OF MEAN TAIL

SOURCE SQUARES FREEDOM SQUARE F PROBABILITY

MEAN 1771.26667 1 1771.26667 322.48 0.0000

GROUP 11.43333 2 5.71667 1.04 0.3669

1 ERROR 148.30000 27 5.49259

TIME 19.26667 1 19.26667 9.44 0.0048

TG 20.63333 2 10.31667 5.06 0.0137

2 ERROR 55.10000 272.04074 

Exhibit 14.1 (continued)

Type III
Sum of
Squares

170.800a

1058.400

29.400

68.267

60.400

3.267

.000

.933

8.533

82.800

1312.000

253.600

Source

Corrected Model

Intercept

AGE

READER

PART

AGE * READER

AGE * PART

READER * PART

AGE * READER * PART

Error

Total

Corrected Total

df

11

1

1

1

2

1

2

2

2

48

60

59

Mean
Square

15.527

1058.400

29.400

68.267

30.200

3.267

.000

.467

4.267

1.725

F

9.001

613.565

17.043

39.575

17.507

1.894

.000

.271

2.473

Sig.

.000

.000

.000

.000

.000

.175

1.000

.764

.095

Tests of Between-Subjects Effects

Dependent Variable: DV

a R Squared 5 .674 (Adjusted R Squared 5 .599)

Exhibit 14.2

14.19 Outline the summary table for an A 3 B 3 C 3 D design with repeated measures on A and B
and independent measures on C and D.

14.20 Foa, Rothbaum, Riggs, and Murdock (1991) ran a study comparing different treatments for

posttraumatic stress disorder (PTSD). They used three groups (plus a waiting list control)

One group received Stress Inoculation Therapy (SIT), another received a Prolonged Expo-

sure (PE) treatment, and a third received standard Supportive Counseling (SC). All clients
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were measured at Pretreatment, Posttreatment, and a 3.5 month Follow-up. The data below

closely approximate the data that they collected, and the dependent variable is a measure of

PTSD.

SIT PE SC

Pre Post Followup Pre Post Followup Pre Post Followup

19 6 1 20 5 0 12 14 18

28 14 16 21 18 21 27 18 9

18 6 8 36 26 17 24 19 13

23 6 11 25 11 9 32 21 11

21 6 13 26 2 7 26 20 18

24 10 8 30 31 10 18 20 26

26 10 7 19 6 11 38 35 34

15 6 13 19 7 5 26 22 22

18 8 6 22 4 4 23 10 8

34 13 8 22 17 20 22 19 19

20 10 16 24 19 1 34 27 23

34 10 1 28 22 16 22 15 12

29 16 23 29 23 20 27 18 13

33 19 39 27 15 20 23 21 19

22 7 16 27 7 3 26 18 13

a. Run a repeated measures analysis of variance on these data.

b. Draw the appropriate conclusions.

14.21 Using the data from Exercise 14.20 use SPSS to run a mixed models analysis of variance,

specifying an appropriate form for the covariance matrix, and compare the results with

those you obtained in Exercise 14.20.

14.22 The following data come from Exercise 14.20 with some observations deleted. (An entry of

“999” represents a missing observation.)

SIT PE SC

Pre Post Followup Pre Post Followup Pre Post Followup

19 6 1 20 5 0 12 14 18

28 14 16 999 999 21 27 18 9

18 6 8 36 26 17 24 999 13

999 6 11 25 11 9 32 21 11

21 6 13 26 999 7 26 20 18

24 10 8 30 31 10 18 20 26

26 10 999 19 6 11 38 35 34

15 6 13 19 7 999 26 22 999

18 8 6 22 4 999 23 10 8

34 13 8 22 17 20 22 19 19

20 999 999 24 19 1 34 999 999

34 10 1 28 22 16 22 15 12

29 16 23 29 23 20 27 18 13

33 19 39 27 15 20 23 21 19

22 7 16 27 7 3 26 18 13

a. Analyze these data using a standard repeated measures analysis of variance.

b. How do your results differ from the results you found in Exercise 14.20?

14.23 Now analyze the data in Exercise 14.22 using a mixed models approach, an appropriate

form for the covariance matrix. How do those results differ from the results you found in

Exercise 14.22?
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14.24 In the data file Stress.dat, available on the Web site, are data on the stress level reported by can-

cer patients and their spouses at two different times—shortly after the diagnosis and 3 months

later. The data are also distinguished by the gender of the respondent. As usual, a “.” indicates

each missing data point. See description in Appendix: Computer Data Sets, p. 692.

a. Use any statistical package to run a repeated-measures analysis of variance with

Gender and Role (patient versus spouse) as between-subject variables and Time as the

repeated measure.

b. Have the program print out cell means, and plot these means as an aid in interpretation.

c. There is a significant three-way interaction in this analysis. Interpret it along with the

main effects.

14.25 Everitt reported data on a study of three treatments for anorexia in young girls. One treat-

ment was cognitive behavior therapy, a second was a control condition with no therapy, and

a third was a family therapy condition. The data follow:

Group Pretest Posttest Gain

1 80.5 82.2 1.7

1 84.9 85.6 .7

1 81.5 81.4 2.1

1 82.6 81.9 2.7

1 79.9 76.4 23.5

1 88.7 103.6 14.9

1 94.9 98.4 3.5

1 76.3 93.4 17.1

1 81.0 73.4 27.6

1 80.5 82.1 1.6

1 85.0 96.7 11.7

1 89.2 95.3 6.1

1 81.3 82.4 1.1

1 76.5 72.5 24.0

1 70.0 90.9 20.9

1 80.4 71.3 29.1

1 83.3 85.4 2.1

1 83.0 81.6 21.4

1 87.7 89.1 1.4

1 84.2 83.9 2.3

1 86.4 82.7 23.7

1 76.5 75.7 2.8

1 80.2 82.6 2.4

1 87.8 100.4 12.6

1 83.3 85.2 1.9

1 79.7 83.6 3.9

1 84.5 84.6 .1

1 80.8 96.2 15.4

1 87.4 86.7 2.7

2 80.7 80.2 2.5

2 89.4 80.1 29.3

2 91.8 86.4 25.4

2 74.0 86.3 12.3

2 78.1 76.1 22.0

2 88.3 78.1 210.2

2 87.3 75.1 212.2

Group Pretest Posttest Gain

2 75.1 86.7 11.6

2 80.6 73.5 27.1

2 78.4 84.6 6.2

2 77.6 77.4 20.2

2 88.7 79.5 29.2

2 81.3 89.6 8.3

2 78.1 81.4 3.3

2 70.5 81.8 11.3

2 77.3 77.3 0.0

2 85.2 84.2 21.0

2 86.0 75.4 210.6

2 84.1 79.5 24.6

2 79.7 73.0 26.7

2 85.5 88.3 2.8

2 84.4 84.7 0.3

2 79.6 81.4 1.8

2 77.5 81.2 3.7

2 72.3 88.2 15.9

2 89.0 78.8 210.2

3 83.8 95.2 11.4

3 83.3 94.3 11.0

3 86.0 91.5 5.5

3 82.5 91.9 9.4

3 86.7 100.3 13.6

3 79.6 76.7 22.9

3 76.9 76.8 20.1

3 94.2 101.6 7.4

3 73.4 94.9 21.5

3 80.5 75.2 25.3

3 81.6 77.8 23.8

3 82.1 95.5 13.4

3 77.6 90.7 13.1

3 83.5 92.5 9.0

3 89.9 93.8 3.9

3 86.0 91.7 5.7

3 87.3 98.0 10.7

a. Run an analysis of variance on group differences in Gain scores.

b. Repeat the analysis, but this time use a repeated measures design where the repeated

measures are Pretest and Posttest.
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c. How does the answer to part (b) relate to the answer to part (a)?

d. Plot scatterplots of the relationship between Pretest and Posttest separately for each

group. What do these plots show?

e. Run a test on the null hypothesis that the Gain for the Control is 0.00. What does this

analysis tell you? Are you surprised?

f. Why would significant gains in the two experimental groups not be interpretable with-

out the control group?

Discussion Questions

14.26 In Exercise 14.24 we ignored the fact that we have pairs of subjects from the same family.

a. What is wrong with doing this?

b. Under what conditions would it be acceptable to ignore this problem?

c. What alternative analyses would you suggest?

14.27 In Exercise 14.24 you probably noticed that many observations at Time 2 are missing. (This

is partly because for many patients it had not yet been 3 months since the diagnosis.)

a. Compare the means at Time 1 for those subjects who did, and who did not, have data at

Time 2.

b. If there are differences in (a), what would this suggest to you about the data?

In a study of behavior problems in children we asked 3 “judges” to rate each of 20 children

on the level of aggressive behavior. These judges were the child’s Parent, the child’s

Teacher, and the child him/herself (Self). The data follow.

Child 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parent 10 12 14 8 16 21 10 15 18 6 22 14 19 22 11 14 18 25 22 7

Teacher 8 13 17 10 18 24 9 16 18 8 24 19 15 20 10 18 19 30 20 10

Self 12 17 16 15 24 24 13 17 21 13 29 23 16 20 15 17 21 25 25 14

These data are somewhat different from the data we saw in Section 14.10 because in that

case the same people judged each child, whereas here the Parent and Self obviously change

from child to child. We will ignore that for the moment and simply act as if we could some-

how have the same parent and the same “self” do all the ratings.

14.28 What is the reliability of this data set in terms of the intraclass correlation coefficient?

14.29 What do your calculations tell you about the sources of variability in this data set?

14.30 Suppose that you had no concern about the fact that one source systematically rates chil-

dren higher or lower than another source. How might you evaluate reliability differently?

14.31 Under what conditions might you not be interested in differences among judges?

14.32 What do you think is the importance of the fact that the “parent” who supplies the parent

rating changes from child to child?

14.33 Strayer, Drews, and Crouch (2006) (which we saw as a between-subjects design in Exercise

11.32) examined the effects of cell phone use on driving ability. They had 40 drivers drive

while speaking on a cell phone, drive while at the legal limit for alcohol (0.08%), and drive

under normal conditions. (The conditions were counterbalanced across drivers.) The data

for this study are found at www.uvm.edu/~dhowell/methods7/DataFiles/Ex14–34. Their

hypothesis, based on the research of others, was that driving while speaking on a cell phone

would have as much of an effect as driving while intoxicated. The dependent variable in this

example is “braking reaction time.” The data have exactly the same means and standard

deviations as they found.

a. Run the analysis of variance for a repeated measures design.

b. Use the appropriate contrasts to compare the three conditions. Did the results support

the experimenters’ predictions?
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Multiple Regression
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IN CHAPTER 9 WE CONSIDERED the situation in which we have one criterion variable (Y ) and

one predictor variable (X ) and wish to predict Y on the basis of X. In this chapter we will

consider the case in which we still have only one criterion (Y) but have multiple predictors

( ), and want to predict Y on the basis of simultaneous knowledge of all p
predictors. The situation we examined in Chapter 9 can be viewed as a special case of the

one discussed in this chapter; alternatively, this chapter can be viewed as an extension of

Chapter 9. We will continue to use many familiar concepts such as the correlation coeffi-

cient, the slope, the standard error of estimate, and .

In this chapter I am going to move away from hand calculation and focus mainly on

computer printout. There is very little to be gained, and much to be lost, by focusing on the

calculations. By freeing ourselves from computation we are able to concentrate on the

really important issues that lie behind choosing an appropriate regression solution. Gener-

ally, there can be little argument over formulae. On the other hand, questions about the

optimal number of predictors, the use of regression diagnostics, the relative importance of

various predictors, and the selection of predictors do not have universally accepted an-

swers. Be forewarned that the opinions expressed in this chapter are only opinions, and are

open to dispute—but then that is part of what makes statistics interesting. Excellent and

readable advanced sources for the study of multiple regression are Cohen, Cohen, West,

and Aiken (2003) and Stevens (1992).

15.1 Multiple Linear Regression

The problem of multiple regression is that of finding a regression equation to predict Y
(sometimes denoted ) on the basis of p predictors ( ). Thus, we might

wish to predict success in graduate school (Y ) on the basis of undergraduate grade point

average ( ), Graduate Record Exam scores ( ), number of courses taken in the major

discipline ( ), and some rating of “favorableness” of letters of recommendation ( ). Sim-

ilarly, we might wish to predict the time it takes to go from one point in a city to another on

the basis of number of traffic lights ( ), posted speed limit ( ), presence or absence of

“right turn on red” ( ), and traffic density ( ). These examples are both analyzed in the

same way, although in the first we presumably care about predictions for individual appli-

cants, whereas in the second we might be less interested in the prediction itself and more

interested in the role played by each of the predictors. In fact, the most common use of

multiple regression is to understand the relationship between variables rather than to actu-

ally make a prediction from the equation we derive.

The Regression Equation

In Chapter 9 we started with the equation of a straight line ( ) and solved for

the two unknowns (a and b) subject to the constraint that is a minimum. In mul-

tiple regression we are going to do the same thing, although in this case we will solve the

equation where represents the intercept and

are the regression coefficients for the predictors , respectively.

We will retain the least squares restriction that is to be minimized, because it

still makes sense to find predicted values that come as close as possible to the obtained val-

ues of Y.1 The calculations required to estimate the become more cumbersome as thebi

g(Y 2 YN )2

X1, X2, . . . , Xpb1, b2, . . . ,bp

b0YN = b0 1 b1X1 1 b2X2 1 Á 1 bpXp

g(Y 2 YN )2
YN = bX 1 a

X4X3

X2X1

X4X3

X2X1

X1, X2, X3, . . . , XpX0

SSregression

X1, X2, X3, . . . , Xp
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1 There are alternatives to the standard least squares criteria that often produce estimates that are in some ways
superior to the estimates obtained by least squares. These procedures are less common, but many of them can be
found in Rousseeuw and Leroy (1987).



number of predictors increases, but we are not concerned with these calculations here. In-

stead, we will begin with an example and assume that the solution was obtained by any

available computer program, such as SPSS, Minitab, or SAS. (A free Java program is avail-

able on the Web at www.statcrunch.com. You need to register, but it is free and painless.

I would strongly recommend starting it up in a Web browser and using it as you read this

chapter. The main data file used here can be imported from this book’s Web site and is

named Tab15-1.dat.)

This example that we will use originated in a paper by Guber (1999), but I have added

variables to carry the analysis further in the exercises at the end of this chapter. There has

been an ongoing debate in this country about what we can do to improve the quality of pri-

mary and secondary education. It is generally assumed that spending more money on educa-

tion will lead to better prepared students, but that is just an assumption. Guber (1999)

addressed that question by collecting data for each of the 50 (U.S.) states. She recorded the

amount spent on education, the pupil/teacher ratio (PTratio), average teacher’s salary, the per-

centage of students in that state taking the SAT exams (PctSAT), and the combined SAT

score. I have dropped the separate Verbal and Math scores and added the percentage of stu-

dents in each state taking the ACT and the mean ACT score for that state. The data are shown

in Table 15.1. An abstract, and a complete copy, of this paper is available at http://www

.amstat.org/publications/jse/v7n2_abstracts.html.
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Table 15.1 Data on performance versus expenditures on education

State Expend PTratio Salary PctSAT SAT PctACT ACT

Alabama 4.405 17.2 31.144 8 1029 61 20.2

Alaska 8.963 17.6 47.951 47 934 32 21.0

Arizona 4.778 19.3 32.175 27 944 27 21.1

Arkansas 4.459 7.1 28.934 6 1005 66 20.3

California 4.992 24.0 41.078 45 902 11 21.0

Colorado 5.443 18.4 34.571 29 980 62 21.5

Connecticut 8.817 14.4 50.045 81 908 3 21.4

Delaware 7.030 16.6 39.076 68 897 3 21.0

Florida 5.718 19.1 32.588 48 889 36 20.4

Georgia 5.193 16.3 32.291 65 854 16 20.2

Hawaii 6.078 17.9 38.518 57 889 17 21.6

Idaho 4.210 19.1 29.783 15 979 62 21.4

Illinois 6.136 17.3 39.431 13 1048 69 21.2

Indiana 5.826 17.5 36.785 58 882 19 21.2

Iowa 5.483 15.8 31.511 5 1099 64 22.1

Kansas 5.817 15.1 34.652 9 1060 74 21.7

Kentucky 5.217 17.0 32.257 11 999 65 20.1

Louisiana 4.761 16.8 26.461 9 1021 80 19.4

Maine 6.428 13.8 31.972 68 896 2 21.5

Maryland 7.245 17.0 40.661 64 909 11 20.7

Massachusetts 7.287 14.8 40.795 80 907 6 21.6

Michigan 6.994 20.1 41.895 11 1033 68 21.3

Minnesota 6.000 17.5 35.948 9 1085 60 22.1

Mississippi 4.080 17.5 26.818 4 1036 79 18.7

Missouri 5.383 15.5 31.189 9 1045 64 21.5

Montana 5.692 16.3 28.785 21 1009 55 21.9

(continues)
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Table 15.1 (continued )

State Expend PTratio Salary PctSAT SAT PctACT ACT

Nebraska 5.935 14.5 30.922 9 1050 73 21.7

Nevada 5.160 18.7 34.836 30 917 39 21.3

New Hampshire 5.859 15.6 34.720 70 935 4 22.3

New Jersey 9.774 13.8 46.087 70 898 3 20.8

New Mexico 4.586 17.2 28.493 11 1015 59 20.3

New York 9.623 15.2 47.612 74 892 16 21.9

North Carolina 5.077 16.2 30.793 60 865 11 19.3

North Dakota 4.775 15.3 26.327 5 1107 78 21.4

Ohio 6.162 16.6 36.802 23 975 60 21.3

Oklahoma 4.845 15.5 28.172 9 1027 66 20.6

Oregon 6.436 19.9 38.555 51 947 12 22.3

Pennsylvania 7.109 17.1 44.510 70 880 8 21.0

Rhode Island 7.469 14.7 40.729 70 888 2 21.4

South Carolina 4.797 16.4 30.279 58 844 13 18.9

South Dakota 4.775 14.4 25.994 5 1068 68 21.3

Tennessee 4.388 18.6 32.477 12 1040 83 19.7

Texas 5.222 15.7 31.223 47 893 30 20.2

Utah 3.656 24.3 29.082 4 1076 69 21.5

Vermont 6.750 13.8 35.406 68 901 7 21.9

Virginia 5.327 14.6 33.987 65 896 6 20.7

Washington 5.906 20.2 36.151 48 937 16 22.4

West Virginia 6.107 14.8 31.944 17 932 57 20.0

Wisconsin 6.930 15.9 37.746 9 1073 64 22.3

Wyoming 6.160 14.9 31.285 10 1001 70 21.4

I have chosen to work with this particular data set because it illustrates several things.

In the first place, it is a real data set that pertains to a topic of current interest. That also

means that the variables are not as beautifully distributed as they would be had I gener-

ated them using appropriate random number generators. In fact, they are a bit messy. In

addition, the data set illustrates what is, at first, a very puzzling result, and then allows us

to explore that result and make sense of it. The difference between what we see with one

predictor and what we see with two predictors is quite dramatic and illustrates some of

the utility of multiple regression. Finally, these data illustrate well the need to think care-

fully about your measures and not simply assume that they measure what you think they

measure.

This book is used by many people outside of the United States and Canada, and a

word is necessary about the variables. The SAT and the ACT are two separate standard-

ized tests that are used for university admissions. The SAT scores range from 200 to 800,

while the ACT scores range from 1 to 36.The SAT has been characterized as mainly a

test of ability, while the ACT has been characterized as more of a test of material cov-

ered in school. The standard deviation is considerably smaller for the ACT even after we

account for the fact that its mean is also very much smaller. (The coefficients of varia-

tion are .077 and .042, respectively.) Most importantly, the SAT tends to be used by uni-

versities in the northeast and the west and by the more prestigious schools (though that

seems to be slowly changing). Students living elsewhere are probably more likely to take



Figure 15.1 Histograms, Q-Q plots, and scatter plots of the variables used in this example
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the ACT unless they are applying to prestigious schools on either coast, such as Harvard,

Princeton, Berkeley, or Stanford. This is certainly an overly sweeping generalization, but

it will become important shortly.

Before we consider the regression solution itself, we need to look at the distribution of

each variable. These are shown for several variables as histograms, Q-Q plots, and scatter-

plots in Figure 15.1. It is clear from these plots that our variables are not normally distrib-

uted. From these displays it is apparent that the criterion variable and three of the predictors

are fairly well distributed. The distribution of the percentage of students taking the SAT is

definitely bimodal, reflecting the fact that each test is either taken by most students in that

state or by few. In addition the relationship between PctSAT and SAT score is curvilinear,

in part reflecting that bimodality. The distribution becomes slightly better when we take a

log
e 
transformation of PctSAT, and its relationship with SAT is more linear. The scatterplot

against the SAT is shown in the lower right. We will make use of this transformed variable

instead of PctSAT itself because it makes an important point, though its distribution is still

decidedly bimodal. The combined SAT score shows a wide distribution.
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Two Variable Relationships

The most obvious thing to do with these data is to ask about the relationship between ex-

penditure and outcome. We will ignore the ACT data for now and concentrate on the rela-

tionship between performance on the SAT and expenditures for education. While we are

doing that we will also look at the correlations between other possible predictors of test

performance. We would presumably like to see that the more money we spend on educa-

tion, the better our students do. In addition, it would be of interest to ask whether the

pupil/teacher ratio is related to outcome, as many people have argued, and whether higher

salaries for teachers play a role. Keep in mind that the SAT score is our measure of educa-

tional performance, and it is a good measure for our purposes in this example, though it is

not a good general measure of school performance, nor was it ever intended as such.

The graphic in the upper right corner of Figure 15.1 is a scatterplot of SAT scores

against expenditures. In addition Table 15.2 shows the Pearson correlations between some

of our variables, the most interesting being the negative correlation of SAT and Expend.

The relationship is somewhat surprising, because it would suggest that the more money we

spend on educating our children the worse they do. The regression line is clearly decreas-

ing and the correlation is 2.381. Although that correlation is not terribly large, it is statisti-

cally significant (p 5 .006) and cannot just be ignored. Those students who come from

wealthier schools tend to do worse. Why should this be? The other interesting thing that

we see from the table of correlations is that there appears to be no relationship between

pupil/teach ratio and performance. What are we to make of this?

An answer to our puzzle comes from what I said previously about the SAT test itself. Not

all colleges and universities require that students take the SAT, and there is a tendency for

those that do require it to be the more prestigious universities that take only the top students.

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation
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N
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.000
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.593**
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2.381**

.006
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.561**
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50

1

50

2.001
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1
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2.440**

.001
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.613**
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.593**
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50

2.213
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1

50

2.887**

.000

50

.961**

.000

50

SAT

2.381**

.006

50
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2.440**

.001

50

2.887**

.000
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1
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2.926**

.000

50
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50

2.132
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Correlations

** Correlation is significant at the 0.01 level (2-tailed).

Table 15.2 Correlations between selected variables



In addition, the percentage of students taking the SAT varies drastically from state to state,

with 81% of the students in Connecticut and only 4% of the students in Utah. The states with

the lowest percentages tend to be in the Midwest, with the highest in the Northeast. In states

where a small percentage of the students are taking the exam, those are most likely to be the

best students who have their eyes on being admitted to the best schools. These are students

who are likely to do well. In Massachusetts and Connecticut, where most of the students take

the SAT—the less able as well as the more able—the poorer students are going to lower the

state average relative to states whose best students are mainly the ones being tested. If this

were true, we would expect to see a negative relationship between the percentage of students

taking the exam and the state’s mean score. This is what we see when we look at the correla-

tion between SAT and LogPctSAT and at the scatterplot in the lower right of Figure 15.1.

Looking at One Predictor While Controlling for Another

The question that now arises is what would happen if we used both variables (Expend and

LogPctSAT) simultaneously as predictors of the SAT score. What this really means, though

it may not be immediately obvious, is that we will look at the relationship between Expend

and SAT controlling for LogPctSAT. (We will also look at the relationship between

LogPctSAT and SAT controlling for Expend.) When I say that we are controlling for

LogPctSAT I mean that we are looking at the relationship while holding LogPctSAT con-

stant. Imagine that we had many thousands of states instead only 50. Imagine also that we

could pull out a collection of states that had exactly the same percentage of students taking

the SAT—e.g., 60%. Then we could look at only the students from those states and compute

the correlation and regression coefficient for predicting SAT from Expend. Then we could

draw another sample of states, perhaps those with 40% of their students taking the exam.

Again we could correlate Expect and SAT for only those states and compute a regression

coefficient. Notice that I have calculated 2 correlations and 2 regression coefficients here,

each with PctSAT held constant at a specific value (40% or 60%). Because we are only

imagining that we had thousands of states, we can go further and imagine that we repeated

this process many times, with PctSAT held at a specific value each time. For each of those

analyses we would obtain a regression coefficient for the relationship between Expend and

SAT, and an average of those many regression coefficients will be very close to the overall

regression coefficient that we will shortly examine. The same is true if we averaged the cor-

relations. (Without introducing a more complex model we are assuming that whatever the

relationship between SAT and Expend, it is the same for each level of PctSAT.)

Because in our imaginary exercise each correlation is based on a sample with a fixed

value of LogPctSAT, each correlation is independent of LogPctSAT. In other words, if

every state included in one of our correlations had 35% of its students taking the SAT, then

LogPctSAT doesn’t vary and it can’t have an effect on the relationship between Expend

and SAT. That means that our correlation, and regression coefficient between those two

variables have controlled for LogPctSAT.

Obviously we don’t have thousands of states—we only have 50 and that is not likely to

get much larger. However that does not stop us from mathematically estimating what we

would obtain if we could carry out the imaginary exercise that I just explained. And that is

exactly what multiple regression is all about.

The Multiple Regression Equation

There are ways to think about multiple regression other than fixing the level of one or

more variables, but before I discuss those I will go ahead and run a multiple regression on

these data. I used SPSS to do so, and the results are shown in Exhibit 15.1. I specifically
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Coefficientsa

Unstandardized Standardized 

Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 1089.294 44.390 24.539 .000

Expend 220.892 7.328 2.381 22.851 .006

2 (Constant) 1147.113 16.700 68.688 .000

Expend 11.130 3.264 .203 3.410 .001

LogPctSAT 278.205 4.471 21.040 217.491 .000

a Dependent Variable: SAT
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Mean

965.92

5.90526

3.1573

SAT

Expend

LogPctSAT

Std.
Deviation

74.821

1.362807

.99495

N

50

50

50

Descriptive Statistics

R

.381a

.941b

Model

1

2

R Square

.145

.886

Adjusted
R Square

.127

.881

Std. Error
of the

Estimate

69.909

25.781

Model Summary

a Predictors: (Constant), Expend
b Predictors: (Constant), Expend, LogPctSAT

Sum of
Squares

39722.059

234585.6

274307.7

243069.3

31238.381

274307.7

Model

1 Regression

Residual

Total

2 Regression

Residual

Total

df

1

48

49

2

47

49

Mean
Square

39722.059

4887.220

121534.649

664.646

F

8.128

182.856

Sig.

.006a

.000b

ANOVA

a Predictors: (Constant), Expend
b Predictors: (constant), Expend, LogPctSAT
c Dependent Variable: SAT

Exhibit 15.1 Multiple regression predicting SAT from Expend and LogPctSAT

asked SPSS to first produce the regression using just Expend as the predictor and then to

add LogPctSAT and run the regression again with both variables. I normally would not do

that (I would just run the one regression with both predictors) but it makes it easier for us

to see what is happening. I have left out some of the printout to save space.

Notice that each table has two parts—one where Expend is the sole predictor and

another where both Expend and LogPctSAT are the predictors. The first table that I want to



discuss is labeled “Model Summary.” From the summary you can see that when Expend is

the sole predictor the correlation between Expend and SAT is 2.381, just as we saw be-

fore. But when we add LogPctSAT the correlation jumps to .941, which is a very long way

from the correlation of 2.381 that we obtained with Expend alone.

A couple of things need to be said here. In multiple regression the correlations are

always going to be positive, whereas in simple Pearson correlation they can be either posi-

tive or negative. There is a good reason for this, but I don’t want to elaborate on that now. (If

the correlations are always positive, how do we know when the relationship is negative? We

look at the sign of the regression coefficient, and I’ll come to that in a minute.) You might

recall that in Table 15.2 we saw that the simple correlation between SAT and LogPctSAT

was 2.93 whereas the correlation between SAT and Expend was 2.38. While LogPctSAT

adds a great deal to the regression that just used Expend, adding Expend to the correlation,

versus just using LogPctSAT adds much less. We will look at this more closely in a minute.

In the subtable named Model Summary you will also see the squared correlations. The

squared correlation in multiple regression has the same meaning that it had in simple re-

gression. Using Expend alone we were able to explain (2.381)2 5 .145 5 14.5% of the

variation in SAT scores (not shown in table). Using both Expend and LogPctSAT we can

explain .9412 5 .886 5 88.6% of the variability in the SAT score. To the right of these val-

ues you will see a column labeled Adj. R square. You can ignore that column. The adjusted

R squared is actually a less biased estimate of the true squared correlation in the popula-

tion, but we never report it. Simply use R and not adjusted R.

The third subtable in Exhibit 15.1 is labeled ANOVA, which is an analysis of variance

testing the significance of the regression. The F is a test on whether the multiple correlation

coefficient in question is significantly different from 0. This is the same kind of test that we

saw in Chapters 9 and 10, though it uses an F statistic instead of t. When we have only one

predictor (Expend) the correlation is 2.38, as we saw in Table 15.2, and the probability of

getting a correlation that high if the null hypothesis is true was.006. This is well less than

.05 and we can declare that correlation to be significantly different from 0. When we move

to multiple regression and include the predictor LogPctSAT along with Expend, we have

two questions to ask. The first is whether the multiple correlation using both predictors to-

gether is significantly different from 0.00, and the second is whether each of the predictor

variables is contributing at greater than chance levels to that relationship. From the ANOVA

table we see an F 5 182.856, with an associated probability of 0.000 to three decimal

places. This tells us that using both predictors our correlation is significantly greater than 0.

I will ask about the significance of the individual predictors in the next section.

Now we come to the most interesting part of the output. In the subtable labeled

“Coefficients” we see the full set of regression coefficients when using both predictors at

the same time. Just as a simple regression equation was of the form

,

a multiple regression equation is written as 

where X
1

and X
2

are the predictors and b
0

is the intercept. From the table we can see that,

with both predictors, the coefficient for Expend (call it b
1
) is 11.130, and for LogPctSAT

the coefficient is 278.205. From the sign of these coefficients we can tell whether the re-

lationship is positive or negative. These values, plus the intercept, give us our regression

equation.

The value of 1147.133 is the intercept, often denoted b0 and here denoted simply as

“(constant)“. This is the predicted value of SAT if both Expend and LogPctSAT were 0.00,

YN = 1147.113 1 11.130(Expend ) 2 78.205(LogPctSAT)

YN = b1X1 1 b2X2 1 b0

YN = bX 1 a
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which they will never be. We need the intercept because it forces the average of our predic-

tions to equal the average of the obtained values, but we rarely pay any real attention to it.

We can use this regression equation in exactly the same way we used the simple regression

equation in Chapter 9. Simply substitute the values of Expend and LogPctSAT for a given

state and you can predict that state’s mean SAT score. To take the state of Colorado as an

example, our predicted mean SAT score would be

Because the actual mean for Colorado was 980, we have somewhat underestimated the mean

and our residual error is 980 – 944.352 5 35.648. That is a small residual given the relative

magnitude of SAT scores. On the other hand, the residual for West Virginia is 261.510.

The positive coefficient for Expend tells us that now that we have controlled LogPctSAT
the relationship between expenditures and performance is positive—the more the state

spends, the higher their (adjusted) SAT score. That should make us feel much better. We can

also see that when we control Expend, the relationship between LogPctSAT and SAT is neg-

ative, which makes sense. I explained earlier why increasing the percentage of a state’s stu-

dents taking the SAT would be expected to lower the overall mean for that state.

But you may have noticed that LogPctSAT itself had a correlation of 2.93 with SAT,

and perhaps Expend wasn’t adding anything important to the relationship—after all, the

correlation only increased to .941. If you look at the table of coefficients, you will see two

columns on the right labeled t and sig. These relate to significance tests on the regression

coefficients. You saw similar t tests in Chapter 9. From the “sig.” column we can tell that

all three coefficients are significant at p , .05. The intercept has no meaning because it

would refer to a case in which a state spent absolutely nothing on education and had 0 per-

cent of its students taking the SAT. The coefficient for Expend is meaningful because it

shows that increased spending does correlate with higher scores after we control for the

percentage of students taking the exam. Similarly, after we control for expenditures, SAT

scores are higher for those states who have few (presumably their best) students taking the

test. So although adding Expend to LogPctSAT as predictors didn’t raise the correlation

very much, it was a statistically significant contributor.

I discussed above one of the ways of interpreting what a multiple regression means—

for any predictor variable the slope is the relationship between that variable and the crite-

rion variable if we could hold all other variables constant. And by “hold constant” we mean

having a collection of participants who had all the same scores on each of the other vari-

ables. But there are two other ways of thinking about regression that are useful.

Another Interpretation of Multiple Regression

When we just correlate Expend with SAT and completely ignore LogPctSAT, there is a cer-

tain amount of variability in the SAT scores that is directly related to variability in LogPct-

SAT, and that was what was giving us that peculiar negative result. What we would really

like to do is to examine the correlation between Expend and the SAT score when both are

adjusted to be free from the influences of LogPctSAT. To put it another way, some of the

differences in SAT are due to differences in Expend and some are due to differences in

LogPctSAT. We want to eliminate those differences in both variables that can be attributed

to LogPctSAT and then correlate the adjusted variables. That is actually a lot simpler than

it sounds. I can’t imagine anyone intentionally running a multiple regression the way that I

am about to, but it does illustrate what is going on.

 = 1147.113 1 11.130(5.443) 2 78.205(3.367) = 944.352

 = 1147.113 1 11.130(5.443) 2 78.205Log(29)

 YN = 1147.113 1 11.130(Expend) 2 78.205(LogPctSAT )
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We know that if we ran the simple regression predicting SAT from LogPctSAT alone,

the resulting set of predicted scores would represent that part of SAT that is predictable

from LogPctSAT. If we subtract the predicted scores from the actual scores, the resulting

residuals, call them ResidSAT, will be that part of SAT that is not predictable from (is

independent of) LogPctSAT. We can now do the same thing predicting Expend from

LogPctSAT. We will get the predicted scores, subtract them from the obtained scores, and

have a new set of residuals, call them ResidExpend, that is also independent of LogPctSAT.

So we now have two sets of residual scores—ResidSAT and ResidExpend that are both in-

dependent of LogPctSAT. So LogPctSAT can play no role in their relationship.2

If I now run the regression to predict the adjusted SAT score from the adjusted Expend

score (i.e., ResidSAT with ResidExpend) I will have

Model R R Square Adjusted
R Square

Std. Error of 
the Estimate

1 .445a .198 .182 25.51077434
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Coefficientsa

Model

1 (Constant)

Unstandardized
Residual

B

23.1E-015

11.130

Std. Error

3.608

Beta

.445

t

.000

3.446

Sig.

1.000

.001

Unstandardized
Coefficients

Standardized
Coefficients

a Dependent Variable: Unstandardized Residual

a Predictors: (Constant), Unstandardized Residual
b Dependent Variable: Unstandardized Residual

Notice that the regression coefficient predicting the adjusted SAT score from the ad-

justed expend score is 11.130, which is exactly what we had for Expend doing things the

normal way. Notice also that the following table shows us that the correlation between these

two corrected variables is .445, which is the correlation between Expend and SAT after we

have removed any effects attributable to LogPctSAT. (Also notice that it is now positive.)

Model Summaryb

I hope that no one thinks that they should actually do their regression this way. The

reason I went through the exercise was to make the point that when we have multiple pre-

dictor variables we are adjusting each predictor for all other predictors in the equation. And

the phrases “adjusted for,” “controlling,” and “holding constant” all are ways of saying the

same thing.

A Final Way to Think of Multiple Regression

There is a third way to think of multiple regression, and in some ways I find it the most

useful. We know that in multiple regression we solve for an equation of the form

YN = b1X1 1 b2X2 1 b0

2 In SPSS it is very easy to obtain these residuals. From the main regression window just click on the “Save” but-
ton and select “Unstandardized” residuals. They will be added to your data file when you run the regression.

residuals



or, in terms of the variables we have been using

I obtained the predicted scores from 

and stored the predicted scores as PredSAT. Now if I correlate actual SAT with

PredSAT the resulting correlation will be .941, which is our multiple correlation. (A scat-

terplot of this relationship is shown in Figure 15.2.)

The point of this last approach is to show that you can think of a multiple correlation

coefficient as the simple Pearson correlation between the criterion (SAT) and the best lin-

ear combination of the predictors. When I say “best linear combination” I mean that there

is no set of weights (regression coefficients) that will do a better job of predicting

the state’s mean SAT score from those predictors. This is actually a very important point.

There are a number of advanced techniques in statistics, which we are not going to cover

in this book, that really come down to creating a new variable that is some optimal

weighted sum of other variables, and then using that variable in the main part of the analy-

sis. This approach also explains why multiple correlations are always positive, even if the

relationship between two variables is negative. You would certainly expect the predicted

values to be positively correlated with the criterion.

Review

We now have several ways of thinking of multiple regression, and each of them gives us a

somewhat different view of what is going on. If one of them makes more sense to you than

the others, you can focus on that approach.

• We can treat a regression coefficient as the coefficient we would get if we had a whole

group of states that did not differ on any of the predictors except the one under consider-

ation. In other words all predictors but one are held constant, and we look at what vary-

ing that one predictor does.

• We can think of a regression coefficient in multiple regression as the same thing we

would have in simple regression if we adjusted our two variables for any of the variables

we want to control. In this example it meant adjusting both SAT and Expend for LogPct-

SAT (by computing the difference between the obtained score for that variable and the

score predicted from the “nuisance variable” [or the “to be controlled variable“]). The

1147.113

SAT = 11.130*Expend 2 78.205*LogPctSAT 1

SAT = b1Expend 1 b2LogPctSAT 1 b0
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Figure 15.2 Scatterplot showing the relationship between SAT and the

best linear combination of the predictors
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coefficient (slope) that we obtain is the same coefficient we find in the multiple regres-

sion solution.

• We can think of the multiple correlation as the simple Pearson correlation between the

criterion (call it Y ) and another variable (call it ) that is the best linear combination of

the predictor variables.

The Educational Testing Service, which produces the SAT, tries to have everyone put a

disclaimer on results broken down by states that says that the SAT is not a fair way to com-

pare the performance of different states. Having gone through this example you can see

that one reason that they say this is that different states have different cohorts of students

taking the exam, and this makes the test inappropriate as a way of judging a state’s

performance, even if it is a good way of judging the performance of individuals. We could

create a new variable that is the SAT score adjusted for LogPctSAT, but I would be very

wary of using that measure to compare states. It is possible that it would be fair, but it is

also possible that there are a number of other variables that I have not taken into account.

15.2 Using Additional Predictors

Before we look at other characteristics of multiple regression we should ask what would

happen if we used additional variables to predict SAT. We have two potential variables in

our data that we have not used—the pupil/teacher ratio and teacher’s salaries. We could add

both of them to what we already have, but I am only going to add PTratio. Folklore would

have it that a lower ratio would be associated with better performance. At the same time,

lower pupil/teacher ratios cost money, so PTratio should overlap with Expend and might

not contribute significant new information.

Table 15.3 shows the results of using Expend, LogPctSAT, and PTratio to predict SAT.

There are several things to say about this table.

The regression equation that results from this analysis is now

Notice that Expend and LogPctSAT are still significant (t 5 3.302 and 217.293, respec-

tively, but PTratio is far from significant (t 5 .418). This shows us that adding PTratio to our

model did not improve our ability to predict. (Even the simple correlation between PTratio

and SAT was not significant (r 5 .081).) You will see two new columns in Table 15.3, label

Tolerance and VIF (Variance Inflation Factor). When predictor variables are correlated

among themselves we have what is called collinearity or multicollinearity. Collinearity has

the effect of increasing the standard error of a regression coefficient, which increases the

YN = 1132.033 1 11.665 Expend 2 78.393 PctSAT 2 0.742PTratio

YN
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Coefficientsa

Model

1 Constant

Expend

LogPctSAT

PTratio

B

1132.033

11.665

–78.393

.742

Std. Error

39.787

3.533

4.533

1.774

Beta

.212

–1.042

.022

t

28.452

3.302

–17.293

.418

Sig.

.000

.002

.000

.678

Tolerance

.596

.679

.854

VIF

1.679

1.473

1.171

Unstandardized
Coefficients Collinearity Statistics

Standardized
Coefficients

a Dependent Variable: SAT

Table 15.3 Adding PTratio to the prediction equation

Tolerance

VIF (Variance

Inflation Factor)

collinearity

multicollinearity



width of the confidence interval and decreases the t value for that coefficient. This is what

is measured by the VIF. Moreover, when two predictors are highly correlated one has little

to add over and above the other and only serves to increase the instability of the regression

equation.

Tolerance is the reciprocal of the VIF and can be computed as 1 – Rj
2, where Rj is the

multiple correlation between variablej and all other predictor variables. So we want a low

value of VIF and a high value of Tolerance. Tolerance tells us two things. First, it tells us

the degree of overlap among the predictors, helping us to see which predictors have infor-

mation in common and which are relatively independent. (The higher the tolerance, the

lower the overlap.) Just because two variables substantially overlap in their information is

not reason enough to eliminate one of them, but it does alert us to the possibility that their

joint contribution might be less than we would like.

Second, the tolerance statistic alerts us to the potential problems of instability in our

model. With very low levels of tolerance, the stability of the model and sometimes even the

accuracy of the arithmetic can be in danger. In the extreme case where one predictor can be

perfectly predicted from the others, we will have what is called a singular covariance (or

correlation) matrix and most programs will stop without generating a model. If you see a

statement in your printout that says that the matrix is singular or “not positive-definite,” the

most likely explanation is that one predictor has a tolerance of 0.00 and is perfectly corre-

lated with others. In this case you will have to drop at least one predictor to break up that

relationship. Such a relationship most frequently occurs when one predictor is the simple

sum or average of the others, or where all p predictors sum to a constant.

One common mistake is to treat the relative magnitudes of the as an index of the rel-

ative importance of the individual predictors. By this (mistaken) logic, we might be

tempted to conclude that Expend is a less important predictor than is LogPctSAT, because

its coefficient (11.130) is appreciably smaller than the coefficient for LogPctSAT

(278.205). Although it might actually be the case that Expend is a less important predic-

tor, we cannot draw such a conclusion based on the regression coefficients. The relative

magnitudes of the coefficients are in part a function of the standard deviations of the corre-

sponding variables. Because the standard deviation of LogPctSAT is (slightly) smaller than

the standard deviation of Expend, its regression coefficient (b
2
) will have a tendency to be

larger than that of Expend regardless of the importance of that variable.

It may be easier for you to appreciate this last point if you look at the problem some-

what differently. (For this example we will act as if our predictor was PctSAT instead of

LogPctSAT just because that makes the example easier to see.) For one state to have an Ex-

pend rating one point higher than another state would be a noticeable accomplishment (the

range of expenditures is only about 6 points), whereas having a difference of one percent-

age point in PctSAT is a trivial matter (the range of PctSAT is 77 points). We hardly expect

on a priori grounds that these two one-point differences will lead to equal differences in

the predicted SAT, regardless of the relative importance of the two predictors.

Standardized Regression Coefficients

As we shall see later, the question of the relative importance of variables has several differ-

ent answers depending on what we mean by importance. One measure of importance

should be mentioned here, however, because it is a legitimate statistic in its own right.

Suppose that before we obtained our multiple regression equation, we had standardized

each of our variables. As you will recall, standardizing a variable sets its mean at 0 and its

standard deviation at 1. It also expresses the result in standard deviation units. (You should

recall that we standardize many of our effect size measures by dividing by the standard de-

viation.) Now all of our variables would have equal standard deviations (1) and a one-unit

difference between two states on one variable would be comparable to a one-unit

bi
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difference between those states on any other variable. If we now solved for our regression

coefficients using the standardized variables, we would obtain

where Z is used to denote standardized variables. In this case, the regression coefficients are

called standardized regression coefficients, labeled “Beta” by SPSS and denoted . Thus

When variables have been standardized, the intercept ( ) is equal to 0 and is not shown.

From the preceding values of we can conclude that a one-unit difference (i.e., a dif-

ference of one standard deviation) between states in Z
1

(the standardized Expend variable)

with LogPctSAT held constant will be associated with a difference in of .203 units and 

therefore a difference in of .203 standard deviations. A one unit differences in Z
2

will be

associated with differences in of 21.040. It begins to look as if LogPctSAT may be a more

important predictor than Expend. Although the relative magnitudes of the are not neces-

sarily the best indicators of “importance,” they have a simple interpretation, are printed by

most regression computer programs, and generally give at least a rough estimate of the rela-

tive contributions of the variables in the equation. Standardized regression coefficients can

be obtained from nearly all statistical software that will run a regression analysis.

15.3 Standard Errors and Tests 
of Regression Coefficients

Once we have a regression coefficient, standardized or not, we normally test it for statisti-

cal significance. If the coefficient relating Expend to SAT is not statistically significantly

different from 0, then Expend will serve no useful purpose in the prediction of SAT. As you

might suspect, it doesn’t matter whether we test the raw score regression coefficients ( )

or the standardized coefficients ( ). They are simply linear transformations of one another,

and we would obtain the same test statistic in either case.

To test a regression coefficient (or most other statistics for that matter), we need to

know the standard error of that statistic. The standard errors for the s are given in Exhibit

15.1 and labeled “Std. Error.” For example, the standard error of , the intercept, is

16.700, and the standard error for b
1

is 3.264. As with other standard errors, the standard

error of the regression coefficient refers to the variability of the statistic over repeated sam-

pling. Suppose we repeated the study many times on different independent samples of stu-

dents. (I know that we can’t do that, but we can at least pretend that we can.) Each

replication would be expected to give us a slightly different value of b
1
, although each of

these would be an unbiased estimate of the true coefficient in the population, which we will

denote as b
1
*. The many b

1
s would be normally distributed about b

1
* with a standard devia-

tion estimated to be 3.264, the standard error of b
1
.

We can use these standard errors to form a t test on the regression coefficients. Specifically,

on N 2 p 2 1 degrees of freedom.3

t =
bj 2 b*

j

sbj

b0

bi

bi

bi

bi

YN
YN

 YN Z

bi

b0

 b2 = 21.040

 b1 = 0.203

bi

YN z = 0.203Z Expend 2 1.040Z LogPctSAT
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Then to test 

For a test on the regression coefficient of Expend, we have

This is a standard Student’s t on N 2 p 2 1 5 50 – 2 2 1 5 47 df, and the critical value is

found in Appendix t to be 2.01. Thus, we can reject and conclude that the regression co-

efficient in the population is not equal to 0. We don’t actually need tables of t, because our

printout gives not only t, but also its (two-tailed) significance level. Thus a b as large as

11.130 (for Expend) has a two-tailed probability of .001 under . In other words, the pre-

dicted value of Y increases with increasing scores on Expend, and Expend thus makes a

significant contribution to the prediction of SAT.

A corresponding test on the coefficient for LogPctSAT would produce

This result is also significant ( p 5 .000), meaning that LogPctSAT contributes signifi-

cantly to the prediction of SAT over and above what Expend contributes. When we added

the PTratio to the model, the resulting t was .481, which was not significant. We might con-

sider dropping this predictor from our model, but there will be more on this issue later. It is

important to recognize that a test on a variable is done in the context of all other variables

in the equation. A variable might have a high individual correlation with the criterion, as

does Salary, with a significant Pearson r with SAT 5 2.440 ( p 5 .001), but have nothing

useful to contribute once several other variables are included. That is the situation here.

(Salary correlates .87 with Expend, so once we take Expend into account there is little left

over for Salary to explain.)

Some computer programs prefer to print standard errors for, and test, standardized re-

gression coefficients ( ). It makes no difference which you do. Similarly, some programs

provide an F test (on 1 and N 2 p 2 1 df) instead of t. This F is simply the square of our t,
so again it makes no difference which approach you take.

15.4 Residual Variance

We have just considered the standard error of the regression coefficient, recognizing that

sampling error is involved in the estimation of the corresponding population regression co-

efficient. A somewhat different kind of error is involved in the estimation of the predicted

Ys. In terms of the SAT data, we would hope that the SAT score is, at least in part, a func-

tion of such variables as Expend, LogPctSAT, and so on. (If we didn’t think that, we would

not have collected data on those variables in the first place.) At the same time, we probably

do not expect that the two or three variables we have chosen will predict Y perfectly, even

if they could be measured, and the coefficients estimated, without error. Error will still be

involved in the prediction of Y after we have taken all of our predictors into account. This

error is called residual variance or residual error and is defined as

a (Y 2 YN )2

N 2 p 2 1

bj

t =
278.205

4.471
= 217.491

 H0

H0

t =
11.130

3.264
= 3.410

t =
bj

sbj

H0 : bj
* = 0,
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and is denoted as or or . In Exhibit 15.1 it is given as the error

term in the analysis of variance summary table as 664.646.

The concept of residual error is important because it is exactly the thing we hope to

minimize in our study. We want our estimates of Y to be as accurate as possible. We will

return to this concept later in the chapter.

The square root of is called the standard error of estimate and has the same

meaning as the standard error of estimate in Chapter 9. It is the standard deviation of the

column of residual scores . In Exhibit 15.1 it is given in the section labeled “Model

Summary” before the analysis of variance summary table and denoted “Std. Error of the

Estimate.” In this example that value is 25.781.

15.5 Distribution Assumptions

So far we have made no assumptions about the nature of the distributions of our variables.

The statistics , , and R (the multiple correlation coefficient) are legitimate measures in-

dependent of any distribution assumptions. Having said that, however, it is necessary to

point out that certain assumptions will be necessary if we are to use these measures in sev-

eral important ways. (It may be helpful to go back to Chapter 9 and quickly reread the brief

discussions in the introduction (p. 246) and in Sections 9.7 and 9.13 (pp. 258–264 and

pp. 280–281). Those sections explained the distinction between linear-regression models

and bivariate-normal models and discussed the assumptions involved.)

To provide tests on the statistics we have been discussing, we will need to make one of

two different kinds of assumptions, depending on the nature of our variables. If

are thought of as random variables, as they are in this example because we

measure the predictors as we find them rather than fixing them in advance, we will make

the general assumption that the joint distribution of Y, is multivariate

normal. (This is the extension to multiple variables of the bivariate-normal distribution de-

scribed in Section 9.12.) Although in theory this assumption is necessary for many of our

tests, rather substantial departures from a multivariate-normal distribution are likely to be

tolerable. (This is fortunate for us, because we can see from Figure 15.1 that our data do not

look like they are going to be multivariate normal.) First, our tests are reasonably robust.

Second, in actual practice we are concerned not so much about whether R is significantly

different from 0 as about whether R is large or small. In other words, with random, we

are not as interested in hypothesis testing with respect to R as we were in the analysis of

variance problems. Whether R 5 .10 is statistically significant or not when it comes to pre-

diction may be largely irrelevant, because it accounts for only 1% of the variation.

If the variables are fixed variables, we will simply make the assumption

that the conditional distributions of Y (i.e., the distribution of Y for specific levels of ) are

normally and independently distributed. Here again moderate departures from normality are

tolerable. Whether we are dealing with fixed or random independent variables, we need to

go further than this. In Section 15.9 we will cover regression diagnostics, which will help us

evaluate how well or badly we meet the underlying assumptions.

The fixed model and the corresponding assumption of normality in Y will be consid-

ered in Chapter 16. In this chapter we generally will be concerned with random variables.

The multivariate-normal assumption is more stringent than is necessary for much of what

follows, but it is sufficient. For example, calculation of the standard error of does not re-

quire an assumption of multivariate normality. However, a person seldom wishes to find

the standard error of unless he or she wishes to test (or form confidence limits on) , and

this test requires the normality assumption. We will therefore impose this assumption on

our data.

bjbj

bj

Xi

 X1, X2, . . . , Xp

Xi

X1, X2, . . . , Xp

X1, X2, . . . , Xp

bibi

(Y 2 YN )

MSresidual

 s2
0.12345MSerrorMSresidual
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15.6 The Multiple Correlation Coefficient

Exhibit 15.1 shows that the multiple correlation between SAT and two predictors (Expend

and LogPctSAT) is equal to .941. The multiple correlation coefficient is often denoted

R
0.123 . . . p

. The notation denotes the fact that the criterion (Y or ) is predicted from pre-

dictors 1, 2, 3. . . p simultaneously. When there is no confusion as to which predictors are

involved, we generally drop the subscripts and use plain old R.

As we have seen, R is defined as the correlation between the criterion (Y ) and the best

linear combination of the predictors. As such, R is really nothing but , where

Thus, if we wished, we could use the regression equation to generate , and then correlate

Y and , as we did in Figure 15.2. Although no one would seriously propose calculating R
in this way, it is helpful to realize that this is what the multiple correlation actually repre-

sents. In practice, R (or ) is printed out by every multiple regression computer program.

For our data, the multiple correlation between SAT and Expend and LogPctSAT taken

simultaneously is .886.

The coefficient R is a regular correlation coefficient and can be treated just like any

other Pearson product-moment correlation. (This is obviously true, because .)

However, in multiple correlation (as is often the case with simple correlation) we are more

interested in than in R, because it can be directly interpreted in terms of percentage of

accountable variation. Thus, , and we can say that 88.6% of the varia-

tion in the overall quality of the lectures can be predicted on the basis of the two predic-

tors. This is nearly 75 percentage points more than could be predicted on the basis of

Expend alone, where we explained 14.5% of the variation.

Unfortunately, is not an unbiased estimate of the corresponding parameter in the

population ( ). The extent of this bias depends on the relative size of N and p. When

N 5 p 1 1, prediction is perfect and R 5 1, regardless of the true relationship between Y
and in the population. (A straight line will perfectly fit any two points; a

plane, like the three legs of a milking stool, will perfectly fit any three points; and so on.) A

relatively unbiased estimate of is given by

For our data,

This value agrees with the “Adjusted R Square” printed by the SPSS procedure in Exhibit 15.1.

It should be apparent from the definition of R that it can take on values only between 0

and 1. This follows both from the fact that it is defined as the positive square root of ,

and from the fact that it can be viewed as —we would hardly expect to be negatively

correlated with Y. This is an important point, because if we were to predict SAT just from

Expend, the multiple correlation will be .381, whereas we know that the simple correlation

was 2.381. As long as you understand what is happening here, there should not be any

confusion.

Because R2
adj

is a less biased estimate of the squared population coefficient than R2,

you might expect that people would routinely report R2
adj

. In fact, R2
adj

is seldom seen

except on computer printout. I don’t know why that should be, but R or R2 is what you

would normally report.

YNrYYN

 R2

est R*2 = 1 2
(1 2 .886)(49)

47
= .881

est R*2 = 1 2
(1 2 R2)(N 2 1)

N 2 p 2 1

R*2

 X1, X2, . . . , Xp

R*2
.123...p

R2

R2 = .9412 = .886

 R2

R = rYYN

 R2

YN
YN

YN = b0 1 b1X1 1 b2X2 1 Á 1 bpXp

rYYN

X0
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Testing the Significance of R2

We have seen how to ask whether each of the variables is making a significant contribution

to the prediction of Y by testing its regression coefficient ( ). But perhaps a question that

should be asked first is, “Does the set of variables taken together predict Y at better-than-

chance levels?” I suggest that this question has priority because there is little point in look-

ing at individual variables if no overall relationship exists.

The easiest way to test the overall relationship between Y and is to test

the multiple correlation coefficient for statistical significance. This amounts to testing

, where represents the correlation coefficient in the population. By the na-

ture of our test, it is actually easier to test than R, but that amounts to the same thing.

The test on is recognizable as a simple extension of the test given in Chapter 9 when

we had only one predictor. In this case we have p predictors and

is distributed as the standard F distribution on p and N 2 p 2 1 degrees of freedom. (With

only one predictor this F statistic reduces to the familiar .) For our data,

N 5 50, p 5 5, and 5 .886. Then

4

This is the same F as that given in the summary table in Exhibit 15.1. An F of 182.64 on 2

and 47 df is obviously significant beyond p 5 .05, and we can therefore reject 

and conclude that we can predict at better-than-chance levels. (The printout shows the

probability associated with this F under to 3 decimal places as 0.000.)

Sample Sizes

As you can tell from the formula for an adjusted R square and from the preceding formula

for F, our estimate of the correlation depends on both the size of the sample (N ) and the

number of predictors (p). People often assume that if there is no relation between the crite-

rion and the predictors, R should come out near 0. In fact, the expected value of R for
random data is p/(N 2 1).

Thus, with 2 predictors, 50 cases, and no true relationship between the predictors and

the criterion, an R 5 .04 would be the expected value, not 0. So it is important that we have

a relatively large sample size. A rule of thumb that has been kicking around for years is that

we should have at least 10 observations for every predictor. Harris (1985) points out, how-

ever, that he knows of no empirical evidence supporting this rule. It certainly fails in the

extreme, because no one would be satisfied with 10 observations and 1 predictor. Harris

advocates an alternative rule dealing not with the ratio of p to N, but with their difference.

His rule is that N should exceed p by at least 50. Others have suggested the slightly more

liberal N $ p 1 40. Whereas these two rules relate directly to the reliability of a correla-

tion coefficient, Cohen, Cohen, West, and Aiken (2003) approach the problem from the di-

rection of statistical power. They show that in the one-predictor case, to have power 5 .80

for a population correlation of .30 would require N 5 124. With 5 predictors, a population

 H0

H0 :R* = 0

F =
(50 2 2 2 1)(.886)

2(.114)
=

47(.886)

.228
= 182.64

R2
 (N 2 2)(r2)>(1 2 r2)

F =
(N 2 p 2 1)R2

p(1 2 R2)

 R2
 R2

 R* H0 :R* = 0

 X1, X2,  . . . , Xp

bj
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correlation of .30 would require 187 subjects for the same degree of power. As you can see,

a reasonable amount of power requires fairly large samples. Perhaps Darlington’s (1990)

rule of thumb is the best—“more is better.”

15.7 Geometric Representation 
of Multiple Regression

Any linear multiple regression problem involving p predictors can be represented graphi-

cally in p 1 1 dimensions. Thus, with one predictor we can readily draw a two-dimensional

scatter diagram and fit a regression line through the points. With two predictors we can rep-

resent the data in three-dimensional space with a plane passing through the points. With

more than three predictors, we would have to begin to think in terms of hyperspace (mul-

tidimensional space) with the regression surface (the analog of the regression line or

plane) fitted through the points. People have enough trouble thinking in terms of three-

dimensional space, without trying to handle hyperspaces, and so we will consider here only

the two-predictor case. The generalization to the case of many predictors should be appar-

ent, even if you cannot visualize the solution.

Figure 15.3 shows a three-dimensional plot of the SAT course rating (Y ) against the

predictors Expend ( ) and LogPctSAT ( ). Each member of the data set is represented as

the ball on top of a flagpole. The base of the flagpole is located at the point ( , ), and

the height of the pole is Y.

In Figure 15.3, as you move from the lower right back to the left front, the heights of the

flagpoles (and therefore the values of Y) increase. If you had the three-dimensional model

represented by this figure, you could actually pass a plane through, or near, the points so as

to give the best possible fit. Some of the flagpoles would stick up through the plane, and

X2X1

X2X1
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some would not reach it, but the points could be fit reasonably well by this plane. The ver-

tical distances of the points from the plane, the distances , would be the residuals.

Just as in the one-predictor case, the residuals represent the vertical distance of the points

from the best-fitting line (or, in this three-dimensional case, the best-fitting plane).

We can derive one additional insight from this three-dimensional model. The plane we

have been discussing forms some angle (in this case, positive) with the axis (Expend). In

other words, the plane rises from right to left. The slope of that plane relative to is .

Similarly, the slope of the plane with respect to (LogPctSAT) is . The height of the

plane at the point ( , ) 5 (0,0) would be .

15.8 Partial and Semipartial Correlation

Two closely related correlation coefficients involve partialling out, or controlling for, the

effects of one or more other variables. These correlations are the partial and semipartial

correlation coefficients.

Partial Correlation

We have seen that a partial correlation r
01.2

is the correlation between two variables with

one or more variables partialled out of both X and Y. More specifically, it is the correlation

between the two sets of residuals formed from the prediction of the original variables by

one or more other variables.

Consider an experimenter who wanted to investigate the relationship between earned

income and success in college. He obtained measures for each variable and ran his correla-

tion, which turned out to be significant. Elated with the results, he harangued his students

with the admonition that if they did not do well in college they were not likely to earn large

salaries. In the back of the class, however, was a bright student who realized that both vari-

ables were (presumably) related to IQ. She argued that people with high IQs tend to do

well in college and also earn good salaries, and that the correlation between income and

college success is an artifact of this relationship.

The simplest way to settle this argument is to calculate the partial correlation between

Income and college Success with IQ partialled out of both variables. Thus, we regress In-

come on IQ and obtain the residuals. These residuals represent the variation in Income that

cannot be attributed to IQ. You might think of this as a “purified” income measure—purified

of the influence of IQ. We next regress Success on IQ and again obtain the residuals, which

here represent the portion of Success that is not attributable to IQ. We can now answer the

important question: Can the variation in Income not explained by (independent of) IQ be

predicted by the variation in Success that is also independent of IQ? The correlation between

these two variables is the partial correlation of Income and Success, partialling out IQ.

The partial correlation coefficient is represented by . The two subscripts to

the left of the dot represent the variables being correlated, and the subscripts to the right of

the dot represent those variables being partialled out of both.

Semipartial Correlation

A type of correlation that will prove exceedingly useful both here and in Chapter 16 is the

semipartial correlation r
0(1.2)

sometimes called the part5 correlation. As the name

suggests, a semipartial correlation is the correlation between the criterion and a partialled

 r01.23 . . . p

 b0X2X1

 b2 X2

b1 X1

 X1

(Y 2 YN )
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predictor variable. In other words, whereas the partial correlation ( ) has variable 2

partialled out of both the criterion and predictor 1, the semipartial correlation has vari-

able 2 partialled out of only predictor 1. In this case, the semipartial correlation is simply the

correlation between Y and the residual ( ) of predicted on . As such, it

is the correlation of Y with that part of that is independent of . A different way to view

the semi-partial correlation is in terms of the difference between two models, one of which

contains fewer predictors than the other. It can be shown that

We can use our example of expenditures for education. For those data, , and

. Thus

The preceding formula for affords an opportunity to explore further just what

multiple regression equations and correlations represent. Rearranging the formula we have

This formula illustrates that the squared multiple correlation is the sum of the squared cor-

relation between the criterion and one of the variables plus the squared correlation between

the criterion and the part of the other variable that is independent of the first. Thus, we can

think of R and R2 as being based on as much information as possible from one variable, any

additional, nonredundant information from a second, and so on. In general

where is the squared correlation between the criterion and variable 3, with variables

1 and 2 partialled out of 3. This way of looking at multiple regression will be particularly

helpful when we consider the role of individual variables in predicting the criterion, and

when we consider the least squares approach to the analysis of variance in Chapter 16. As

an aside, it should be mentioned that when the predictors are independent of one another,

the preceding formula reduces to

because, if the variables are independent, there is no variance in common to be partialled out.

The squared partial correlation between SAT and Expend, partialling the LogPctSAT

from both SAT and Expend, by the method discussed next is .198, showing that 20% of the

variation in SAT that could not be explained by LogPctSAT can be accounted for by that

portion of Expend that could not be explained by LogPctSAT. This point will be elaborated

in the next section.

We do not need a separate significance test for semipartial or partial correlations,

because we already have such a test in the test on the regression coefficients. If that test is

significant, then corresponding , partial, and semipartial coefficients are also significant.6

Therefore, from Exhibit 15.1 we also know that these coefficients for Expend are all

significant. Keep in mind, however, that when we speak about the significance of a coeffi-

cient we are speaking of it within the context of the other variables in the model. For ex-

ample, we saw earlier that when Salary is included in the model it does not make a

b

R2
0.123 . . . p = r2

01 1 r2
02 1 r2

03 1 Á 1r2
0p

 r2
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r01.2
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6 You will note that we consider both partial and semipartial correlation but only mentioned the partial regression
coefficient ( ). This coefficient could equally well be called the semipartial regression coefficient.bj



significant contribution. That does not mean that it would not contribute to any other model

predicting SAT. (In fact, when used as the only predictor, it predicts SAT at better-than-

chance levels. R 5 2.440, p 5 .001.) It only means that once we have the other predictors

in our model, Salary does not have any independent (or unique) contribution to make.

Alternative Interpretation of Partial and Semipartial Correlation

There is an alternative way of viewing the meaning of partial and semipartial correlations

that can be very instructive. This method is best presented in terms of what are called

Venn diagrams. The Venn diagram shown in Figure 15.4 is definitely not drawn to scale,

but it does illustrate various aspects of the relationship between SAT and the two predictors.

Suppose that the box in Figure 15.4 is taken to represent all the variability in the crite-

rion (SAT). We will set the area of the box equal to 1.00—the proportion of the variation in

SAT to be explained. The circle labeled LogPctSAT is taken to represent the proportion of

the variation in SAT that is explained by LogPctSAT. In other words, the area of the circle is

equal to 5 .857. Similarly, the area of the circle labeled Expend is the percentage of the

variation in SAT explained by Expend and is equal to 5 .145. Finally, the overlap be-

tween the two circles represents the portion of SAT that both LogPctSAT and Expend have

in common, and equals .116. The area outside of either circle but within the box is the por-

tion of SAT that cannot be explained by either variable and is the residual variation 5 .059.

The areas labeled B, C, and D in Figure 15.4 represent portions of the variation in SAT

that can be accounted for by LogPctSAT and/or Expend. (Area A represents the portion

that cannot be explained by either variable or their combination, the residual variation.)

Thus, the two predictors in our example account for 88.6% of the variation of Y: B 1 C 1

D 5 .741 1 .116 1 .029 5 .886. The squared semipartial correlation between LogPct-

SAT and SAT, with Expend partialled out of LogPctSAT, is the portion of the variation of

SAT that LogPctSAT accounts for over and above the portion accounted for by Expend. As

such, it is .857 and is labeled as B

The semipartial correlation is the square root of this quantity.

The squared partial correlation has a similar interpretation. Instead of being the addi-

tional percentage of SAT that LocPctSAT explains but that Expend does not, which is the

r0(1.2) = 1.741 = .861

r2
0(1.2) = R2

0.12 2 r2
01 = .886 2 .145 = .741

 r2
02

r2
01
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Figure 15.4 Venn diagram illustrating partial and semipartial correlation

A B C D

0.886

0.857

0.145

Expend

LogPctSAT

0.116 0.0290.741

Venn diagrams



squared semipartial correlation, it is the additional amount that LogPctSAT explains rela-
tive to the amount that Expend left to be explained. For example, 

and ,

Schematically, squared multiple, partial, and semipartial correlations can be represented as

In addition,

Why Do We Care About Partial and Semipartial Correlations?

You might ask why we bother to worry about partial and semipartial correlations. What do

they add to what we already know? The answer is that they add a great deal. They allow us

to control for variables that we might perceive as “nuisance” variables, and in so doing al-

low us to make statements of the form “The correlation between Y and A is .65, after we
control for the influence B.” To take an example from a study that we will discuss later in

the chapter, Leerkes and Crockenberg (1999) were interested in the relationship between

the maternal care a woman received when she was a child and the level of self-confidence

or self-efficacy she feels toward her own mothering skills. Leerkes and Crockenberg asked

whether this relationship was influenced by the fact that those who received high quality

maternal care also showed high levels of self-esteem. Perhaps if we controlled for differ-

ences in self-esteem, the maternal care self-efficacy relationship would disappear. This

is a case where they are partialling out the influence of self-esteem to look at the relation-

ship that remains. Partial and semipartial correlations are a tool to “get our hands around”

a number of confusing relationships.

15.9 Suppressor Variables

Suppose we have a multiple regression problem in which all variables are scored so as to cor-

relate positively with the criterion. Because the scoring of variables is often arbitrary anyway,

this presents no difficulty (if X is negatively related to Y, C 2 X will be positively related to Y,

where C is any constant). In such a situation, we would expect all the regression coefficients

:

 C 1 D = r2
02 = the squared correlation between Y (SAT) and X2 (LogPctSAT)

 B 1 C = r2
01 = the squared correlation between Y (SAT) and X1 (Expend)

 B 1 C 1 D = R2
0.12 = the squared multiple correlation

 D = r2
0(2.1) = the other squared semipartial correlation

 A = 1 2 R2
0.12 = the residual (unexplained) variation in Y (SAT)

 =
r2

0(1.2)

1 2 r2
02

 r2
01.2 =

B

A 1 B
= the squared partial correlation

 r2
0(1.2) = B = the squared semipartial correlation

 = .931

 r01.2 = 1.866

 =
.741

.855
= .866

 r2
01.2 =

r2
0(1.2)

1 2 r2
02

1 2 r2
02 = .855

r2
02 = 2.3812 = .145
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( or ) to be positive. Occasionally, however, a regression coefficient in this situation will be

significantly negative. Such a variable, if significant, is called a suppressor variable.7

Suppressor variables seem, at first glance, to be unreasonable. We know that the simple

correlation between the criterion and the variable is positive (by our definition), yet in the

resulting regression equation an increment on this variable produces a decrement in .

Moreover, it can be shown that . If is positive and is negative, the prod-

uct will be negative. Thus, by assigning a negative value, the regression solution

(which has the task of minimizing error) would appear to be reducing . This does not fit

with our preconceived ideas of what should be happening, and yet obviously there must be

some logical explanation.

Space considerations do not allow an extensive discussion of the theory of suppressor

variables, but it is important to illustrate one intuitively sensible explanation. For a more

extensive discussion of suppressor variables, see Cohen and Cohen (1983) and Darlington

(1968). (The discussion in Cohen and Cohen is particularly helpful.) Here we will take an

example from Darlington (1990). Suppose a speeded history examination (a long exam

with a short time in which to complete it) is used as a measure of some external criterion of

knowledge of history. Although knowledge of history is presumably independent of read-

ing speed, performance on the speeded test will not be. Thus, some of the variance in test

scores will reflect differences in the reading speed of the students rather than differences in

their actual knowledge. What we would really like to do is penalize students who did well

only because they read quickly, and help students who did poorly only because they read

slowly. This is precisely what is accomplished by having reading speed serve as a suppres-

sor variable. It is suppressing some of the error in the exam scores.

As Darlington points out, a variable will serve as a suppressor variable when it corre-

lates more highly with than with Y (where represents the residual when predicting

history knowledge from history score), and will not serve as a suppressor variable when it

correlates more highly with Y than . Cohen, Cohen, West, and Aiken (2003) point out that

suppressor relationships are hard to find in psychology (at least statistically significant

ones), though they are easily found in biology and economics. In those fields they relate to

homeostatic mechanisms, where an increase in X leads to an increase in Y, which in turn

causes an increase in Z which leads back to a decrease in Y. Although these mechanisms

are not as common in psychology, I am frequently asked about suppression effects—most

of which turn out to be statistically nonsignificant.

15.10 Regression Diagnostics

In predicting state SAT performance from variables that described educational expendi-

tures and characteristics of test taking, we skipped an important step because of the need to

first lay out some of the important concepts in multiple regression. It is now time to go

back and fill that gap. Before throwing all of the observations and predictors into the model

and asking computer software to produce an answer to be written up and interpreted, we

need to look more closely at the data. We can do this by using a variety of tools supplied

by nearly all multiple regression computer programs. Once we are satisfied with the data,

we can then go on and use other available tools to help us decide which variables to include

in the model. A much more complete and readable treatment of the problem of regression

diagnostics can be Cohen et al. (2003).

Yr

YrYr

R2
bi bir0i

bir0i R2 = gbir0i
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7 Cohen and Cohen (1975) discuss two additional types of suppression, and their discussion is helpful when faced
with results that seem contrary to intuition. That discussion has been omitted in the more recent Cohen, Cohen,
West, and Aiken (2003), so you need to go back to the earlier edition.
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The first step in examining the data has already been carried out in Figure 15.1 with

graphical presentations of important variables. At that point we noted that most of the vari-

ables were fairly messy with the percentage of students taking the SAT being decidedly bi-

modal. SAT scores were also somewhat bimodal, and much of that can probably related to

the bimodal nature of PctSAT. For reasons that will become clear shortly we used the log

of PctSAT rather than PctSAT itself. This at least had the effect of reducing the curvilinear

relationship between the SAT scores and the percentage of students in each state taking the

SAT. None of our variables had extreme outliers, especially after we used a log transforma-

tion of PctSAT.

The fact that we don’t have more outliers when we look at the variables individually does

not necessarily mean that all is well. There is still the possibility of having multivariate

outliers. A case might seem to have reasonable scores on each of the variables taken sepa-

rately but have an unusual combination of scores on two or more variables. For example, it is

not uncommon to be 6 feet tall, nor is it uncommon to weigh 125 pounds. But it clearly would

be unusual to be 6 feet tall and weigh 125 pounds.

Having temporarily satisfied ourselves that the data set does not contain unreasonable

data points and that the distributions are not seriously distorted, a useful second step is to

conduct a preliminary regression analysis using all the variables, as we have done. I say

“preliminary” because the point here is to use that analysis to examine the data rather than

as an end in itself.

Instead of jumping directly into the educational expenditure data set, we will first in-

vestigate diagnostic tools with a smaller data set created to illustrate the use of those tools.

These data are shown below and are plotted in Figure 15.5.

X: 1 1 3 3 3 4 5 5 7 6 10 13

Y: 1 2 3 5 7 6 8 10 10 5 4 14

The three primary classes of diagnostic statistics, each of which is represented in

Figure 15.5, are

1. Distance, which is useful in identifying potential outliers in the dependent variable (Y ).

2. Leverage (h
i
), which is useful in identifying potential outliers in the independent vari-

ables ( ).

3. Influence, which combines distance and leverage to identify unusually influential ob-

servations. An observation is influential if the location of the regression surface would

change markedly depending on the presence or absence of that observation.

Our most common measure of distance is the residual ( ). It measures the verti-

cal distance between any point and the regression line. Points A and C in Figure 15.5 have

Yi 2 YN i

X1, X2, . . . , Xp

540 Chapter 15 Multiple Regression

Figure 15.5 Scatterplot of Y on X
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large residuals (they lie far from the regression line). Such points may represent random

error, they may be data that are incorrectly recorded, or they may reflect unusual cases

that don’t really belong in this data set. (An example of this last point would arise if we

were trying to predict physical reaction time as a function of cognitive processing features

of a task, and our subjects included one individual who suffered from a neuromuscular

disorder that seriously slowed his reaction time.) Residuals are a standard feature of all

regression analyses, and you should routinely request and examine them in running your

analyses.

Leverage (often denoted , or “hat diag”) measures the degree to which a case is unusual

with respect to the predictor variables . In the case of one predictor, leverage is simply a

function of the deviation of the score on that predictor from the predictor mean. Point B in

Figure 15.5 is an example of a point with high leverage because the X score for that point (13)

is far from . Most programs for multiple regression compute and print the leverage of each

observation if requested. Possible values on leverage range from a low of 1 N to a high of

1.0, with a mean of ( p 1 1) N, where p 5 the number of predictors. Stevens (1992) recom-

mends looking particularly closely at those leverage values that exceed 3(p 1 1) n.

Points that are high on either distance or leverage do not necessarily have an important

influence on the regression, but they have the potential for it. In order for a point to be high

on influence, it must have relatively high values on both distance and leverage. In Figure

15.5, Point B is very high on leverage, but it has a relatively small residual (distance). Point

A, on the other hand, has a large residual but, because it is near the mean on X, has low

leverage. Point C is high on leverage and has a large residual, suggesting that it is high on

influence. The most common measure of influence is known as Cook’s D. It is a function

of the sum of the squared changes in bj that would occur if the ith observation were

removed from the data and the analysis rerun.

Exhibit 15.2 contains various diagnostic statistics for the data shown in Figure 15.5.

These diagnostics were produced by an SAS, but similar statistics would be produced by

almost any other program.

To take the diagnostic statistics in order, consider first the column headed Resid, which

is a measure of distance. This column reflects what we can already see in Figure 15.5—

that the 8th and 11th observations have the largest residuals. Considering that the Y values

range only from 1 to 14, a residual of 25.89 seems substantial.

>
>

>
 X

 Xj

 hi
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Exhibit 15.2 Diagnostic statistics for data in Figure 15.5

“A” -> 

“C” ->

“B” ->

OBS

1

2

3

4

5

6

7

8

9

10

11

12

X

1

1

3

3

3

4

5

5

6

7

10

13

Y

1

2

3

5

7

6

8

10

5

10

4

14

PRED

3.23

3.23

4.71

4.71

4.71

5.45

6.19

6.19

6.93

7.77

9.89

12.11

RESID

–2.23

–1.22

–1.71

0.29

2.29

0.55

1.81

3.81

–1.93

2.33

–5.89

1.89

RSTUDENT

–0.87

–0.47

–0.62

0.10

0.85

0.19

0.65

1.49

–0.69

0.86

–3.54

0.98

HAT DIAG
H

0.20

0.20

0.11

0.11

0.11

0.09

0.08

0.08

0.09

0.11

0.26

0.54

MSE

8.22

8.71

8.55

8.91

8.26

8.88

8.52

7.16

8.46

8.24

3.73

8.06

COOK’S
D

0.10

0.03

0.03

0.00

0.05

0.00

0.02

0.09

0.02

0.05

1.01

0.55

Cook’s D
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If the data met the underlying assumptions, we would expect the values of Y to be

normally distributed about the regression line. In other words, with a very large data

set all of the Y values corresponding to a specific value of X would have a normal dis-

tribution. Five percent of these values would lie more than 1.96 adjusted standard er-

rors from the regression line. (I use the word “adjusted” because the size of the

standard error will depend in part on the degree to which X departs from the mean of

X, as measured by .) Within this context, it may be meaningful to ask if a point lies

significantly far from the regression line. If so, we should be concerned about it. A t test

on the magnitude of the residuals is given by the statistic RStudent, sometimes

called the Studentized residual. This can be interpreted as a standard t statistic on 

(N 2 p 2 1) degrees of freedom. Here we see that for case 11 RStudent 5 23.54. This

should give us pause because that is a substantial, and significant, deviation. It is often

useful to think of RStudent less as a hypothesis-testing statistic and more as just an indi-

cator of the magnitude of the residual. (Remember that here we are computing N t-tests,

with a resulting very large increase in the familywise error rate.) But significant or not,

something that is 3.54 standard errors from the line is unusual and therefore noteworthy.

We are not predicting that case well.

We now turn to leverage ( ), shown in the column headed Hat Diag. Here we see that

most observations have leverage values that fall between about 0.00 and .20. The mean

leverage is (p 1 1) N 5 2 12 5 .167, and that is about what we would expect. Notice,

however, that two cases have larger leverage; namely, cases 11 and 12, which exceeds

Steven’s rule of thumb of 3(p 1 1) n 5 3(2) 12 5 .50. We have already seen that 11 has a

large residual, so its modest leverage may make it an influential point. Case 12 has a lever-

age value nearly twice as large. However, it falls quite close to the regression line with a

fairly small residual, and it is likely to be less influential.

Cook’s D, which is a measure of influence, varies as a function of distance (residual),

leverage ( ), and . Most of the values in the last column are quite small, but cases

11 and 12 are exceptions. In particular, observation 11 has a D exceeding 1.00. The sam-

pling distribution of Cook’s D is in dispute, and there is no general rule for what consti-

tutes a large value, but values over 1.00 are unusual.

We can summarize the results shown in Exhibit 15.2 by stating that each of the three

points labeled in Figure 15.5 is reflected in that table. Point A has a fairly, though not sig-

nificantly, large residual but has small values for both leverage and influence. Point B has a

large leverage, but Cook’s D is not high and its removal would not substantially reduce

. Point C has a large residual, a fairly large leverage, and a substantial Cook’s D;

its removal would provide a substantial reduction in . This is the kind of observa-

tion that we should consider seriously. Although data should not be deleted merely because

they are inconvenient and their removal would make the results look better, it is important

to pay attention to observations such as case 11. There may be legitimate reasons to set that

case aside and to treat it differently. Or it may in fact be erroneous. Because this is not a

real data set, we cannot do anything further with it.

It may seem like overkill to compute regression diagnostics simply to confirm what

anyone can see simply by looking at a plot of the data. However, we have looked only at a

situation with one predictor variable. With multiple predictors there is no reasonable way

to plot the data and visually identify influential points. In that situation you should at least

create univariate displays, perhaps bivariate plots of each predictor against the criterion

looking for peculiar distributions of points, and compute diagnostic statistics. From those

statistics you can then target particular cases for closer study.

Returning briefly to the data on course evaluations, we can illustrate some additional

points concerning diagnostic statistics. Exhibit 15.3 contains additional statistics that were

MSresidual

MSresidual

MSresidualhi

>>

>>

hi

hi

Studentized

residual



not shown in Exhibit 15.1, but came from that SPSS analysis.8 These values are obtained

by choosing the “Save” option in the regression dialog box and then selecting the appropri-

ate statistics.

If we look at these cases in the diagnostic statistics above, we can see that some of them

have large residuals and studentized residuals. The only studentized residual that is partic-

ularly noteworthy is for State 48, which is West Virginia. But when we look at Cook’s D
we see that no state comes even close to having unusual values. The highest Cook’s D for

this data set is .1230. From these results we are safe in concluding that no one state is hav-

ing a disproportionate influence on our results.

Diagnostic Plots

Just because no one state or collection of states does not appear to have a disproportionate

influence on our regression equation does not mean that we have nothing to worry about. It

is possible that there are other problems with the data. In fact, there was a problem that

I passed over by using the log of PctSAT.

Our tests on the regression coefficients assume that the residuals are homoscedastic,

meaning that the variance of the residuals is constant conditional on the level of each of the

predictor variables and on the overall from the final regression equation. Two important

things that we should always look at are a plot of the residuals against the predicted values

and a Q-Q plot of the residuals to check for normality. In the top of Figure 15.6 you will

see these two plots when I used PctSAT instead of LogPctSAT in the regression equation

along with Expend.

The line drawn through the plot in the upper left is a smoothed regression line fitting

the data. Notice that it is distinctly curved. There should be no pattern to the residuals, but

clearly there is. Crawley (2007) suggests that this plot should look like the sky at night,

with points scattered all over the place. That is not the case here. In the lower left you see a

similar plot but with LogPctSAT and Expend used as the predictors. Here there is much

less of a pattern to the display, which is why I chose to use LogPctSAT as my predictor.

YN
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Exhibit 15.3 Diagnostic statistics

Observation Residual RStudent Cook’s D Hat Diag (h
i
)

1 24.5159 2.1798 .0006 .0312

2 211.7667 .4899 .0122 .1121

3 1.4609 .0580 .0000 .0248

4 251.6151 22.0661 .0924 .0410

5 22.9717 2.1189 .0003 .0407

. . . . . . . . . . . . . . .

29 54.9324 2.1943 .0972 .0371

30 225.6401 21.1063 .0968 .1718

. . . . . . . . . . . . . . .

48 261.5098 22.4168 .0508 .0054

49 20.5930 .8368 .0227 .0688

50 .234.5975 21.3757 .0321 .0284

8 SPSS calculates leverage, and hence the Studentized Range Statistic, slightly differently than do SAS, JMP,
SYSTAT, BMDP, and others. The leverage values are lower by a factor of 1 N, but this makes no substantive
difference in the interpretation (except that the mean leverage will now be p N instead of (p 1 1) N).>>

>



On the right of Figure 15.6 you can see that both sets of residuals were reasonably normal,

which is important. Cohen et al. (2003) describe a test of heterogeneity of residuals devised

by Levene. It is basically the same Levene test that we discussed in Chapter 7 when con-

sidering heterogeneity of variance for a t test on independent samples and focuses on resid-

uals that increase or decrease with increasing values along the X axis. Cai and Hayes

(2008) have proposed a test of the regression coefficients themselves that is much more ro-

bust against heterogeneity of regression. Applying their test to our data confirms that the

coefficients for both Expend and LogPctSAT are significant.9

Comparing Models

Sometimes we have what are called nested models or hierarchical models in which the

variables in one model represent a subset of the variables in a second model. For example,

we might wonder if we do better predicting SAT from Expend, LogPctSAT, PTratio, and
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Figure 15.6 Residual plots with PctSAT and Expend as predictors (top row) and with

LogPctSAT and Expend as predictors (bottom row)

9 Cai and Hayes (2008) provide a SAS macro to perform these tests. Although their paper is complex, their macro
is reasonably simple to implement. You simply include it in your SAS program and call it as shown in their paper.
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Salary than we do with a model that does not include either PTratio or Salary but does in-

clude the other two predictors. In the case of nested models, it is relatively easy to test

whether one is significantly better than another. We can just compare their R2 values or the

sums of squares for regression.

For example, suppose that we start with a model that contains Expend, LogPctSAT,

PTratio, and Salary. (I chose this model because it has two more predictors than the sim-

pler one that we will look at.) The multiple R2 is .888 and the analysis of variance summary

table is
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Sum of
Squares

243689.5

30618.141

274307.7

Model

1 Regression

Residual

Total

df

4

45

49

Mean
Square

60922.385

680.403

F

89.539

Sig.

.000a

ANOVAb

a Predictors: (Constant), Salary, PTratio, LogPctSAT, Expend
b Dependent Variable: SAT

Sum of
Squares

243069.3

31238.381

274307.7

Model

1 Regression

Residual

Total

df

2

47

49

Mean
Square

121534.649

664.646

F

182.856

Sig.

.000a

ANOVAb

a Predictors: (Constant), LogPctSAT, Expend
b Dependent Variable: SAT

Next we drop PTratio and Salary and just use Expend and LogPctSAT. Now the R2 is

.886 and the analysis of variance summary table is

Notice that the first model explained slightly more variation than the second. If we

compute the difference in SS
regression

we have 243,689.5 – 243,069.3 5 620.2 5 SS
difference

.

This difference in the sum of squares can be converted to a mean square by dividing by the

degrees of freedom, but what are the degrees of freedom? They are simply the difference in

the number of predictors, which is 2. Therefore MS
difference

5 SS
difference

df 5 620.2 2 5

310.1. Moreover, this mean square can be tested by dividing by the residual mean square

from the fuller model. So

This is an F on 2 and 45 degrees of freedom and is clearly not significant. We do not do a

better job of predicting SAT scores with the additional two predictors.

If we had just compared the model with Expend, LogPctSAT, and PTratio against the

model without PTratio, our resulting F would be .175, and its square root would be .418,

which is exactly the t for the test of PTratio in the fuller model. In other words if we only

want to drop one predictor we know whether that drop will be significant simply by look-

ing at the t-test on the predictor in the fuller model.

But what do we do if we do not have nested models? That question arises in this exam-

ple when we ask if I made a wise choice to use LogPctSAT rather than PctSAT as my pre-

dictor. Because the models are not nested we cannot simply test the difference in SS
regression

F =

SSreg(full) 2 SSreg(reduced)

dfreg(full) 2 dfreg(reduced)

MSresidual(full)

=

(243,689.5 2 243,069.3)

2

664.646
=

310.1

664.646
= 0.467

>>



for the two models. Instead we are going to use Akaike’s Information Criterion (AIC),

which is based on a likelihood ratio statistic that we will not explore. To compute Akaike’s

AIC statistic using SPSS you need to resort to tampering with the syntax, but that is fairly

simple. You simply set up the regression as you normally would, being sure to ask for at

least one statistic (e.g., descriptive statistics). Then instead of submitting the analysis di-

rectly, choose the Paste option and edit the resulting syntax by adding “selection” to the

statistics subcommand. If you do this for the two models, the model using PctSAT will give

you the following summary.
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Model Summary

Selection Criteria

Model R R Square Adjusted Std. Error Akaike  Amemiya Mallows, Schwarz 

R Square of the Estimate Information Prediction Prediction Bayesian 

Criterion Criterion Criterion Criterion

1 .905a .819 .812 32.459 350.906 .204 3.000 356.642

a Predictors: (Constant), PctSAT, Expend

Model Summary

Selection Criteria

Model R R Square Adjusted Std. Error Akaike  Amemiya Mallows, Schwarz 

R Square of the Estimate Information Prediction Prediction Bayesian 

Criterion Criterion Criterion Criterion

1 .941a .886 .881 25.781 327.869 .128 3.000 333.605

a Predictors: (Constant), LogPctSAT, Expend

The model using LogPctSAT will next give you the following summary.

With Akaike’s AIC, smaller is better. Notice that you have a noticeably smaller AIC when

LogPctSAT is the predictor. Unfortunately there is no statistical test to tell us whether

327.869 is significantly smaller than 350.906. You will just have to take my word for it that

using the log of the percentage of students taking the SAT is preferable.

15.11 Constructing a Regression Equation

A major problem for anyone who has ever attempted to write a regression equation to pre-

dict some criterion or to understand a set of relationships among variables concerns choos-

ing the variables to be included in the model. We often suffer from having too many

potential variables rather than too few. Although it would be possible to toss in all of the

variables to see what would happen, this solution is neither practical nor wise. We have al-

ready seen that tolerance and the variance inflation factor can be useful in helping us to

identify variables that are highly correlated with each other and thus redundant when it

comes to predicting Y. But we also have other ways of optimizing our equation.

Selection Methods

There are many ways to construct some sort of “optimal” regression equation from a large

set of variables. This section will briefly describe several of these approaches. But first we

Akaike’s

Information

Criterion (AIC)



must raise the issue of whether this whole approach is generally appropriate. In many cases

it is not.

If we assume that you have a large set of variables and a large number of data points,

and are truly interested in a question of prediction (you want to predict who will do well

at some job and have no particular theoretical axe to grind), then one of these methods

may be for you. However, if you are trying to test some theoretical model by looking to

see if certain variables are related to some outcome (e.g., can you predict adolescents’

psychological symptoms on the basis of major stressful events, daily hassles, and

parental stress), then choosing a model on the basis of some criterion such as the maxi-

mum or the minimum is not likely to be particularly helpful. In fact, it may

be particularly harmful by causing you to focus on statistically derived models that fit

only slightly, and perhaps nonsignificantly, better than some other more logically appro-

priate model. Conducting a stepwise analysis, for example, so as to report which of two

competing psychological variables is second to enter the equation often adds a spurious

form of statistical elegance to a poor theory. Solid arguments against the use of step-

wise regression for the purpose of ordering variables by importance have been given by

Huberty (1989). Henderson and Denison (1989), in an excellent article that summarizes

many of the important issues, suggest that “stepwise regression” should be called

“unwise regression.”

On the assumption that you still want to construct a regression model using some form

of variable-selection process, we will consider three alternative approaches: all subsets

regression, backward elimination, and stepwise regression. A readable and much more

thorough discussion of this topic can be found in Draper and Smith (1981, Chapter 6).

All Subsets Regression

The simplest of these methods at a conceptual level is called all subsets regression for the

rather obvious reason that it looks at all possible subsets of the predictor variables and

chooses that set that is optimal in some way (such as maximizing R2 or minimizing the

mean square error). With three or four predictors and some patience you could conduct

such an analysis by using any standard computer package to calculate multiple analyses.

However, with a large number of variables the only way to go about this is to use a special-

ized program, such as SAS PROC RSQUARE, which allows you to specify the largest and

smallest number of predictors to appear in each subset and the number of subsets of each

size. (For example, you can say, “Give me the eight models with the highest R2s using five

predictors.”)

You can define “best” in several different ways; these ways do not always lead to the

same models. You can select models on the basis of (1) the magnitude of , (2) the magni-

tude of , (3) a statistic called Mallow’s , and (4) a statistic called PRESS. The 

magnitudes of and have already been discussed. We search for that combina-

tion of predictors with the highest (or better yet, adjusted ) or that set that minimizes

error. Mallow’s statistic compares the relative magnitudes of the error term in any par-

ticular model with the error term in the complete model with all predictors present (see

Draper & Smith, 1981, p. 299). As such it only applies to nested models, as does the

PRESS statistic to follow. Because the error term in the reduced model must be greater than

(or equal to) the error term in the full model, we want to minimize that ratio.

PRESS (Predicted RESidual Sum of Squares) is a statistic similar to in that it 

looks at , but in the case of PRESS the predictions are made from a data set that

includes all cases except the one to be predicted. Ordering models on the basis of PRESS

would generally, though not always, be similar to ordering them on the basis of .

The advantage of PRESS is that it is more likely to focus on influential data points (see

Draper & Smith, 1981, p. 325).

MSresidual

g(Yi 2 YN i)
2

MSresidual

Cp

R2R2
MSresidualR2

CpMSresidual

R2

MSresidual R2
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The major disadvantage of all subsets regression, aside from the enormous amount of

computer time it can involve, is the fact that it has a substantial potential for capitalizing on

chance. By fitting all possible models to the data, or at least the best of all possible models,

you run the serious risk of selecting those models that best fit the peculiar data points that

are unique to your data set. The final cannot reasonably be thought of as an unbiased es-

timate of the corresponding population parameter.

Backward Elimination

The backward elimination procedure, as well as the stepwise regression procedure to

follow, are generally lumped under the term stepwise procedures because they go about

their task in a logical stepwise fashion. They both have the advantage of being easy to carry

out interactively using standard regression procedures, although programs to carry them

out automatically are readily available.

In the backward elimination procedure, we begin with a model that includes all of the

predictors. Having computed that model, we examine the tests on the individual regression

coefficients, or look at the partial or semipartial correlations and remove the variable that

contributes the least to the model (assuming that its contribution is statistically nonsignifi-

cant). We then rerun the regression without that predictor, again looking for the variable

with the smallest contribution, remove that, and continue. Normally we continue until we

come to a model in which all of the remaining predictors are statistically significant,

although alternative stopping points are possible. For example, we could plot or

against the number of predictors in the model and stop when that curve shows a

break in direction.

Most computer programs that run backward elimination or stepwise regression use

some combination of terms called “F to enter,” “F to remove,” “p to enter,” and “p to

remove.” To take just one of these, consider “p to remove.” If we plan to remove predictors

from the model if they fail to reach significance at a 5 .05, then we set “p to remove” at

.05. The “F to remove” would simply be the critical value of F corresponding to that level

of p.10 (Those programs that calculate t statistics instead of F would simply make the

appropriate change.) The situation is actually more complicated than I have made it seem

(see Draper & Smith, 1981, p. 311), but for practical purposes it is as I have described.

An important disadvantage of backward elimination is that it too capitalizes on chance.

Because it begins with many predictors, it has the opportunity to identify and account for

any suppressor relations among variables that can be found in the data. For example, if

variables 7 and 8 have some sort of suppressor relationship between them, this method has

a good chance of finding it and making those variables a part of the model. If that is a true

relationship, then backward elimination has done what we want it to. On the other hand, if

the relationship is spurious, we have just wasted extra variables explaining something that

does not deserve explanation. Darlington (1990, p. 166) made this point about both back-

ward elimination and all subsets regression. True suppressor relationships are fairly rare,

but apparent ones are fairly common. Therefore, methods that systematically look for

them, especially without accompanying hypothesis tests, may be misleading more often

than simpler methods that ignore them.

MSresidual

R2

R2
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10 As Draper and Smith (1981) point out, when we are testing optimal models the F statistics are not normal Fs
and their probability values should not be interpreted as if they were. Thus, although both F and p form the basis
of a legitimate ordering of potential variables, do not put too much faith in the actual probabilities. McIntyre,
Montgomery, Srinwason, and Weitz (1983) address this problem directly and illustrate the liberal nature of the
test. They also provide guidelines on more appropriate tests on stepwise correlation coefficients, should you wish
to follow this route.
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Stepwise Regression

The stepwise regression method is more or less the reverse of the backward elimination

method.11 However, because at each stage we do not have all of the other variables in the

model and therefore immediately available to test, as we did with backward elimination,

we will go about it in a slightly different way.

Stepwise regression relies on the fact that

If we define variable 1 as that variable with the highest validity (correlation with the crite-

rion), then the first step in the process involves only variable 1. We then calculate all semi-

partials of the form . The variable (assume that it is ) with the highest

(first-order) semipartial correlation with the criterion is the one that will produce the great-

est increment in . This variable is then entered and we obtain the regression of Y on 

and . We now test to see whether that variable contributes significantly to the model con-

taining two variables. We could either test the regression coefficient or the semipartial cor-

relation directly, or test to see if there was a significant increment in . The result would

be the same. Because the test on the increment in will prove useful later, we will do it

that way here. A test on the difference between an based on f predictors and an based

on r predictors (where the r predictors are a subset of the f predictors) is given by

where is the for the full , is the for the reduced model 5 , f
is the number of predictors in the full model, and r is the number of predictors in the

reduced model.

This process is repeated until the addition of further variables produces no significant

(by whatever criterion we wish to use) improvement. At each step in the process, before

we add a new variable we first ask whether a variable that was added on an earlier step

should now be removed on the grounds that it is no longer making a significant contribu-

tion. If the test on a variable falls below “F to remove” (or above “p to remove”), that vari-

able is removed before another variable is added. Procedures that do not include this step

are often referred to as forward selection procedures.

Of the three variable selection methods discussed here, the stepwise regression method is

probably the best. Both Draper and Smith (1981) and Darlington (1990) recommend it as the

best compromise between finding an “optimal” equation for predicting future randomly se-

lected data sets from the same population and finding an equation that predicts the maximum

variance for the specific data set under consideration. I would go even further. Instead of say-

ing that it is the best compromise, I would say that it is the best of a set of poor choices. I rec-

ommend against any mechanistic way of arriving at a final solution. You need to make use of

what you know about your variables and what you see in separate regressions.

Cross-Validation

The stumbling block for most multiple regression studies is the concept of cross-

validation of the regression equation against an independent data set. For example we

might break our data into two or more data sets and derive a regression equation for the

R2
0.1R2R2

rmodel = R2
0.12R2R2

f

F( f2r, N2f21) =
(N 2 f 2 1)(R2

f 2 R2
r)

( f 2 r)(1 2 R2
f )

R2R2
R2

R2

X2

X1R2

X2r0(i.1), i = 2 . . . p

R2
0.123. . . p = r2

01 1 r2
0(2.1) 1 r2

p(3.12) 1 Á
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11 The terminology here is terrible, but you’ll just have to bear with me. Backward elimination is a stepwise
procedure, as is forward elimination, but when we refer to the stepwise approach we normally mean the
procedure that I’m about to discuss.
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first set. We then apply the regression coefficients obtained from that sample against the

data in the other sample to obtain predicted values of Y on a cross-validation sample ( ). 

Our interest then focuses on the question of the relationship between Y and in the new

subsample. If the regression equations have any reasonable level of validity, then the cross-

validation correlation ( —the correlation between Y and predicted on the other sam-

ple’s regression equation) should be high. If they do not, our solution does not amount to

much. will in almost all cases be less than , because depends on a regression

equation tailored for that set of data. Essentially, we have an equation that does its best to

account for every bump and wiggle (including sampling error) in the data. We should not

be surprised when it does not do as well in accounting for different bumps and wiggles in a

different set of data. However, substantial differences between and are an indication

that our solution lacks appreciable validity.

Missing Observations

Missing data are often a problem in regression analyses, and a number of alternative

methods have been devised to deal with them. The most common approach is simply to

delete all cases not having complete data on the variables being investigated. This is called

listwise (or casewise) deletion, because when an observation is missing we delete the

whole case.

A second approach, which is available in SPSS but is deliberately not available in

many programs, is called pairwise deletion. Here we use whatever data are at hand. If

the 13th subject has data on both X and Y, then that subject is included in the calculation

of . But if subject 13 does not have a score on Z, that subject is not included in the cal-

culation of . Once the complete intercorrelation matrix has been computed us-

ing pairwise deletion, the rest of the regression solution follows directly from that

matrix.

Both of these solutions have their problems. Listwise deletion may result in relatively

low sample sizes, and, if the data are not missing completely at random, in samples that are

not a fair reflection of the population from which they were presumably sampled. Pairwise

deletion, on the other hand, can result in an intercorrelation matrix that does not resemble

the matrix that we would have if we had complete data on all cases. In fact, pairwise dele-

tion can result in an “impossible” intercorrelation matrix. It is well known that given 

and , the correlation between Y and Z must fall within certain limits. But if we keep

changing the data that go into the correlations, we could obtain an that is inconsistent

with the other two correlations. When we then try to use such an inconsistent matrix, we

find ourselves in serious trouble.

In recent years considerable attention has focused on imputing additional values to

take the place of missing values. There are a large number of ways that this can be done,

but perhaps the easiest to see, but certainly not the best, is regression imputation. In re-

gression imputation you run a regression, using the observations you have, to predict one

variable from values of the other variables, perhaps using listwise deletion. When you

have created your regression equation you then plug in the subject’s scores on existing

variables and predict that person’s score on the missing variable. In this way you can sys-

tematically replace all of the missing data. You can then run your analysis on the com-

plete data set. I want to stress that I do not recommend this particular approach, but

I present it because it gives you a sense of the approaches that I do recommend. The im-

portant point is to see that the data that we have are used to make intelligent estimates of

the observations that we don’t have. A much more complete treatment of missing data

is available in Howell (2008) and at http://www.uvm.edu/~dhowell/StatPages/

More_Stuff/Missing_Data/Missing.html.

rYZ

rXZ

rXY

rXZ  or rYZ

rXY
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15.12 The “Importance” of Individual Variables

When an investigator derives a regression equation to predict some criterion on the basis of

several variables, it is logical for her to want to know which of the variables is most impor-

tant in predicting Y. Unfortunately, that question has no simple answer, except in the un-

usual case in which the predictors are mutually independent. As we have seen, (or ) is

sometimes taken as a measure of importance. This is done on the grounds that can be

interpreted as the unique contribution of each variable to the prediction of Y. Thus, has

some variance in common with Y that is not shared by any of the other variables, and this

variance is represented by . The difficulty with this measure is that it has nothing to say

about the portion of the variance of Y that does share with the other variables but that is

in some sense part of the contribution of to the prediction of Y. Moreover, what does it

mean to speak of the independent contribution of variables that are not independent?

Darlington (1990) has argued against using as a measure of importance. does rep-

resent the difference, in standard deviation units, between two cases that are equal on all

other predictor variables but differ by one unit on . However, this does not take into ac-

count the fact that when variables are highly correlated such cases will rarely, if ever, exist.

Basing a measure of importance on the b weights has the further serious drawback that

when variables are highly correlated (a condition known as multicollinearity), the values of

b are very unstable from sample to sample, although may change very little. Given two

sets of data, it would not be particularly unusual to find

in one case and

in the other, with nearly equal values of associated with the two equations. If we now

seek a measure of the contribution of each of the predictors in accounting for Y (as op-

posed to using regression to simply predict Y for a given set of data), we could come to

quite different conclusions for the two data sets. Darlington (1968) presents an interest-

ing discussion of this issue and concludes that has only limited utility as a measure of

“importance.” An even stronger stand is taken by Cooley and Lohnes (1971), who point

out that our estimate of b ultimately relies on our estimates of the elements of the inter-

correlation matrix. Because this matrix contains p 1 p(p 2 1) 2 intercorrelations that are

all subject to sampling error, Cooley and Lohnes suggested that we must be exceedingly

careful about attaching practical significance to the regression coefficients.

It is easy to illustrate the problem we have here. In earlier editions of this book I used an

example in which 50 university courses were rated on several variables and a regression

equation was computed to predict the overall rating from the ratings of other variables, such

as how good a teach the instructor was, how fair the exams were, and so on. The regression

equation that was derived from that data set, using standardized regression coefficients, was

The multiple R2 was .755. I then took a second set of 50 courses sampled from the same

source as the original data in Table 15.1. In this case, was more or less the same as it

had been for the first example ( 5 .710), but the regression equation looked quite differ-

ent. In terms of standardized variables the equation was,

If you compare these two equations, it is clear that there are substantial differences in some

of the values of .bi

= 0.371 Teach 1 0.113Exam 1 0.567Knowledge 2 0.27Grade 1 0.184EnrollZYN

R2
R2

= 0.662 Teach 1 0.106Exam 1 0.325Knowledge 2 0.105Grade 1 0.124EnrollZYN

>
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Another measure of importance, which has much to recommend it, is the squared semi-

partial correlation between predictor i and the criterion (with all other predictors partialled

out)—that is, . Darlington (1968) refers to this measure as the “usefulness” of a

predictor. As we have already seen, this squared semipartial correlation represents the

decrement in that would result from the elimination of the ith predictor from the model

(or the increment that would result from its addition). When the main goal is prediction

rather than explanation, this is probably the best measure of “importance.” Fortunately, it is

easy to obtain from most computer printouts, because

where is the F test on the individual (or ) coefficients. (If your program uses t tests

on the coefficient, .) Because all terms but are constant for i 5 1 . . . p, the s

order the variables in the same way as do the squared semipartials, and thus can be used to

rank order the variables in terms of their usefulness.

Darlington (1990) has made a strong case for not squaring the semipartial correlation

when speaking about the importance of variables. His case is an interesting one. However,

whether or not the correlations are squared will not affect the ordering of variables. (If you

wish to argue persuasively about the absolute importance of a variable, you should read

Darlington’s argument.)

One common, but unacceptable, method of ordering the importance of variables is to

rank them by the order of their inclusion in a stepwise regression solution. The problem

with this approach is that it ignores the interrelationships among the variables. Thus, the

first variable to be entered is entered solely on the strength of its correlation with the cri-

terion. The second variable entered is chosen on the basis of its correlation with the cri-

terion after partialling the first variable but ignoring all others. The third is chosen on the

basis of how it correlates with the criterion after partialling the first two variables, and so

on. In other words, each variable is chosen on a different basis, and it makes little sense

to rank them according to order of entry. To take a simple example, assume that variables

1, 2, and 3 correlate .79, .78, and .32 with the criterion. Assume further that variables

1 and 2 are correlated .95, whereas 1 and 3 are correlated .20. They will then enter the

equation in the order 1, 3, and 2, with the last entry being nonsignificant. But in what

sense do we mean to say that variable 3 ranks above variable 2 in importance? I would

hate to defend such a statement to a reviewer—in fact, I would be hard pressed even to

say what I meant by importance in this situation. A similar point has been made well by

Huberty (1989). For an excellent discussion of measures of importance, see Harris

(1985, 79ff).

15.13 Using Approximate Regression Coefficients

I have pointed out that regression coefficients frequently show substantial fluctuations from

sample to sample without producing drastic changes in R. This might lead someone to sug-

gest that we might use rather crude approximations of these coefficients as a substitute for

the more precise estimates obtained from the data. For example, suppose that a five-predictor

problem produced the following regression equation:

We might ask how much loss we would suffer if we rounded these values to

YN = 10 1 1X1 1 2X2 2 1X3 1 4X4 2 2X5

YN = 9.2 1 0.85X1 1 2.1X2 2 0.74X3 1 3.6X4 2 2.4X5

FiFiF = t2
bibiFi

r2
0(i.123...p) =

Fi(1 2 R2
0.123...p)

N 2 p 2 1

R2

r2
0(i.123...p)

552 Chapter 15 Multiple Regression



The answer is that we would probably lose very little. Excellent discussions of this prob-

lem are given by Cohen et al. (2003), Dawes and Corrigan (1974) and Wainer (1976, 1978).

This method of rounding off regression coefficients is more common than you might

suppose. For example, the college admissions officer who quantifies the various predictors

he has available and then weights the grade point average twice as highly as the letter of

recommendation is really using crude estimates of what he thinks would be the actual

regression coefficients. Similarly, many scoring systems for the Minnesota Multiphasic

Personality Inventory (MMPI) are in fact based on the reduction of coefficients to conven-

ient integers. Whether the use of these diagnostic signs produces results that are better than,

worse than, or equivalent to the use of the usual linear regression equations is still a matter

of debate. A dated but very comprehensive study of this question is presented in Goldberg

(1965). Rather than undermining our confidence in multiple regression, I think the fact that

rounded off coefficients do nearly as well (sometimes better if we are applying them to new

data) speaks to the robustness of regression. It also suggests that you not put too much faith

in small differences in coefficients.

15.14 Mediating and Moderating Relationships

One of the most frequently cited papers in the psychological literature related to multiple

regression in the past 20 years has been a paper by Baron and Kenny (1986) on what they

called the moderator-mediator distinction. The important point for both moderating and

mediating relationships is that a third variable plays an important role in governing the re-

lationship between two other variables.

Mediation

A mediating relationship is what it sounds like—some variable mediates the relationship

between two other variables. For example, take a situation to which I referred earlier, in

which high levels of care from your parents leads to feelings of competence and self-

esteem on your part, which, in turn, leads to high confidence when you become a mother.

Here we would say that your feelings of competence and self-esteem mediate the relation-

ship between how you were parented and how you feel about mothering your own children.

Baron and Kenny (1986) laid out several requirements that must be met before we can

speak of a mediating relationship. Consider the diagram below as being representative of a

mediating relationship that we want to explain.
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mediating
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The predominant relationship that we want to explain is labeled “c,” and is the path

from the independent to the dependent variable. The mediating path has two parts, com-

prised of “a,” the path connecting the independent variable to the potential mediator, and

“b,” the path connecting that mediator to the dependent variable.

Baron and Kenny argued that for us to claim a mediating relationship, we need to first

show that there is a significant relationship between the independent variable and the



mediator. (If the mediator is not associated with the independent variable, then it couldn’t

mediate anything.) The next step is to show that there is a significant relationship between

the mediator and the dependent variable, for reasons similar to those for the first require-

ment. Then we need to show that there is a significant relationship between the independent

and dependent variable. The reason for this should be obvious.

These three conditions require that the three paths (a, b, and c) are all individually sig-

nificant. The final step consists of demonstrating that when the mediator and the independ-

ent variable are used simultaneously to predict the dependent variable, the previously

significant path between the independent and dependent variables (c) is now greatly re-

duced, if not nonsignificant. In other words, when we partial the mediator out of the rela-

tionship, the relationship between the independent and dependent variable is noticeably

reduced. Maximum evidence for mediation would occur if c drops to 0. In my experience I

have never seen a path go away completely. Most likely to happen is that c becomes a

weaker, though perhaps still significant, path.

Leerkes and Crockenberg (1999) were interested in studying the relationship between

how children were raised by their own mothers, and their later feelings of maternal self-

efficacy when they, in turn, became mothers. Their sample consisted of 92 mothers of five-

month old infants. They expected to find that high levels of maternal care when the mother

was a child translated to high levels of self-efficacy when that child later became a mother.

But Leerkes and Crockenberg went further, postulating that the mediating variable in this

relationship is self-esteem. They argued that high levels of maternal care lead to high lev-

els of self-esteem in the child, and that this high self-esteem later translates into high levels

of self-efficacy as a mother. Similarly, low levels of maternal care are expected to lead to

low levels of self-esteem, and thus to low levels of self-efficacy. This relationship is dia-

grammed below.
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Self-esteem

a b

Maternal care Self-efficacy

c

Maternal care

1.000

.403**

.272**

Maternal care

Self-esteem

5 month efficacy

Self-esteem

.403**

1.000

.380**

5 month
efficacy

.272**

.380**

1.000

Correlations

Pearson Correlation

** Correlation is significant at the 0.01 level (2-tailed).

Here we can see that maternal care is correlated with self-esteem and with self-efficacy,

and that self-esteem is also correlated with self-efficacy. These relationships satisfy Baron

and Kenny’s basic prerequisites. The next step is to use both self-esteem and maternal care

as predictors of self-efficacy. This is shown in the following output.

The initial conditions of Baron and Kenny (1986) can be tested by looking at the sim-

ple correlations among the variables. These are shown below as produced by SPSS.



The first model in the previous table uses maternal care as the sole predictor. The sec-

ond model has added self-esteem as a predictor. Here you can see that when we add self-

esteem to maternal care, which was clearly significant when used alone to predict

self-efficacy, maternal care is no longer significant (t 5 1.334, p 5 .185). This is evidence

that self-esteem is serving a mediating role between maternal care and self-efficacy. The

output also shows what SPSS calls the “part correlation,” but which the rest of us call

the semipartial correlation. The semipartial correlation between maternal care and self-

efficacy is .130, whereas the simple correlation (zero-order) between maternal care and

self-efficacy was .27. It remains significant, as we can see by the t test on self-esteem,

but has dropped noticeably.

These results support Leerkes and Crockenberg’s hypothesis that self-esteem played a

mediating role between maternal care and self-efficacy. Caring parents seem to produce

children with higher levels of self-esteem, and this higher self-esteem translates into posi-

tive feelings of self-efficacy when the child, in turn, becomes a mother.

In this situation Leerkes and Crockenberg were fortunate to have a situation in which

the direct path from maternal care to self-efficacy dropped to nonsignificance when self-

esteem was added. Unfortunately, that does not always happen. (In fact, it seems to happen

relatively infrequently.) The more common result is that the direct path becomes less im-

portant, though it remains significant. There has been considerable discussion about what

to do in this situation, but there is a relatively simple answer, due to Sobel (1982), that was

advocated by Baron and Kenny.

When we have a situation in which the direct path remains significant, though at a

lower value, one way to test for a mediating relationship is to ask whether the complete me-

diating path from independent variable to mediator to dependent variable is significant. To

do this we need to know the regression coefficients and their standard errors for the two

paths in the mediating chain. We will soon also need the regression of Self-esteem on

Maternal Care, so that table follows.
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Coefficientsa

Model

1 (Constant)

pbi maternal care

B

2.257

.364

Std. Error

.294

.087

Beta

.403

t

7.687

4.178

Sig.

.000

.000

Zero-

order

.403

Partial

.403

Part

.403

Unstandardized

Coefficients Correlations

Standardized

Coefficients

a Dependent Variable: self-esteem

Coefficientsa

Model

1 (Constant)

maternal care

2 (Constant)

maternal care

self esteem

B

3.260

.112

2.929

5.817E-02

.147

Std. Error

.141

.042

.173

.044

.048

Beta

.272

.142

.323

t

23.199

2.677

16.918

1.334

3.041

Sig.

.000

.009

.000

.185

.003

Zero-
order

.272

.272

.380

Part

.272

.130

.295

Unstandardized
Coefficients Correlations

Standardized
Coefficients

a Dependent Variable: 5 month efficacy



The important statistics from the two regressions are shown in Table 15.4. Because

SPSS does not report the standard error of Beta, we need to calculate it. The t statistic

given in these tables is either the unstandardized regression coefficient (b) divided by its

standard error, or the standardized regression coefficient divided by its standard error.

Thus we can solve

Similarly for the path from Self-esteem to Self-efficacy, partialling Maternal care, we have

These results yield the following table.

Then the regression coefficient for the path from Maternal care Self-esteem Self-

efficacy is equal to ba 3 bb 5 .403 3 .323 5 .130, where a and b refer to the relevant

paths. (Path c is the direct path from Maternal care to Self-efficacy.) In addition, we know

that the standard error of this two-part path is given by

where ba and bb are the paths, and and are the corresponding standard errors of the

standardized regression coefficients for those paths.12 We can calculate the standard error

of the combined path as:

We now know the path coefficient (.403 3 .323 5 .130) and its standard error (.052),

and we can form a t ratio as

Sobel (1982) stated that this ratio is asymptotically normally distributed, which, for large

samples, would lead to rejection of the null hypothesis at a 5 .05 when the ratio exceeds 

1.96. It would presumably have a t distribution on N – 3 df for small samples. In our case

the path is clearly significant, as we would expect from the previous results. Therefore we

6

t =
babb

sbabb

=
.130

.052
= 2.50

 = 0.052

 = 10.0027

 sbabb
= 3b2

as2
b 1 b2

bs2
a 2 s2

as2
b = 3.4032(.1062) 1 .3232(.0962) 2 (.1062)(.0982)

s2
bs2

a

sbabb
= 3b2

as2
b 1 b2

bs2
a 2 s2

as2
b

::

t =
b

sb

;   sb =
b

t
=

0.323

3.041
= 0.106

t =
b

sb

;   sb =
b

t
=

0.403

4.178
= 0.096
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Table 15.4 Regression coefficients and standard errors 

for two parts of mediating path

Path a Path b

Maternal Self- Self- Self-

Care Esteem Esteem Efficacy

b 0.403 b .323

sa 0.096 sb .106

t 4.18* t 3.041*

12 There is some disagreement over the exact form of these equations, but the one given here is recommended by
Baron and Kenny. The differences among the various equations turn out to be very minor in practice.



can conclude that we have convincing evidence of a strong mediating pathway from maternal

care through self-esteem to self-efficacy. Because the regression coefficient (and semipartial

correlation) for the direct path from maternal care to self-efficacy is not significant, the main

influence of maternal care is through its mediating relationship with self-esteem.

There has been considerable discussion in the literature about the best approach to testing

mediation. For an online test using three alternative approaches to the standard error, go to

www.people.ku.edu/~preacher/sobel/sobel.htm. Preacher and Hayes (2004) (available from

the previous Web site) present SPSS and SAS macros that allow you to use bootstrapping

methods (see Chapter 18) to address this question. A very well-written description of media-

tion has been put on the Web by Paul Jose, at the University of Wellington. It can be found at

http://www.victoria.ac.nz/psyc/staff/paul-jose-files/helpcentre/help7_mediation_example.php. In

addition, Jose offers a free mediation calculator, which runs under Excel, at http://www.vuw

.ac.nz/psyc/staff/paul-jose/files/medgraph/medgraph.php. I have found that very useful, but be

aware that there seems to be minor disagreement between the example and the results of the soft-

ware. Finally, an extensive comparison of alternative approaches can be found in MacKinnon,

Lockwood, Hoffman, West, and Sheets (2002). A good discussion of the whole issue of medi-

ating and moderating relationships can be found in Beaujian (2008).

Moderating Relationships

Whereas a mediating relationship attempts to identify a variable or variables through

which the independent variable acts to influence the dependent variable, moderating

relationships refer to situations in which the relationship between the independent and

dependent variables changes as a function of the level of a third variable (the moderator).

Wagner et al. (1988) hypothesized that individuals who experience more stress, as as-

sessed by a measure of daily hassles, will exhibit higher levels of symptoms than those who

experience little stress. That is what, in analysis of variance terms, would be the main ef-

fect of hassles. However, they also expected that if a person had a high level of social sup-

port to help deal with his or her stress, symptoms would increase only slowly with

increases in hassles. For those who had relatively little social support, symptoms were

expected to rise more quickly as hassles increased.

Wagner et al. (1988) studied students who were attending an orientation before starting

their first year of college. Students were asked to report on the number of minor stressful

events (labeled hassles) that they had recently experienced, and also to report on their per-

ceived level of social support. They then completed a symptom checklist on the number of

symptoms they had experienced in the past month. For this part of the study there were

complete data on 56 participants. These data are available on the data disk in a file named

hassles.dat.

Our first step is to look at the relationships between these variables. The correlation

matrix is shown below.

As expected, there is a significant relationship between Hassles and Symptoms (r 5 .577),

though Support is not related to Symptoms, or to Hassles. This does not, however, answer the
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moderating

relationships

Hassles

1.000

–.167

.577**

Hassles

Support

Symptoms

Support

–.167

1.000

–.134

Symptoms

.577**

–.134

1.000

Correlations

Pearson Correlation

** Correlation is significant at the 0.01 level



question that they really wanted to ask, which is whether the relationship between Hassles and

Symptoms depends on the degree of social support.13

If you think about this question it starts to sound very much like the question behind an in-

teraction in the analysis of variance. In fact, it is an interaction, and the way that we will test

for that interaction is to create a variable that is the product of Hassles and Support. (This is

also similar to what we will do in the general linear model approach to the analysis of variance

in the next chapter.) However, if we just multiply Hassles and Support together, there will be

two problems with what results. In the first place, either Hassles or Support or both will be

highly correlated with their product, which will make for multicollinearity in the data. This

will seriously affect the magnitude, and tests of significance, of the coefficients for the main

effect of Hassles and Support. The second problem is that any effect of Hassles or Support in

the regression analysis will be evaluated at a value of 0 for the other variable. In other words

the test on Hassles will be a test on whether Hassles is related to Symptoms if a participant had

exactly no social support. Similarly the test on Support would be evaluated for those partici-

pants who have exactly no hassles. Both the problem of multicollinearity and the problem of

evaluating one main effect at an extreme value of the other main effect are unwelcome.

To circumvent these two problems we are going to center our data. This means that we

are going to create deviation scores by subtracting each variable’s mean from the individual

observations. Now a score of 0 for (centered) Hassles represents someone who has the mean

level of Hassles, which seems an appropriate place to examine any effects of support, and

anyone with a 0 on (centered) support represents someone with a mean level of support. This

has solved one of our problems, because we are now evaluating the main effects at a reason-

able level of the other main effect. It has also helped to solve our other problem, because if

you look at the resulting correlations, multicollinearity will have been significantly reduced.

Having centered our variables we will then form a product of our centered variables,

and this will represent our interaction term. The means for hassles, support, and symptoms

are 170.1964, 28.9643, and 90.4286, respectively, and the equations for creating centered

variables and their interaction follow. The letter “c” at the beginning of the variable name

indicates that it is centered.

chassles 5 hassles – 170.1964

csupport 5 support – 28.9643

chassupp 5 chassles 3 csupport

The correlations among the centered (and uncentered) variables are shown in the fol-

lowing table. I have included the product of the uncentered variables simply to show how

high the correlation between hassles and hassupp is, but we are not going to use this vari-

able. You can see that by centering the variables we have substantially reduced the correla-

tion between the main effects and the interactions. That was our goal. Notice that centering

the variables did not change their correlations with each other—only with the interaction.

We can now examine the interaction of the two predictor variables by including the in-

teraction term in the regression with the other centered predictors. The dependent variable

is Symptoms. This regression is shown in Table 15.5. (As long as we use the product of

centered variables, it doesn’t matter [except for the intercept] if we use the centered or un-

centered main effects. I prefer the latter, but for no particularly good reason.)

From the printout you can see that R2 5 .388, which is significant. (Without the

interaction term, R2 would have been .334 (not shown).) From the table of regression
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center

13 This discussion might remind you of my earlier statement that if we (hypothetically) compute a regression co-
efficient for one variable by successively holding constant the level of another variable, we have to assume that
each of those individual regression coefficients would be approximately equal. In other words I was saying that
there was no moderation (or interaction) of one variable by another.



coefficients you see that both the centered Hassles and the interaction terms are signifi-

cant (p 5 .000 and .037, respectively), but the social support variable is not significant.

By convention we leave it in our regression solution, because it is involved in the inter-

action, even though the associated t value shows that deleting that variable would not

lead to a significant decrease in R2.

Our regression equation now becomes

5 .086 chassles 1 .146 csupport – .005 chassupp 1 89.585.YN
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Hassles

1.000

–.167

.577**

.910**

1.000**

–.167

–.297*

Hassles

Support

Symptoms

hassupp

chassles

csupport

chassupp

Support

–.167

1.000

–.134

–.510**

–.167

1.000**

.402**

Symptoms

.577**

–.134

1.000

.585**

.577**

–.134

–.391**

hassupp

.910**

–.510**

.585**

1.000

.910**

–.510**

–.576**

chassles

1.000**

–.167

.577**

.910**

1.000

–.167

–.297*

csupport

–.167

1.000**

–.134

–.510**

–.167

1.000

.402**

chassupp

–.297*

.402**

–.391**

–.576**

–.297*

.402**

1.000

Correlations

Pearson Correlation

** Correlation is significant at the .01 level (2-tailed).

* Correlation is significant at the .05 level (2-tailed).

Sum of
Squares

9427.898

14839.816

24267.714

Model

1 Regression

Residual

Total

df

3

52

55

Mean
Square

3142.633

285.381

F

11.012

Sig.

.000a

ANOVAb

Coefficientsa

Model

1 (Constant)

chassles

csupport

chassupp

B

89.585

8.594E-02

.146

–5.06E-03

Std. Error

2.292

.019

.305

.002

Beta

.509

.057

–.262

t

30.094

4.473

.479

–2.144

Sig.

.000

.000

.634

.037

Unstandardized
Coefficients

Standardized
Coefficients

a Predictors: (Constant), chassupp, chassles, csupport
b Dependent Variable: Symptoms

a Dependent Variable: Symptoms

Table 15.5 Regression solution for moderated relationship between hassles

and symptoms

R

.623a

Model

1

R Square

.388

Adjusted
R Square

.353

Std. Error
of the

Estimate

16.8932

Model Summary

a Predictors: (Constant), CHASSUPP, CHASSLES, CSUPPORT



We have answered our initial questions (social support does moderate the relationship

between hassles and symptoms), but it would be helpful if we could view this graphically

to interpret the meaning of the interactive effect. Excellent discussions of this approach can

be found in Finney, Mitchell, Cronkite, and Moos (1984), Jaccard, Turrisi, and Wan (1990),

and Aiken and West (1991). The latter is the authoritative work on moderation. Normand

Péladeau has a free program called Italassi, available on the Web at http://www.simstat

.com/. This program will plot the interaction on your screen and provides a slider so that

you can vary the level of the support variable.

The simplest solution is to look at the relationship between chassles and csymptoms for

fixed levels of social support. Examination of the distribution of csupport scores shows that

they range from about 221 to 119. Thus scores of 215, 0, and 115 would represent low, neu-

tral, and high scores on csupport. (You don’t have to be satisfied with these particular values,

you can use any that you like. I have picked extremes to better illustrate what is going on.)

First I will rewrite the regression equation, substituting generic labels for the regres-

sion coefficients. I will also substitute chassles 3 csupport for chassupp, because that is

the way that I calculated chssupp. Finally, I will also reorder the terms a bit just to make

life easier.

5 b
1
chassles 1 b

2
csupport – b

3
chassupp 1 b

0

5 b
0

1 b
2
csupport 1 b

3 
(chassles 3 csupport) 1 b

1
chassles

Collecting terms I have

5 b
0

1 b
2
csupport 1 chassles(b

3
csupport 1 b

1
)

Next I will substitute the actual regression coefficients to get

5 [89.585 1 .146csupport] 1 chassles(2.005csupport 1 .086)

Notice the first term in square brackets. For any specific level of csupport (e.g., 15) this is a

constant. Similarly, for the terms in parentheses after chassles, that is also a constant for a

fixed level of support. To see this most easily, we can solve for when csupport is at 15,

which is a high level of support. This gives us

5 [89.585 1 .146 3 15] 1 chassles(2.005 3 15 1 .086)

5 91.7551 .011 3 chassles

which is just a plain old linear equation. This is the equation that represents the relation-

ship between and chassles when social support is high (i.e., 15).

Now we can derive two more simple linear equations, one by substituting 0 for csup-

port and one by substituting –15.

When csupport 5 0,

5 89.585 1 .086 3 chassles

When csupport 5 –15,

5 87.395 1 .161 3 chassles

When I look at the frequency distribution of chassles, low, neutral, and high scores are

roughly represented by –150, 0, and 150. So I will next calculate predicted values for

symptoms and low, neutral, and high levels of chassles for each of low, neutral, and high

levels of csupport. These are shown in the table below, and they were computed using the

three regression equations above and setting chassles at –150, 0, and 150.

YN

YN

YN

YN

YN

YN

YN

YN

YN
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Centered Support

215 0 15

Centered 2150 63.245 76.685 90.105

Hassles 0 87.395 89.585 91.755

150 111.545 102.485 93.405

If we plot these predicted values separately for the different levels of social support, we

see that with high social support increases in hassles are associated with relatively small

increases in symptoms. When we move to csupport 5 0, which puts us at the mean level of

support, increasing hassles leads to an greater increase in symptoms. Finally, when we have

low levels of support (csupport 5 215), increases in hassles lead to dramatic increases in

symptoms. This is shown graphically in Figure 15.7.

The use of interaction terms (e.g., X
1

3 X
2
) in data analysis, such as the problem that

we have just addressed, has become common in psychology in recent years. However, my

experience and that of others has been that it is surprisingly difficult to find meaningful sit-

uations where the regression coefficient for X
1

3 X
2 
is significant, especially in experimen-

tal settings where we deliberately vary the levels of X
1

and X
2
. McClelland and Judd (1993)

have investigated this problem and have shown why our standard field study designs have

so little power to detect interactions. That is an important paper for anyone investigating

interaction effects in nonexperimental research.

15.15 Logistic Regression

In the past few years the technique of logistic regression has become popular in the psy-

chological literature. (It has been popular in the medical and epidemiological literature for

much longer.) Logistic regression is a technique for fitting a regression surface to data in
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which the dependent variable is a dichotomy.14 A very common situation in medicine is the

case in which we want to predict response to treatment, where we might code survivors as

1 and those who don’t survive as 0. In psychology we might class clients as Improved or

Not Improved, or we might rate performance as Successful or Not Successful. Whenever

we have such a dichotomous outcome, we have a possible candidate for logistic regression.

But when we have a dichotomous dependent variable we have at least two other statis-

tical procedures as candidates for our analysis. One of them, which is not discussed in this

text, is discriminant analysis, which is a technique for distinguishing two or more groups

on the basis of a set of variables. The question is often raised about whether logistic regres-

sion is better than discriminant analysis. It isn’t always clear how we might define “better,”

but discriminant analysis has two strikes against it that logistic regression does not. In the

first place discriminant analysis can easily produce a probability of success that lies out-

side the range of 0 and 1, and yet we know that such probabilities are impossible. In the

second place, discriminant analysis depends on certain restrictive normality assumptions

on the independent variables, which are often not realistic. Logistic regression, on the other

hand, does not produce probabilities beyond 0 and 1, and requires no such restrictive as-

sumptions on the independent variables, which can be categorical or continuous. Common

practice has now moved away from discriminant analysis in favor of logistic regression.

A second alternative would be to run a standard multiple regression solution, which we

have just been covering, using the dichotomous variable as our dependent variable. In fact,

in many situations the results would be very similar. But there are reasons to prefer logistic

regression in general, though to explain those I have to take a simple example.

We will look at actual, though slightly modified, data on variables that we hope to re-

late to whether or not the individual responds positively to cancer treatment. The data that

we will consider were part of a study of behavioral variables and stress in people recently

diagnosed with cancer. For our purposes we will look at patients who have been in the

study for at least a year, and our dependent variable (Outcome) is coded 1 for those who

have improved or are in complete remission, and 0 for those who have not improved or

who have died. (Any consistent method of coding, such as 1 and 2, or 5 and 8, would also

work.)15 Out of 66 cases we have 48 patients who have improved and 18 who have not.

Suppose that we start our discussion with a single predictor variable, which is the Survival

rating (SurvRate) assigned by the patient’s physician at the time of diagnosis. This is a

number between 0 and 100 and represents the estimated probability of survival at 5 years.

One way to look at the relationship between SurvRate and Outcome would be to simply

create a scatterplot of the two variables, with Outcome on the Y axis. Such a plot is given in

Figure 15.8. (In this figure I have offset overlapping points slightly so that you could see

them pile up. That explains why there seems to be string of points at SurvRate 5 91 and

Outcome 5 1, for example.) From this plot it is apparent that the proportion of people

who improve is much higher when the survival rating is high, as we would expect.

Assume for the moment that we had a great many subjects and could calculate the mean

Outcome score (the mean of 0s and 1s) associated with each value of SurvRate. (These

are called conditional means because they are conditional on the value of SurvRate.) The

conditional means would be the proportion of people with that value of SurvRate who
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14 Logistic regression can also be applied in situations where there are three or more levels of the dependent vari-
able, which we refer to as a polychotomy, but we will not discuss that method here.
15 You have to be careful with coding, because different computer programs treat the same codes differently.
Some will code the higher value as success and the lower as failure, and others will do the opposite. If you have a
printout where the results seem exactly the opposite of what you might expect, check the manual to see how the
program treats the dichotomous variable.



improved. If we fit a standard regression line to these data, this would be the regression

line that fits the probability of improvement as a function of SurvRate. But as you can

imagine, for many values of SurvRate the predicted probability would be outside the

bounds 0 and 1, which is impossible. That alone would make standard linear regression a

poor choice. There is a second problem. If you were to calculate the variances of Out-

come for different values of SurvRate, you would see that they are quite small for both

large and small values of SurvRate (because almost everyone with low values of SurvRate

has a 0 and almost everyone with high values of SurvRate has a 1). But for people with

mid-level SurvRate values there is nearly an even mix of 0s and 1s, which will produce a

relatively larger variance. This will clearly violate our assumption of homogeneity of vari-

ance in arrays, to say nothing of normality. Because of these problems, standard linear re-

gression is not a wise choice with a dichotomous dependent variable, though it would

provide a pretty good estimate if the percentage of improvement scores didn’t fall below

20% or above 80% across all values of SurvRate (Cox and Wermuth, 1992).

Another problem is that the true relationship is not likely to be linear. Differences in

SurvRate near the center of the scale will lead to noticeably larger differences in Outcome

than will comparable differences at the ends of the scale.

While a straight line won’t fit the data in Figure 15.8 well, an S-shaped, or sigmoidal

curve will. This line changes little as we move across low values of SurvRate, then changes

rapidly as we move across middle values, and finally changes slowly again across high values.

In no case does it fall below 0 or above 1. This line is shown in Figure 15.9. Notice that it is

quite close to the whole cluster of points in the lower left, rises rapidly for those values of

SurvRate that have a roughly equal number of patients who improve and don’t improve, and

then comes close to the cluster of points in the upper right. When you think about how you

might expect the probability of improvement to change with SurvRate, this curve makes sense.

There is another way to view what is happening that provides a tie to standard linear

regression. If you think back to what we have said in the past about regression, you will

recall that, at least with large samples, there is a whole collection of Y values correspon-

ding to each value of X. You saw this diagrammatically in Figure 9.5, when I spoke about

15.15 Logistic Regression 563

1009080706050403020100

SurvRate

NewOut by SurvRate

N
ew

O
u

t

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

Y  0.010X  0.130ˆ

Figure 15.8 Outcome as a function of SurvRate

sigmoidal



the assumptions of normality and homogeneity of variance in arrays. Rather than classify-

ing people as improved or not improved, suppose that we could somehow measure their

disease outcomes more precisely. (For example, we could rate their condition on a 100

point scale.) Then for a rating of SurvRate 5 20, for example, we would have a whole dis-

tribution of disease outcome scores; similarly for people with SurvRate 5 30, SurvRate 5

40, etc. These distributions are shown schematically in Figure 15.10.

When we class someone as improved, we are simply saying that their disease outcome

score is sufficiently high for us to say that they fall in that category. They may be completely

cured, they may be doing quite a bit better, or they may be only slightly improved, but they at

least meet our criterion of “improved.” Similarly, someone else may have remained constant,

gotten slightly worse, or died, but in any event their outcome was below our decision point.

What we have here are called censored data. When I speak of censoring I’m not

talking about some nasty little man with a big black marker who blocks out things he

doesn’t want others to see. We are talking about a situation where something that is

above a cutoff is classed as a success, and something below the cutoff is classed as a fail-

ure. It could be performance on a test, obtaining a qualifying time for the Boston

Marathon, or classifying an airline flight as “on time” or “late.” From this point of view,

logistic regression can be thought of as applying linear regression to censored data.
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Because the data are censored to provide only success or failure, we have to fit our model

somewhat differently.

The horizontal line across the plot in Figure 15.8 represents a critical value. Anyone

scoring above that line would be classed as improved, and anyone below it would be classed

as not improved. As you can see, the proportion improving, as given by the shaded area of

each curve, changes slowly at first, then much more rapidly, and then slowly again as we

move from left to right. This should remind you of the sigmoid curve we saw in Figure 15.9,

because this is what gives rise to that curve. The regression line that you see in Figure 15.10

is the linear regression of the continuous measure of outcome against SurvRate, and it goes

through the mean of each distribution. If we had the continuous measure, we could solve for

this line. But we have censored data, containing only the dichotomous values, and for that

we are much better off solving for the sigmoidal function in Figure 15.9.

We have seen that although our hypothetical continuous variable is a linear function

of SurvRate, our censored dichotomous variable (or the probability of improvement) is

not. But a simple transformation from p(improvement) to odds(improvement) to log

odds(improvement) will give us a variable that is a linear function of SurvRate. Therefore

we can convert p(improvement) to log odds(improvement) and get back to a linear func-

tion. An excellent discussion of what we are doing here can be found in Allison (1999).

Although that manual was written for people using SAS, it is one of the nicest descrip-

tions that I know and is useful whether you use SAS or not.

Dabbs and Morris (1990) ran an interesting study in which they classified male mili-

tary personnel as High or Normal in testosterone, and as either having, or not having, a his-

tory of delinquency. The results follow:

Delinquent

Yes No Total

Testosterone
Normal 402 3614 4016

High 101 345 446

503 3959 4462

For these data, the odds of being delinquent if you are in the Normal group are

(frequency delinquent)/(frequency not delinquent). (Using probabilities instead of frequen-

cies, this comes down to p
delinquent

p
not delinquent 

5 p(delinquent) (1 2 p(delinquent).) For

the Normal testosterone group the odds of being delinquent are 402/3614 5 .1001 The

odds of being not delinquent if you are in the Normal group is the reciprocal of this, which

is 3614 402 5 8.990. This last statistic can be read as meaning that if you are a male with

normal testosterone levels you are nearly 9 times more likely to be not delinquent than

delinquent (or, if you prefer, 9 times less likely to be delinquent than not delinquent). If we

look at the High testosterone group, however, the odds of being delinquent are 101 345 5

.293, and the odds of being not delinquent are 345 101 5 3.416. Both groups of males are

more likely to be not delinquent than delinquent, but that isn’t saying much, because we

would hope that most people are not delinquent. But notice that as you move from the Nor-

mal to the High group, your odds of being delinquent nearly triple, going from .111 to .293.

If we form the ratio of these odds we get .293 .111 5 2.64, which is the odds ratio. For

these data you are 2.64 more likely to be delinquent if you have high testosterone levels

than if you have normal levels. That is a pretty impressive statistic.

We will set aside the odds ratio for a moment and just look at odds. With our cancer

data we will focus on the odds of survival. (We can return to odds ratios any time we wish

simply by forming the ratio of the odds of survival and non-survival for each of two differ-

ent levels of SurvRate.)

>

>
>

>

>>
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For what we are doing here (predicting the odds of surviving breast cancer), we will

work with the natural logarithm16 of the odds, the result is called the log odds of survival.

For our example the log odds of being delinquent for a male with high testosterone,

The log odds will be positive for odds greater than 1 1 and negative for odds less than 1 1.

(They are undefined for odds 5 0.) You will sometimes see log odds referred to as the logit

and the transformation to log odds referred to as the logit transformation.

Returning to the cancer study, we will start with the simple prediction of Outcome on

the basis of SurvRate. Letting p 5 the probability of improvement and 1 2 p 5 the proba-

bility of nonimprovement, we will solve for an equation of the form:

Here will be the amount of increase in the log odds for a one unit increase in SurvRate.

It is important to keep in mind how the data were coded. For the Outcome variable, 1 5

improvement and 2 5 no change or worse. For SurvRate, a higher score represents a better

prognosis. So you might expect to see that SurvRate would have a positive coefficient, be-

ing associated with a better outcome. But with SPSS that will not be the case. SPSS will

transform Outcome 5 1 and 2 to 0 and 1, and then try to predict a 0 (better). Thus its coef-

ficient will be negative. (SAS would try to predict a 1, and its coefficient would be posi-

tive, though of exactly the same magnitude.)

In simple linear regression we had formulae for and and could use methods of

least squares to solve the equations with pencil and paper. Things are not quite so simple in

logistic regression, in part because our data consist of 0 and 1 for SurvRate, not the condi-

tional proportions of improvement. For logistic regression we are going to have to use max-

imum likelihood methods and solve for our regression coefficients iteratively. This means

that our computer program will begin with some starting values for and , see how well

the estimated log odds fit the data, adjust the coefficients, again examine the fit, and so on

until no further adjustments in the coefficients will lead to a better fit. This is not some-

thing you would attempt by hand.

In simple linear regression you also had standard F and t statistics testing the signifi-

cance of the relationship and the contribution of each predictor variable. We are going to

have something similar in logistic regression, although here we will use tests instead of

F or t.
In Exhibit 15.4 you will see SPSS results of using SurvRate as our only predictor of

Outcome. I am beginning with only one predictor just to keep the example simple. We will

shortly move to the multiple predictor case, where nothing will really change except that

we have more predictors to discuss. The fundamental issues are the same regardless of the

number of predictors.

I will not discuss all of the statistics in Exhibit 15.4, because to do so would take us

away from the fundamental issues. For more extensive discussion of the various statistics

see Darlington (1990), Hosmer and Lemeshow (1989), and Lunneborg (1994). My purpose

here is to explain the basic problem and approach.

The first part of the printout is analogous to the first part of a multiple regression print-

out, where we have a test on whether the model (all predictors taken together) predicts the

dependent variable at greater than chance levels. For multiple regression we have an F test,

whereas here we have (several) tests.x2

x2

b1b0

b1b0

b1

log(p>1 2 p) = logodds = b0 1 b1 SurvRate

>>
logodds = loge(odds) = ln(odds) = ln(0.293) = -0.228
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transformation

iteratively

16 The natural logarithm of X is the logarithm to the base e of X. In other words, it is the power to which e must be
raised to produce X, where e is the base of the natural number system 5 2.71828.



Start with the line indicating Beginning Block Number 0, and the row labeled “22 log

Likelihood.” At this point there is no predictor in the model and 22 log likelihood 5

77.345746. This is a measure of the overall variability in the data. You might think of it as

being analogous to SS
total

in the analysis of variance. The quantity 22 log L can be inter-

preted as a test on how well a model with no predictors would fit the data. That is

77.3457, which is a significant departure from a good fit, as we would expect with no pre-

dictors. ( would be 0.00 if the fit were perfect.)

For the next block SPSS adds SurvRate as the (only) predictor and produces another

value of 22 log likelihood 5 37.323. This is the amount of variability that remains after

SurvRate is taken into account, and the difference (77.345 2 37.323 5 40.022) represents

a reduction in that can be attributed to adding the predictor. Because we have added one

predictor, this is itself a on 1 df, and can be evaluated as such. You can see that the sig-

nificance level is given as .0000, meaning that SurvRate added significantly to our ability

to predict. (You will note that there are lines labeled Model, Block, and Step, and they are

all the same because we have added all of our predictors (1) at the same time.)

x2
x2

x2

x2x2

15.15 Logistic Regression 567

Exhibit 15.4 Logistic analysis of cancer survival

Number of selected cases: 66

Number rejected because of missing data: 0

Number of cases included in the analysis: 66

Dependent Variable Encoding:

Original Internal

Value Value

1.00 0

2.00 1

Dependent Variable. OUTCOME Cancer Outcome

Beginning Block Number 0. Initial Log Likelihood Function

–2 Log Likelihood 77.345746

* Constant is included in the model.

Beginning Block Number 1. Method: Enter

Variable(s) Entered on Step Number

1.. SURVRATE Survival Rating by Physician

–2 Log Likelihood 37.323

Goodness of Fit 57.235

Cox & Snell – R^2 .455

Nagelkerke – R^2 .659

Chi-Square df Significance

Model 40.022 1 .0000

Block 40.022 1 .0000

Step 40.022 1 .0000

------------------------------------------- Variables in the Equation --------------------------------------------

Variable B S.E. Wald df Sig R Exp(B)

SURVRATE –.0812 .0193 17.7558 1 .0000 –.4513 .9220

Constant 2.6836 .8113 10.9408 1 .0009 



The next section of the table contains, and tests, the individual predictors. (Here there

is only one predictor—SurvRate.) From this section we can see that the optimal logistic re-

gression equation is

Log odds 5 2.0812 SurvRate 1 2.6836

The negative coefficient here for SurvRate indicates that the log odds go down as the

physician’s rating of survival increases. This reflects the fact that SPSS is trying to predict

whether a patient will get worse, or even die, and we would expect that the likelihood of

getting worse will decrease as the physician’s rating increases.

We can also see that SurvRate is a significant predictor, as tested by Wald’s 

5 17.7558 on 1 df, which is significant at p 5 .0001. You will notice that the test,

i.e., 22log L, on the whole model and the Wald test on SurvRate disagree. Because

SurvRate is the whole model, you might think that they should say the same thing. This is

certainly the case in standard linear regression, where our F on regression is, with one pre-

dictor, just the square of our t on the regression coefficient. This disagreement stems from

the fact that they are based on different estimates of . Questions have been raised

about the behavior of the Wald criterion, and Hosmer and Lemeshow (1989) suggest rely-

ing on the likelihood ratio test (22 log L) instead.

Looking at the logistic regression equation we see that the coefficient for SurvRate is

2.0812, which can be interpreted to mean that a one point increase in SurvRate will de-

crease the log odds of getting worse by .0812. But you and I probably don’t care about

things like log odds. We probably want to at least work with odds. But that’s easy—we

simply exponentiate the coefficient. Don’t get excited! “Exponentiate” is just an important

sounding word that means “raise e to that power.” If you have a calculator that cost you

more than $9.99, it probably has a button labeled . Just enter 2.0812, press that button,

and you’ll have .9220. This means that if you increase SurvRate by one point you multiply
the odds of deterioration by .9220. A simple example will show what this means.

Suppose we take someone with a SurvRate score of 40. That person will have a log

odds of

Log odds 5 2.0812(40) 1 2.6837 5 2.5643

If we calculate e2.5643 we will get .569. This means that the person’s odds of deteriorating

are .569, which means that she is .569 times more likely to deteriorate than improve.17 Now

suppose we take someone with SurvRate 5 41, one point higher. That person would have

predicted log odds of

Log odds 5 2.0812(41) 1 2.6837 5 2.6455

And e2.6455 5 .524. So this person’s log odds are 2.6455 – (2.5643) 5 2.0812 lower

than the first person’s, and her odds are e2.0812 5 .9220 times larger (.569 3 .922 5 .524).

Now .922 may not look like a very large number, but if you have cancer a one point higher

survival rating gives you about a 7.8% lower chance of deterioration, and that’s certainly

not something to sneer at.

I told you that if you wanted to see the effect of SurvRate expressed in terms of odds

rather than log odds you needed to take out your calculator and exponentiate. In fact that

isn’t strictly true here, because SPSS does it for you. The last column in this section is la-

beled “Exp (B)” and contains the exponentiated value of b (e2.0812 5 .9220).

While SurvRate is a meaningful and significant predictor of survivability of cancer, it

does not explain everything. Epping-Jordan, Compas, and Howell (1994) were interested in

determining whether certain behavioral variables also contribute to how a person copes with

ex

x2

x2
x2x2

568 Chapter 15 Multiple Regression

17 If you don’t like odds, you can even turn this into a probability. Becauses odds 5 p (1 2 p), then p 5 odds
(1 1 odds).
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cancer. They were interested in whether people who experience a high rate of intrusive

thoughts (Intrusiv) have a poorer prognosis. (People who experience intrusive thoughts are

people who keep finding themselves thinking about their cancer and related events. They

can’t seem to put it out of their minds.) These authors were also interested in the effect of

avoidant behavior (Avoid), which is exhibited by people who just don’t want to think about

cancer and who try to avoid dealing with the problem. [Intrusiv and Avoid are variables

computed from the Impact of Events Scale (Horowitz, Wilner, & Alvarez, 1979).]

Exhibit 15.5 presents the results of using SurvRate, Intrusiv, and Avoid as predictors of

Outcome. Here you can again see that the overall model fits at better-than-chance levels.

With no predictors, 22 log likelihood 5 77.455. Adding the three predictors to the model

reduces 22 log likelihood to 31.650, for an improvement of 77.455 2 31.650 5 45.695.

This difference is a on 3 df, because we have three predictors, and it is clearly signifi-

cant. We would have expected a significant model because we knew that SurvRate alone

was a significant predictor. From the bottom section of the table we see that the Wald chi-

square is significant for both SurvRate and for Avoid, but not for Intrusiv. This tell us that

x2
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Exhibit 15.5 Outcome as a function of Survival Rate, Intrusive thoughts, 

and Avoidance

Dependent Variable Encoding:

Original Internal

Value Value

1.00 0

2.00 1

Dependent Variable.. OUTCOME Cancer Outcome

Beginning Block Number 0. Initial Log Likelihood Function

–2 Log Likelihood 77.345746

* Constant is included in the model.

Beginning Block Number 1. Method: Enter

Variable(s) Entered on Step Number

1.. SURVRATE Survival Rating by Physician

INTRUS

AVOID

–2 Log Likelihood 31.650

Goodness of Fit 35.350

Cox & Snell – R^2 .500

Nagelkerke – R^2 .724

Chi-Square df Significance

Model 45.695 3 .0000

Block 45.695 3 .0000

Step 45.695 3 .0000

------------------------------------------- Variables in the Equation --------------------------------------------

Variable B S.E. Wald df Sig R Exp(B)

SURVRATE –.0817 .0211 14.9502 1 .0001 –.4092 .9215

INTRUS –.0589 .0811 .5281 1 .4674 .0000 .9428

AVOID .1618 .0777 4.3310 1 .0374 .1736 1.1756

Constant 1.6109 1.1780 1.8700 1 .1715



people who exhibit a high level of avoidance behavior do not do as well as those who do

less avoiding (Wald chi-square 5 4.3310, p 5 .0374).18 More specifically, the regression

coefficient for Avoid is .1618. This can be interpreted to mean that a one point increase in

Avoid, holding the other two variables constant, increases the log odds of deterioration by

.1618 points. Exponentiating this we obtain e.1618 5 1.1756. Thus a one point increase in

Avoid multiplies the odds of deterioration by 1.1756, which would increase them.

The Wald chi-square test on Intrusiv produced a of .5281, which was not even close

to being significant (p 5 .4674). Thus this variable is not contributing to our prediction. If

Intrusiv is not making a significant contribution of predicting Outcome, perhaps it should

be dropped from the model. There is in fact a very good reason to do just that. Recall that

when we had only one predictor our overall , as given by –2 log L, was 40.022. We have

now added two more predictors, and our overall has become 45.695. The nice thing

about is that a difference between two chi-squares is itself distributed as on df equal

to the difference between the df for the two models. This means that we can compare the

fit of the two models by subtracting 45.695 2 40.022 5 5.673 and testing this as a on

3 2 1 5 2 df. But the critical value of , which means that the degree of

improvement between the two models is not significant. It is no greater than we would ex-

pect if we just added a couple of useless predictors. But we know that Avoid was signifi-

cant, as well as SurvRate, so what went wrong?

Well, what went wrong is that we have taken the improvement that we gained by adding

Avoid, and spread it out over the nonimprovement that we gained by adding Intrusiv, and

their average is not enough to be considered significant. In other words, we have diluted the

added contribution of Avoid with Intrusiv. If our goal had been to predict Outcome, rather

than to test a model that includes Intrusiv, we would have been much better off if we had just

stayed with Avoid. So I would suggest noting that Intrusiv does not contribute significantly

and then dropping back to the two-predictor model with SurvRate and Avoid, giving us

Log odds 5 2.0823 SurvRate 1 .1325 Avoid 1 1.1961

Both of these predictors are significant, as is the degree of improvement over the one-

predictor case. The fact that adding Avoid leads to a significant improvement in the model

over the one-predictor case is welcome confirmation of the significant Wald chi-square for

this effect.

The example that was used here included only continuous predictors because that was the

nature of the data set. However, there is nothing to preclude dichotomous predictors, and in

fact they are often used. The nice thing about a dichotomous predictor is that a one unit

change in that predictor represents a shift from one category to another. For example, if we

used Sex as a predictor and coded Male 5 1, Female 5 2, then a one unit increase in Sex

would move us from Male to Female. The exponentiated coefficient for Sex would then rep-

resent the difference in the odds between males and females. Suppose that Sex had been a

predictor in the cancer study and that the coefficient was .40.19 Exponentiating this we would

have 1.49. This would mean that, holding all other variables constant, the odds of a female

improving are about 1.5 times greater than the odds of a male improving. You will often see

statements in the press of the form “Researchers have concluded that people who exercise

regularly have a 44% lower chance of developing heart problems than those who do not.”

Such statements are often based on the kind of reasoning that we are discussing here.

x2
.05(2) = 5.99

x2

x2x2
x2

x2

x2
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18 In line with Hosmer and Lemeshow’s (1989) concern with the validity of the Wald chi-square, we might treat
this test with some caution. However Wald’s test tends to be conservative, so confidence in this effect is probably
not misplaced. You will see some confirmation of that statement shortly.
19 Because this was a study of breast cancer, sex is not a reasonable predictor here, but it would be a reasonable
predictor if we were studying lung cancer, for example.



There is much more to logistic regression than I can cover in this short introduction,

but perhaps the biggest stumbling block that people experience is the movement to odds

and log odds when we are used to thinking about 0 and 1 or about probabilities. My major

purpose in this section was to get you past that barrier (and to supply you with arguments

why you should consider logistic regression over linear regression or discriminant analysis

when you have a dichotomous dependent variable). Everything else that could be said

about logistic regression is mainly about the technicalities, and you can find those in a

number of texts, particularly the ones by Allison (1999), Hosmer and Lemeshow (1989)

and Kleinbaum and Klein (2002).

Exercises 571

Key Terms

Regression coefficients (15.1)

Residual error (15.1)

Residuals (15.1)

Tolerance (15.2)

VIF (Variance Inflation Factor) (15.2)

Collinearity (15.2)

Multicollinearity (15.2)

Singular (15.2)

Importance (15.2)

Standardized regression 

coefficients (15.2)

Residual variance (15.4)

Residual error (15.4)

Multivariate normal (15.5)

Multiple correlation coefficient

(R
0.123. . .p) (15.6)

Hyperspace (15.7)

Regression surface (15.7)

Partial correlation (r
0.12

) (15.8)

Semipartial correlation (r
0(1.2)

) (15.8)

Venn diagrams (15.8)

Suppressor variable (15.9)

Multivariate outliers (15.10)

Distance (15.10)

Leverage (hi) (15.10)

Influence (15.10)

Cook’s D (15.10)

Studentized residual (15.10)

Nested models (15.10)

Hierarchical models (15.10)

Akaike’s Information 

Criterion (AIC) (15.10)

All subsets regression (15.11)

Backward elimination (15.11)

Stepwise regression (15.14)

Forward selection (15.14)

Cross-validation (15.14)

Listwise deletion (15.14)

Casewise deletion (15.14)

Pairwise deletion (15.14)

Imputing (15.14)

Mediating relationship (15.14)

Moderating relationships (15.14)

Center (15.14)

Logistic regression (15.15)

Discriminant analysis (15.15)

Conditional means (15.15)

Sigmoidal (15.15)

Censored data (15.15)

Logit (15.15)

Logit transformation (15.15)

Iteratively (15.15)

Exercises

Note: Many of these exercises are based on a very small data set for reasons of economy of

space and computational convenience. For actual applications of multiple regression,

sample sizes should be appreciably larger than those used here.

15.1 A psychologist studying perceived “quality of life” in a large number of cities (N 5 150)

came up with the following equation using mean temperature (Temp), median income in

$1000 (Income), per capita expenditure on social services (Socser), and population density

(Popul) as predictors.

a. Interpret the regression equation in terms of the coefficients.

b. Assume there is a city that has a mean temperature of 55 degrees, a median income of

$12,000, spends $500 per capita on social services, and has a population density of 200

people per block. What is its predicted quality of life score?

3YN = 5.37 2 0.01Temp 1 0.05Income 1 0.003Socser 2 0.01Popul4
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c. What would we predict in a different city that was identical in every way except that it

spent $100 per capita on social services?

15.2 Refer to Exercise 15.1. Assume that

b 5 [20.438 0.762 .081 20.132]

Interpret the results.

15.3 For the values of in Exercise 15.2, the corresponding standard errors are 

[0.397 0.252 .052 .025]

Which, if any, predictor would you be most likely to drop if you wanted to refine your re-

gression equation?

15.4 A large corporation is interested in predicting a measure of job satisfaction among its em-

ployees. They have collected data on 15 employees who each supplied information on job

satisfaction, level of responsibility, number of people supervised, rating of working envi-

ronment, and years of service. The data follow:

Satisfaction: 2 2 3 3 5 5 6 6 6 7 8 8 8 9 9

Responsibility: 4 2 3 6 2 8 4 5 8 8 9 6 3 7 9 

No. Supervised: 5 3 4 7 4 8 6 5 9 8 9 3 6 9 9

Environment: 1 1 7 3 5 8 5 5 6 4 7 2 8 7 9

Years of Service: 5 7 5 3 3 6 3 2 7 3 5 5 8 8 1

Exhibit 15.6 is an abbreviated form of the printout.

a. Write out the regression equation using all five predictors.

b. What are the s?bi

b

DEPENDENT VARIABLE . . . . . . . . . . . . . . . 1 SATIF

TOLERANCE . . . . . . . . . . . . . . . . . . . . . . . . . 0.0100

ALL DATA CONSIDERED AS A SINGLE GROUP

MULTIPLE R 0.6974 STD. ERROR OF EST. 2.0572

MULTIPLE R-SQUARE 0.4864

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO P(TAIL)

REGRESSION 40.078 4 10.020 2.367 0.12267

RESIDUAL 42.322 10 4.232

STD. STD. REG

VARIABLE COEFFICIENT ERROR COEFF T P(2 TAIL) TOLERANCE

INTERCEPT 1.66926

RESPON 2 0.60516 0.428 0.624 1.414 0.188 0.263940

NUMSUP 3 –0.33399 0.537 –0.311 –0.622 0.548 0.205947

ENVIR 4 0.48552 0.276 0.514 1.758 0.109 0.600837

YRS 5 0.07023 0.262 0.063 0.268 0.794 0.919492

Exhibit 15.6 Printout for regression analysis of data in Exercise 15.4

15.5 Refer to Exercise 15.4.

a. Which variable has the largest semipartial correlation with the criterion, partialling out

the other variables?

b. The overall F in Exercise 15.4 is not significant, yet Environment correlates signifi-

cantly (r 5 .58) with Y. How is this possible?



15.6 Calculate the adjusted for the data in Exercise 15.4.

15.7 All other things being equal, the ability of two variables to predict a third will increase

as the correlation between them decreases. Explain this fact in terms of semipartial cor-

relation.

15.8 All other things being equal, the stability of any given regression coefficient across different

samples of data is partly a function of how that variable correlates with other predictors.

Explain this fact.

15.9 What does the Tolerance column in Exhibit 15.6 contribute to the answers in Exercises 15.7

and 15.8?

15.10 Using the data in Exercise 15.4, generate and show that .

15.11 Use Y and from Exercise 15.10 to show that is .

15.12 Using the following (random) data, demonstrate what happens to the multiple correlation

when you drop cases from the data set (e.g., use 15 cases, then 10, 6, 5, 4)

Y 5 0 5 9 4 8 3 7 0 4 7 1 4 7 9

X
1

3 8 1 5 8 2 4 7 9 1 3 5 6 8 9

X
2

7 6 4 3 1 9 7 5 3 1 8 6 0 3 7

X
3

1 7 4 1 8 8 6 8 3 6 1 9 7 7 7

X
4

3 6 0 5 1 3 5 9 1 1 7 4 2 0 9

15.13 Calculate the adjusted for the 15 cases in Exercise 15.12.

15.14 Refer to the first three variables from Exercise 15.4.

a. Use any computer program to calculate the squared semipartial correlation and the

squared partial correlation for Satisfaction as the criterion and No. Supervised as the

predictor, partialling out Responsibility.

b. Draw a Venn diagram to illustrate these two coefficients.

15.15 Refer to the first three variables in Exercise 15.4.

a. Draw a figure comparable to Figure 15.1.

b. Obtain the regression solution for these data and relate the solution to the figure.

15.16 The State of Vermont is divided into 10 Health Planning Districts—they correspond roughly

to counties. The following data represent the percentage of live births of babies weighing

under 2500 grams (Y ), the fertility rate for females 17 years of age or younger ( ), total

high-risk fertility rate for females younger than 17 or older than 35 years of age ( ),

percentage of mothers with fewer than 12 years of education ( ), percentage of births to

unmarried mothers ( ), and percentage of mothers not seeking medical care until the third

trimester ( ).

Y X
1

X
2

X
3

X
4

X
5

6.1 22.8 43.0 23.8 9.2 6

7.1 28.7 55.3 24.8 12.0 10

7.4 29.7 48.5 23.9 10.4 5

6.3 18.3 38.8 16.6 9.8 4

6.5 21.1 46.2 19.6 9.8 5

5.7 21.2 39.9 21.4 7.7 6

6.6 22.2 43.1 20.7 10.9 7

8.1 22.3 48.5 21.8 9.5 5

6.3 21.8 40.0 20.6 11.6 7

6.9 31.2 56.7 25.2 11.6 9

A stepwise regression is shown in Exhibit 15.7. (Only the first three steps are shown to con-

serve space. For purposes of this exercise, we will not let the lack of statistical significance

worry us.)

X5

X4

X3

X2

X1

R2

g(Y 2 YN )2>(N 2 p 2 1)MSresidualYN
rYYNR0.1234 =YN

R2
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STEP NO. 1

VARIABLE ENTERED 3 X2

MULTIPLE R 0.6215

MULTIPLE R-SQUARE 0.3862

ADJUSTED R-SQUARE 0.3095

STD. ERROR OF EST. 0.5797

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 1.6917006 1 1.691701 5.03

RESIDUAL 2.6882995 8 0.3360374

VARIABLES IN EQUATION VARIABLES NOT IN EQUATION

STD. .

ERROR STD. .

OF REG F TO . PARTIAL F TO

VARIABLE COEFFICIENT COEFF COEFF TOLERANCE REMOVE LEVEL . VARIABLE CORR. TOLERANCE ENTER LEVEL

(Y-INTERCEPT 3.529 )

X2 3 0.069 0.031 0.621 1.00000 5.03 1 . X1 2 –0.19730 0.25831 0.28 1

. X3 4 –0.25039 0.43280 0.47 1

. X4 5 0.00688 0.69838 0.00 1

. X5 6 –0.59063 0.58000 3.75 1

STEP NO. 2

VARIABLE ENTERED 6 X5

MULTIPLE R 0.7748

MULTIPLE R-SQUARE 0.6003

ADJUSTED R-SQUARE 0.4862

STD. ERROR OF EST. 0.5001

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 2.6294919 2 1.314746 5.26

RESIDUAL 1.7505082 7 0.2500726

VARIABLES IN EQUATION VARIABLES NOT IN EQUATION

STD. .

ERROR STD. .

OF REG F TO . PARTIAL F TO

VARIABLE COEFFICIENT COEFF COEFF TOLERANCE REMOVE LEVEL . VARIABLE CORR. TOLERANCE ENTER LEVEL

(Y-INTERCEPT 2.949 )

X2 3 0.113 0.035 1.015 0.58000 10.47 1 . X1 2 –0.09613 0.24739 0.06 1

X5 6 –0.223 0.115 –0.608 0.58000 3.75 1 . X3 4 –0.05399 0.37826 0.02 1

X4 5 0.41559 0.53416 1.25 1

STEP NO. 3

VARIABLE ENTERED 5 X4

MULTIPLE R 0.8181

MULTIPLE R-SQUARE 0.6694

ADJUSTED R-SQUARE 0.5041

STD. ERROR OF EST. 0.4913

Exhibit 15.7 Stepwise regression of data on low birth weight infants

(continues)
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ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 2.9318295 3 0.9772765 4.05

RESIDUAL 1.4481706 6 0.2413618

VARIABLES IN EQUATION VARIABLES NOT IN EQUATION

STD. .

ERROR STD. .

OF REG F TO . PARTIAL F TO

VARIABLE COEFFICIENT COEFF COEFF TOLERANCE REMOVE LEVEL . VARIABLE CORR. TOLERANCE ENTER LEVEL

(Y-INTERCEPT 1.830 )

X2 3 0.104 0.035 0.942 0.55484 8.93 1 . X1 2 –0.14937 0.24520 0.11 1

X4 5 0.190 0.170 0.359 0.53416 1.25 1 . X3 4 0.14753 0.31072 0.11 1

X5 6 –0.294 0.130 –0.799 0.44362 5.14 1

Exhibit 15.7 (continued)

a. What are the values of R for the successive steps?

b. From the definition of a partial correlation (in terms of Venn diagrams), show that

the at step 2 is a function of at step 1 and the partial correlation listed under

step 1—“VARIABLES NOT IN EQUATION.”

15.17 In Exercise 15.16 what meaning attaches to as far as the Vermont Department of Health

is concerned?

15.18 In Exercise 15.16 the adjusted would actually be lower for five predictors than for three

predictors. Why?

15.19 In Exercise 15.16 the fifth predictor has a very low correlation with the criterion (r 5 .05)

and yet plays a significant role in the regression. Why?

15.20 For the data in Exercise 15.16, compute . How well does this equa-

tion fit compared with the optimal equation? Why should this be the case?

15.21 For the data in Exercise 15.16, would it be safe to conclude that decreasing the number of

mothers who fail to seek medical care before the third trimester is a good way to decrease

the incidence of low-birthweight infants?

15.22 Create a set of data on 10 cases that illustrates leverage, distance, and influence. Use any

standard regression program to produce statistics measuring these attributes.

15.23 Produce a set of data where the variance of Y values associated with large values of X is

greater than the variance of Y values associated with small values of X. Then run the regres-

sion and plot the residuals on the ordinate against X on the abscissa. What pattern emerges?

Computer Exercises

15.24 Use the data set Mireault.dat from Mireault (1990), described in the Appendix and found on

the Web site for this book, to examine the relationship between current levels of depression

and other variables. A reasonable model might propose that depression (DepressT) is a

function of (1) the person’s current perceived level of vulnerability to additional loss

(PVLoss), (2) the person’s level of social support (SuppTotl), and (3) the age at which the

person lost a parent during childhood (AgeAtLos). Use any statistical package to evaluate

the model outlined here. (Because only subjects in Group 1 lost a parent to death during

childhood, your analysis will be restricted to that group.)

15.25 A compulsive researcher who wants to cover all possibilities might throw in the total score

on perceived vulnerability (PVTotal) as well as PVLoss. (The total includes vulnerability to

accidents, illness, and life-style related problems.)

a. Run this analysis adding PVTotal to the variables used in Exercise 15.24.

YN = 1X2 1 1X4 2 3X5

R2

R*

R2R2
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b. What effect did the inclusion of PVTotal have on ? What effect did it have on the

standard error of the regression coefficient for PVLoss? If your program will also give

you tolerance and VIF, what effect does the inclusion of PVTotal have on them?

c. What would you conclude about the addition of PVTotal to our model?

15.26 In Exercise 15.24 we posited a model in which depression was a function of perceived vul-

nerability, social support, and age at loss. An alternative, or additional, view might be that

vulnerability itself is a function of social support and age at loss. (If you lost a parent when

you were very young and you have little social support, then you might feel particularly

vulnerable to future loss.)

a. Set up the regression problem for this question and run the appropriate analysis. (Use

PVLoss, SuppTotl, and AgeAtLos.)

b. Interpret your results.

15.27 Draw one diagram to illustrate the relationships examined in Exercises 15.24 and 15.26.

Use arrows to show predicted relationships, and write the standardized regression coeffi-

cients next to the arrows. (You have just run a simple path analysis.)

15.28 Notice that in the diagram in Exercise 15.27 SuppTotl has both a direct and an indirect ef-

fect on Depression. Its direct effect is the arrow that goes from SuppTotl to DepressT. The

indirect effect (which here is not significant) comes from the fact that SuppTotl influences

PVLoss, which in turn affects DepressT. Explain these direct and indirect effects in terms of

semipartial regression coefficients.

15.29 Repeat the analysis of Exercise 15.24, requesting statistics on regression diagnostics.

a. What, if anything, do these statistics tell you about the data set?

b. Delete the subject with the largest measure of influence (usually indexed by Cook’s D).

What effect does that have for this particular data set?

15.30 It is useful to examine the effects of measurement reliability on the outcome of a regression

problem. In Exercise 15.24 the variable PVLoss was actually a reasonably reliable variable.

However, for purposes of illustration we can manufacture a new, and less reliable, measure

from it by adding a bit of random error to PVLoss.

a. Create a new variable called UnrelLos with a statement of the form UnrelLos 5

PVLoss 1 7.5 3 “random.” [Here “random” is a random-number function available

with most statistical programs. You will need to check the manual to determine the ex-

act form of the statement. I used a multiplier of 7.5 on the assumption that the random-

number function will sample from an N(0, 1) population. Multiplying by 7.5 will

increase the standard deviation of UnrelLos by 50% (see the variance sum law). You

may want to play with other constants.]

b. Now repeat Exercise 15.24 using UnrelLos in place of PVLoss.

c. What effect does this new variable have on the contribution of the perceived vulnerabil-

ity of loss to the prediction of DepressT? How has the regression coefficient changed?

How has its standard error changed? How does a test on its statistical significance

change? What changes occurred for the other variables in the equation?

15.31 The data set Harass.dat contains slightly modified data on 343 cases created to replicate the

results of a study of sexual harassment by Brooke and Perot (1991). The dependent variable

is whether or not the subjects reported incidents of sexual harassment, and the independent

variables are, in order, Age, Marital Status (1 5 married, 2 5 single), Feminist Ideology,

Frequency of the behavior, Offensiveness of the behavior, and whether or not it was reported

(0 5 no, 1 5 yes). (For each variable, higher numbers represent more of the property. 

Using any logistic regression program, examine the likelihood that a subject will report sex-

ual harassment on the basis of the independent variables.

15.32 Repeat Exercise 15.31 but this time use just the dichotomous predictor Marital Status. Cre-

ate a contingency table of Married/Unmarried by Report/No Report, calculate odds ratios,

and compare those ratios to the results of the logistic regression. (The result will not be sig-

nificant, but that is not important.)

R2



15.33 I was surprised to see that frequency of the behavior was not related to the likelihood of

reporting. Can you suggest reasons why this might be so?

15.34 Malcarne, Compas, Epping, and Howell (1995) examined 126 cancer patients soon after they

were diagnosed with cancer and at a four-month follow-up. At the initial interviews (Time 1)

they collected data on the patients‘ current levels of distress (Distress1), the degree to which

they attributed the blame for the cancer to the type of person they are (BlamPer), and the degree

to which they attributed the cancer to the kind of behaviors in which they had engaged, such as

smoking or high fat diets (BlamBeh). At the four-month follow-up (Time 2) the authors again

collected data on the levels of psychological distress that the patients reported (Distress2).

(They also collected data on a number of other variables, which do not concern us here.) The

data are available on the Web site for this course and named Malcarne.dat.

a. What would you conclude if you attempt to predict Distress2 from Distress1 and

BlamPer?

b. Why would I want to include Distress1 in the analysis for part a?

15.35 In Exercise 15.4 we had a data set where BlamBeh was related to later distress at time 2.

When it is included as a predictor along with Stress1 and BlamPer it is no longer a signifi-

cant predictor. Why would this be likely to happen?

15.36 What are some of the reasons why stepwise regression (broadly defined) would not find

favor with most statisticians?

15.37 Make up a very simple example with very simple variables to illustrate how one could see

the effect of an interaction between two predictors.

15.38 Using the data you created in Exercise 15.37, demonstrate the effect of “centering” your

predictor variables.

15.39 As you know, the regression coefficient gives the effect of one variable holding all other

variables constant. How would you view this interpretation when you have an interaction

term in your model?

15.40 Paul Jose has a Web site referred to in the section on mediation. He discusses a problem in

which he believes that stress leads to depression through a mediating path via rumination.

(In other words, some stressed people ruminate, and as a consequence they become de-

pressed.) The path diagram derived from his analysis of actual data are shown below. The

beta given for the path from stress to depression is from the multiple regression of depres-

sion on stress and rumination. Predicting depression only from stress had a beta of .471.

Test the decline in the coefficient for the direct path from stress to depression using Sobel’s

test. (You can check your work at Jose’s Web site at http://www.victoria.ac.nz/psyc/staff/

paul-jose-files/helpcentre/help7_mediation_example.php, though the answers will not be

exactly equal.

15.41 In this chapter we spent a lot of time with Guber’s study of educational expenditures and

found that when we controlled for the percentage of students taking the SAT exam, Expend

was not a significant predictor. However, the SAT is not a good dependent variable in dis-

cussing the quality of education in a state. Perhaps the ACT, which tests something some-

what different, is a better predictor. Use the data set, which is available on the book’s Web

site and named Tab15-1.dat, to answer that question. Be complete in your answer, examin-

ing the individual variables and the residuals.
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CHAPTER 16

Analyses of Variance

and Covariance as

General Linear Models

Object ives

To show how the analysis of variance can be viewed as a special case of

multiple regression; to present procedures for the treatment of unequal

sample sizes; to present the analysis of covariance.

Contents

16.1 The General Linear Model

16.2 One-Way Analysis of Variance

16.3 Factorial Designs

16.4 Analysis of Variance with Unequal Sample Sizes

16.5 The One-Way Analysis of Covariance

16.6 Computing Effect Sizes in an Analysis of Covariance

16.7 Interpreting an Analysis of Covariance

16.8 Reporting the Results of an Analysis of Covariance

16.9 The Factorial Analysis of Covariance

16.10 Using Multiple Covariates

16.11 Alternative Experimental Designs
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MOST PEOPLE THINK OF MULTIPLE REGRESSION and the analysis of variance as two totally

separate statistical techniques that answer two entirely different sets of questions. In fact,

this is not at all the case. In the first place they ask the same kind of questions, and in the

second place they return the same kind of answers, although the answers may be phrased

somewhat differently. The analysis of variance tells us that three treatments (T
1
, T

2
, and T

3
)

have different means ( ). Multiple regression tells us that means ( ) are related to treat-

ments (T
1
, T

2
, and T

3
), which amounts to the same thing. Furthermore, the analysis of

variance produces a statistic (F ) on the differences among means. The analysis of regres-

sion produces a statistic (F) on the significance of R. As we shall see shortly, these Fs are

equivalent.

16.1 The General Linear Model

Just as multiple regression and the analysis of variance are concerned with the same gen-

eral type of question, so are they basically the same technique. In fact, the analysis of vari-

ance is a special case of multiple linear regression, which in turn is a special case of what

is commonly referred to as the general linear model. The fact that the analysis of variance

has its own formal set of equations can be attributed primarily to good fortune. It happens

that when certain conditions are met (as they are in the analysis of variance), the somewhat

cumbersome multiple-regression calculations are reduced to a few relatively simple equa-

tions. If it were not for this, there might not even be a separate set of procedures called the

analysis of variance.

For the student interested solely in the application of statistical techniques, a word is in

order in defense of even including a chapter on this topic. Why, you may ask, should you

study what amounts to a cumbersome way of doing what you already know how to do in

a simple way? Ignoring the cry of “intellectual curiosity,” which is something that most

people are loath to admit that they do not possess in abundance, there are several practical

(applied) answers to such a question. First, this approach represents a relatively straightfor-

ward way of handling particular cases of unequal sample sizes, and understanding this

approach helps you make intelligent decisions about various options in statistical software.

Second, it provides us with a simple and intuitively appealing way of running, and espe-

cially of understanding, an analysis of covariance—which is a very clumsy technique when

viewed from the more traditional approach. Last, and most important, it represents a

glimpse at the direction in which statistical techniques are moving. With the greatly

extended use of powerful and fast computers, many of the traditional statistical techniques

are giving way to what were previously impractical procedures. We saw an example when

we considered the mixed models approach to repeated measures analysis of variance. Other

examples are such techniques as structural equation modeling and that old and much-

abused standby, factor analysis. Unless you understand the relationship between the analy-

sis of variance and the general linear model (as represented by multiple linear regression),

and unless you understand how the data for simple analysis of variance problems can be

cast in a multiple-regression framework, you will find yourself in the near future using more

and more techniques about which you know less and less. This is not to say that t, , F, and

so on are likely to disappear, but only that other techniques will be added, opening up

entirely new ways of looking at data. The recent rise in the use of Structural Equation Mod-

eling is a case in point, because much of what that entails builds on what you already know

about regression, and what you will learn about underlying models of processes.

In the past 25 years, several excellent and very readable papers on this general

topic have been written. The clearest presentation is still Cohen (1968). A paper by

x2

YiXi
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Overall and Spiegel (1969) is also worth seeing. Both of these papers appeared in the

Psychological Bulletin and are therefore readily available. Other good discussions can

be found in Overall (1972), Judd and McClelland (1989), and Cohen, Cohen, West, and

Aiken (2003). Cramer and Appelbaum (1980), and Howell and McConaughy (1982)

provide contrasting views on the choice of the underlying model and the procedures to

be followed.

There are two different ways to read this chapter, both legitimate. The first is to look

for general concepts and to go lightly over the actual techniques of calculation. That is the

approach I often tell my students to follow. I want them to understand where the reasoning

leads, and I want them to feel that they could carry out all of the steps if they had to (with

the book in front of them), but I don’t ask them to commit very much of the technical

material to memory. On the other hand, some instructors may want their students to grasp

the material at a deeper level. There are good reasons for doing so. But I would still sug-

gest that the first time you read the chapter, you look for general understanding. To develop

greater expertise, sit down with both a computer and a calculator and work lots and lots of

problems.

The Linear Model

Consider first the traditional multiple-regression problem with a criterion (Y ) and three pre-

dictors (X
1
, X

2
, and X

3
). We can write the usual model

or, in terms of vector notation

where y, x
1
, x

2
, and x

3
are (n 3 1) vectors (columns) of data, e is a (n 3 1) vector of errors,

and b
0

is a (n 3 1) vector whose elements are the intercept. This equation can be further

reduced to

y 1 Xb 1 e

where X is a n 3 (p 1 1) matrix of predictors, the first column of which is 1s, and b is a

(p 1 1) 3 1 vector of regression coefficients.

Now consider the traditional model for a one-way analysis of variance:

Here the symbol tj is simply a shorthand way of writing t
1
, t

2
, t

3
, . . . , tp, where for any

given subject we are interested in only that value of tj that pertains to the particular treat-

ment in question. To see the relationship between this model and the traditional regression

model, it is necessary to introduce the concept of a design matrix. Design matrices are used

in a wide variety of situations, not simply the analysis of variance, so it is important to

understand them.

Design Matrices

A design matrix is a matrix of coded, or dummy, or counter variables representing group

membership. The complete form of the design matrix (X ) will have p 1 1 columns, repre-

senting the mean (m) and the p treatment effects. A subject is always scored 1 for m, since

m is part of all observations. In all other columns, she is scored 1 if she is a member of the

Yij = m 1 tj 1 eij

y = b0 1 b1x1 1 b2x2 1 b3x3 1 e

Yi = b0 1 b1X1i 1 b2X2i 1 b3X3i 1 ei

Section 16.1 The General Linear Model 581
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treatment associated with that column, and 0 otherwise. Thus, for three treatments with two

subjects per treatment, the complete design matrix would be

S m A
1

A
2

A
3

Notice that subjects 1 and 2 (who received Treatment A
1
) are scored 1 on m and A

1
, and 0

on A
2

and A
3
, since they did not receive those treatments. Similarly, subjects 3 and 4 are

scored 1 on m and A
2
, and 0 on A

1
and A

3
.

We will now define the vector t of treatment effects as [m t
1

t
2

t
3
]. Taking X as the

design matrix, the analysis of variance model can be written in matrix terms as

y 5 Xt 1 e

which can be seen as being of the same form as the traditional regression equation. The

elements of t are the effects of each dummy treatment variable, just as the elements of b in

the regression equation are the effects of each independent variable. Expanding, we obtain

y 5 X 3 t 1 e

which, following the rules of matrix multiplication, produces

For each subject we now have the model associated with her response. Thus, for the sec-

ond subject in Treatment 2, Y
22

5 m 1 t
2

1 e
22

, and for the ith subject in Treatment j, we

have Yij 5 m 1 tj 1 eij, which is the usual analysis of variance model.

The point is that the design matrix allows us to view the analysis of variance in a multiple-

regression framework, in that it permits us to go from

to y 5 Xb 1 eYij = m 1 tj 1 eij

Y23 = m 1 t3 1 e23

Y13 = m 1 t3 1 e13

Y22 = m 1 t2 1 e22

Y12 = m 1 t2 1 e12

Y21 = m 1 t1 1 e21

Y11 = m 1 t1 1 e11

y = F1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

V 3 Dm

t1

t2

t3

T 1 Fe11

e21

e12

e22

e13

e23

V

a =

1 1 1 0 0

2 1 1 0 0

3 1 0 1 0

4 1 0 1 0

5 1 0 0 1

6 1 0 0 1

V
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Moreover, the elements of b are the values of m, t
1
, t

2
, . . . , tk. In other words, these are

the actual treatment effects in which we are interested.

The design matrix we have been using has certain technical limitations that must be

circumvented. First, it is redundant in the sense that if we are told that a subject is not in

A
1

or A
2
, we know without being told that she must be in A

3
. This is another way of say-

ing that there are only 2 df for treatments. For this reason we will eliminate the column

headed A
3
, leaving only a 2 1 columns for the treatment effects. A second change is nec-

essary if we want to use any computer program that obtains a multiple-regression equa-

tion by way of first calculating the intercorrelation matrix. The column headed m has no

variance, and therefore cannot enter into a standard multiple-regression program—it

would cause us to attempt division by 0. Thus, it too must be eliminated. This is no real

loss, since our ultimate solution will not be affected. In fact, the software will sneak it

back in.

One further change will be made simply for the sake of allowing us to test the desired

null hypotheses using the method to be later advocated for factorial designs. Since we have

omitted a column dealing with the third (or ath) level of treatments, solutions given our

modified design matrix would produce estimates of treatment effects in relation to 

rather than in relation to . In other words, b
1

would turn out to be ( ) rather than

( ). This is fine if that’s what you want, but I would much rather see treatment ef-

fects as deviations from the grand mean. It just seems tidier. So we will modify the design

matrix to make the mean ( ) of each column of X equal to 0. Under this new system, a

subject is scored 1 in column Ai if she is a member of Treatment Ai; she is scored 21 if she

is a member of the ath (last) treatment; and she is scored 0 if neither of these conditions

apply. (This restriction corresponds to the fixed-model analysis of variance requirement

that .)

These modifications have led us from

Although these look like major changes in that the last form of X appears to be far removed

from where we started, it actually carries all the necessary information. We have merely

eliminated redundant information, removed a constant term, and then caused the treatment

effects to be given as deviations from .

16.2 One-Way Analysis of Variance

At this point a simple example is in order. Table 16.1 contains data for three subjects in

each of four treatments. Table 16.1b shows the summary table for the corresponding analy-

sis of variance, along with the value of (discussed in Chapter 11). Table 16.1c contains

the estimated treatment effects ( ) where Since the fixed-model analysis of

variance imposes the restriction that , t
4

is automatically defined by t
1
, t

2
, and t

3

( ).t4 = 0 2 gtj

gti = 0

tN i = mN i 2 mN  .tN i

h2

X.

X = F1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

V  to  F1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

V   to  F1 1

1 0

0 1

0 1

0 0

0 0

V   to  F 1 0

1 0

0 1

0 1

-1 -1

-1 -1

V  

gti = 0

Xi

X1 2 X.

X1 2 X3X.

X3
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Now let us approach the statistical treatment of these data by means of least-squares

multiple linear regression. We will take as our criterion (Y ) the raw data in Table 16.1. For

the predictors we will use a design matrix of the form

A
1

A
2

A
3

Here the elements of any one row of the design matrix are taken to apply to all the sub-
jects in the treatment. The multiple-regression solution using the design matrix X as the

matrix of predictors is presented in Exhibit 16.1. Here the dependent variable (Y) is the

first column of the data matrix. The next three columns together form the matrix X. SPSS

was used to generate this solution, but any standard program would be suitable. (I have

made some very minor changes in the output to simplify the discussion.)

Notice the patterns of intercorrelations among the X variables in Exhibit 16.1. This

type of pattern with constant off-diagonal correlations will occur whenever there are equal

numbers of subjects in the various groups. (The fact that we don’t have constant off-diagonal

correlations with unequal-n factorial designs is what makes our life more difficult in those

situations.)

Notice that the regression coefficients are written in a column. This column can be

called a vector, and is the vector b, or, in analysis of variance terms, the vector t. Notice

that b
1

5 2.50, which is the same as the estimated treatment effect of Treatment 1 shown in

Table 16.1. In other words, b
1

5 t
1
. This also happens for b

2
and b

3
. This fact necessarily

X =

Treament 1

Treament 2

Treament 3

Treament 4

    D 1 0 0

0 1 0

0 0 1

21 21 21

T
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Table 16.1 Illustrative calculations for simple one-way design with equal ns

(a) Data

Treatment 1 Treatment 2 Treatment 3 Treatment 4

8 5 3 6

9 7 4 4

7 3 1 9

8 5 2.667 6.333

5 5.500

(b) Summary Table

Source df SS MS F

Treatments 3 45.667 15.222 4.46 .626

Error 8 27.333 3.417

Total 11 73.000

(c) Estimated Treatment Effects

tN 3 = X3 2 X.. = 2.67 2 5.5 = 22.83

tN 2 = X2 2 X.. = 5.0 2 5.5 = 20.5

tN 1 = X1 2 X.. = 8.0 2 5.5 = 2.5

h2

X..
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Y X1 X2 X3

Pearson Correlation Y 1.000 .239 –.191 –.526

X1 .239 1.000 .500 .500

X2 –.191 .500 1.000 .500

X3 –.526 .500 .500 1.000

Correlations

Adjusted Std. Error of

Model R R Square R Square the Estimate

1 .791(a) .626 .485 1.848

Model Summary

a Predictors: (Constant), X3, X2, X1

Unstandardized Standardized

Model Coefficients Coefficients t Sig.

B Std. Error Beta

1 (Constant) 5.500 .534 10.307 .000

X1 2.500 .924 .717 2.705 .027

X2 –.500 .924 –.143 –.541 .603

X3 –2.833 .924 –.812 –3.066 .015

Coefficients(a)

a Dependent Variable: Y

Exhibit 16.1 SPSS regression analysis of data in Table 16.1

(continues)



follows from our definition of X and t. Moreover, if we were to examine the significance

of the bi, given as the column of t-ratios, we would simultaneously have tests on the

hypothesis (H
0
: tj 5 mi 2 m 5 0). Notice further that the intercept (b

0
) is equal to the grand

mean ( ). This follows directly from the fact that we scored the ath treatment as 21 on all

coded variables. Using the (21) coding, the mean of every column of X ( ) is equal to 0

and, as a result, and therefore . This situation

holds only in the case of equal ns, since otherwise would not be 0 for all i. However, in

all cases, b
0

is our best estimate of m in a least squares sense.

The value of 5 .626 is equivalent to , since they both estimate the percentage of

variation in the dependent variable accounted for by variation among treatments.

If we test for significance, we have F 5 4.46, p 5 .040. This is the F value we

obtained in the analysis of variance, although this F can be found by the formula that we

saw for testing in Chapter 15.

Notice that the sums of squares for Regression, Error, and Total in Exhibit 16.1 are

exactly equivalent to the sums of squares for Between, Error, and Total in Table 16.1. This

equality makes it clear that there is complete correspondence between sums of squares in

regression and the analysis of variance.

The foregoing analysis has shown the marked similarity between the analysis of vari-

ance and multiple regression. This is primarily an illustration of the fact that there is no

important difference between asking whether different treatments produce different means,

and asking whether means are a function of treatments. We are simply looking at two sides

of the same coin.

We have discussed only the most common way of forming a design matrix. This matrix

could take a number of other useful forms. For a good discussion of these, see Cohen (1968).

16.3 Factorial Designs

We can readily extend the analysis of regression of two-way and higher-order factorial

designs, and doing so illustrates some important features of both the analysis of variance

and the analysis of regression. (A good discussion of this approach, and the decisions that

need to be made, can be found in Harris (2005).) We will consider first a two-way analysis

of variance with equal ns.

F(3, 8) =
.626(8)

.374(3)
= 4.46

F( p, N 2 p 2 1) =
R2(N 2 p 2 1)

(1 2 R2)p

R2

R2

h2R2

Xi

b0 = Y 2 gb1Xj = Y 2 0 = Ygb1Xj = 0

Xj

Y
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Sum of

Model Squares df Mean Square F Sig.

1 Regression 45.667 3 15.222 4.455 .040a

Residual 27.333 8 3.417

Total 73.000 11

ANOVAb

a Predictors: (Constant), X3, X2, X1
b Dependent Variable: Y

Exhibit 16.1 (continued)



The Full Model

The most common model for a two-way analysis of variance is

As we did before, we can expand the ai and bj terms by using a design matrix. But then

how should the interaction term be handled? The answer to this question relies on the fact

that an interaction represents a multiplicative effect of the component variables. Suppose

we consider the simplest case of a 2 3 2 factorial design. Letting the entries in each row
represent the coefficients for all subjects in the corresponding cell of the design, we can

write our design matrix as

A
1

B
1

AB
11

The first column represents the main effect of A, and distinguishes between those sub-

jects who received A
1

and those who received A
2
. The next column represents the main

effect of B, separating B
1

subjects from B
2

subjects. The third column is the interaction of

A and B. Its elements are obtained by multiplying the corresponding elements of columns

1 and 2. Thus, 1 5 1 3 1, 21 5 1 3 21, 21 5 21 3 1, and 1 5 21 3 21. Once again,

we have as many columns per effect as we have degrees of freedom for that effect. We have

no entries of 0 simply because with only two levels of each variable a subject must either

be in the first or last level.

Now consider the case of a 2 3 3 factorial. With two levels of A and three levels of

B, we will have dfA 5 1, dfB 5 2, and dfAB 5 2. This means that our design matrix will

require one column for A and two columns each for B and AB. This leads to the follow-

ing matrix:

A
1

B
1

B
2

AB
11

AB
12

Column A
1

distinguishes between those subjects who are in treatment level A
1

and

those in treatment level A
2
. Column 2 distinguishes level B

1
subjects from those who are

not in B
1
, and Column 3 does the same for level B

2
. Once again, subjects in the first a 2 1

and first b 2 1 treatment levels are scored 1 or 0, depending on whether or not they served

in the treatment level in question. Subjects in the ath or bth treatment level are scored 21

for each column related to that treatment effect. The column labeled AB
11

is simply the

product of columns A
1

and B
1
, and is the product of and .

The analysis for a factorial design is more cumbersome than the one for a simple one-

way design, since we wish to test two or more main effects and one or more interaction

effects. If we consider the relatively simple case of a two-way factorial, however, you

should have no difficulty generalizing it to more complex factorial designs. The basic prin-

ciples are the same—only the arithmetic is messier.

B2A1AB12

X =

a1b1

a1b2

a1b3

a2b1

a2b
2

a2b
3

  F 1 1 0 1 0

1 0 1 0 1

1 21 21 21 21

21 1 0 21 0

21 0 1 0 21

21 21 21 1 1

V

X =

a1b1

a1b2

a2b1

a2b2

    D 1 1 1

1 21 21

21 1 21

21 21 1

T

Yijk = m 1 ai 1 bj 1 abij 1 eijk
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As an illustration, we will consider a case of a 2 3 4 factorial with four subjects per cell.

Such a design is analyzed by the conventional analysis of variance in Table 16.2, which also

includes means, estimated effects, and values of . From the summary table, it is apparent

that the main effect of B is significant but that the effects of A and AB are not.

To analyze these data from the point of view of multiple regression, we begin with the

following design matrix. Once again, the elements of each row apply to all subjects in the

corresponding treatment combination.

h2
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Table 16.2 Sample data and summary table for factorial design

(a) Data

B
1

B
2

B
3

B
4

Means

5 2 8 11

A
1

7 5 11 15

9 7 12 16

8 3 14 10

7.25 4.25 11.25 13.00 8.92750

7 3 9 11

A
2

9 8 12 14

10 9 14 10

9 11 8 12

8.75 7.75 10.75 11.75 9.75000

Means 8.000 6.000 11.000 12.375 9.34375

(b) Summary Table

Source df SS MS F

A 1 5.282 5.282 ,1 .014

B 3 199.344 66.448 11.452* .537

AB 3 27.344 9.115 1.571 .074

Error 24 139.250 5.802

Total 31 371.220

* p , .05

(c) Estimated Treatment Effects

ab13 = AB13 2 A1 2 B3 1 X.. = 11.2500 2 8.9375 2 11.0000 1 9.34375 = 0.65625

ab12 = AB12 2 A1 2 B2 1 X.. = 4.2500 2 8.9375 2 6.0000 1 9.34375 = 21.34375

ab = AB11 2 A1 2 B1 1 X.. = 7.2500 2 8.9375 2 8.0000 1 9.34375 = 2.34375

bN 3 = B3 2 X.. = 11.0000 2 9.34375 = 1.65625

bN 2 = B2 2 X.. = 6.0000 2 9.34375 = 23.34375

bN 1 = B1 2 X.. = 8.0000 2 9.34375 = 21.34375

aN 1 = A1 2 X.. = 8.9375 2 9.34375 = 20.40625

mN = 9.34375

h2
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A
1

B
1

B
2

B
3

AB
11

AB
12

AB
13

The first step in a multiple-regression analysis is presented in Exhibit 16.2 using all

seven predictors (A
1

to AB
13

). The results were obtained using SAS PROC CORR and

PROC REG, although every software package should give the same answers.

Exhibit 16.2 has several important features. First, consider the matrix of correlations

among variables, often symbolized as R. Suppose that we simplify this matrix by defining the

following sets of predictors: .

If we then rewrite the intercorrelation matrix, we have

A B AB

Notice that each of the effects is independent of the others. Such a pattern occurs only

if there are equal (or proportional) numbers of subjects in each cell; this pattern is also what

makes simplified formulae for the analysis of variance possible. The fact that this structure

disappears in the case of unequal ns is what makes our life more difficult when we have

missing subjects.

Next notice the vector b, labeled as the Parameter Estimate. The first entry (b
0
) is

labeled Intercep and is the grand mean of all of the observations. The subsequent entries

(b
1

. . . b
7
) are the estimates of the corresponding treatment effects. Thus , ,

, and so on. Tests on these regression coefficients represent tests on the

corresponding treatment effects. The fact that we have only the (a 2 1)(b 2 1) 5 3 inter-

action effects presents no problem, due to the restrictions that these effects must sum to 0

across rows and down columns. Thus if ab
12

5 21.34, then ab
22

must be 11.34. Similarly,

ab
14

5 0 2 ab
1j 5 2 ab

1j 5 1.03.

The value of R2 5 .625 represents the percentage of variation that can be accounted for

by all the variables simultaneously. With equal ns, and therefore independent effects, it is

equivalent to . The test on R2 produces an

F of 5.711 on 7 and 24 df which, since it is significant (p 5 .0006), shows that there is

a nonchance relationship between the treatment variables, considered together, and the

dependent variable (Y ).

Two more parallels can be drawn between Table 16.2, the analysis of variance, and

Exhibit 16.2, the regression analysis. First, notice that SS
regression

5 SS
Model

5 SSY(1 2 R2) 5

231.969. This is the variation that can be predicted by a linear combination of the predic-

tors. This value is equal to SSA 1 SSB 1 SSAB, although from Exhibit 16.2 we cannot yet

partition the variation among the separate sources. Finally, notice that SS
residual

5 SS
error

5

SSY(1 2 R2) 5 139.250, which is the error sum of squares in the analysis of variance. This

makes sense when you recall that error is the variation that cannot be attributed to the sepa-

rate or joint effects of the treatment variables.

h2
A 1 h2

B 1 h2
AB = .014 1 .537 1 .074 = .625

gg

b5 = ab11

b2 = b1b1 = a1

A¿

B¿

AB¿

 C 1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

Sœœœ

A¿ = 3A14,  B¿ = 3B1,  B2,  B34, and AB¿ = 3AB11, AB12, AB134

X =  

a1b1

a1b2

a1b3

a1b4

a2b1

a2b2

a2b3

a2b4

  H 1 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 0 1 0 0 1

1 21 21 21 21 21 21

21 1 0 0 21 0 0

21 0 1 0 0 21 0

21 0 0 1 0 0 21

21 21 21 21 1 1 1

X
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Exhibit 16.2 Regression solutions using all predictors for data in Table 16.2

Data Anova;

infile ‘Ex162.dat’;

input A1 B1 B2 B3 dv;

AB11 = A1 * B1;

AB12 = A1 * B2;

AB13 = A1 * B3;

Run;

Proc Corr Data = Anova;

Var A1 B1 B2 B3 AB11 AB12 AB13;

Run;

Proc Reg Data = Anova;

Model dv = A1 B1 B2 B3 AB11 AB12 AB13;

Run;

Pearson Correlation Coefficients, N = 32

Prob > |r | under H0: Rho = 0

A1 B1 B2 B3 AB11 AB12 AB13

A1 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

B1 0.00000 1.00000 0.50000 0.50000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000

B2 0.00000 0.50000 1.00000 0.50000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000

B3 0.00000 0.50000 0.50000 1.00000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000

AB11 0.00000 0.00000 0.00000 0.00000 1.00000 0.50000 0.50000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036

AB12 0.00000 0.00000 0.00000 0.00000 0.50000 1.00000 0.50000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036

AB13 0.00000 0.00000 0.00000 0.00000 0.50000 0.50000 1.00000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036

The REG Procedure

Dependent Variable: dv

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 231.96875 33.13839 5.71 0.0006

Error 24 139.25000 5.80208

Corrected Total 31 371.21875

Root MSE 2.40875 R-Square 0.6249

Dependent Mean 9.34375 Adj R-Sq 0.5155

Coeff Var 25.77928  

(continues)



Exhibit 16.2 (continued)

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > | t|

Intercep 1 9.34375 0.42581 21.94 <.0001

A1 1 –0.40625 0.42581 –0.95 0.3496

B1 1 –1.34375 0.73753 –1.82 0.0809

B2 1 –3.34375 0.73753 –4.53 0.0001

B3 1 1.65625 0.73753 2.25 0.0342

AB11 1 –0.34375 0.73753 –0.47 0.6454

AB12 1 –1.34375 0.73753 –1.82 0.0809

AB13 1 0.65625 0.73753 0.89 0.3824 

Reduced Models

At this point we know only the amount of variation that can be accounted for by all of the

predictors simultaneously. What we wish to know is how this variation can be partitioned

among A, B, and AB. This information can be readily obtained by computing several re-

duced regression equations.

Since in the subsequent course of the analysis we must compute several multiple re-

gression sums of squares relating to the different effects, we will change our notation and

use the effect labels (a, b, and ab) as subscripts. For the multiple regression just computed,

the model contained variables to account for a, b, and ab. Thus we will designate the sum

of squares regression in that solution as . If we dropped the last three predic-

tors (AB
11

, AB
12

, and AB
13

) we would be deleting those predictors carrying information

concerning the interaction but would retain those predictors concerned with a and b. Thus,

we would use the designation . If we used only A, AB
11

, AB
12

, and AB
13

as pre-

dictors, the model would account for only a and ab and the result would be denoted

.

I have run the individual regression solutions for our example, and the results are

Now this is the important part. If the interaction term accounts for any of the variation in Y,

then removing the interaction predictors from the model should lead to a decrease in ac-

countable variation. This decrease will be equal to the variation that can be attributable to

the interaction. By this and similar reasoning,

The relevant calculations are presented in Table 16.3. (I leave it to you to verify that these

are the sums of squares for regression that result when we use the relevant predictors.)

SSB = SSregressiona,b,ab
2 SSregressiona,ab

SSA = SSregressiona,b,ab
2 SSregressionb,ab

SSAB = SSregressiona,b,ab
2 SSregressiona,b

SSregressiona,ab
= 32.635

SSregressionb,ab
= 226.687

SSregressiona,b
= 204.625

SSregressiona,b,ab
= 231.969

SSregressiona,ab

SSregressiona,b

SSregressiona,b,ab
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Looking first at the AB interactions, we see from Exhibit 16.2 that when the interaction

terms were deleted from the model, the sum of squares that could be accounted for by the

model decreased by

This decrement can only be attributable to the predictive value of the interaction terms, and

therefore

By a similar line of reasoning, we can find the other sums of squares.1

Notice that these values agree exactly with those obtained by the more traditional pro-

cedures. Notice also that the corresponding decrements in R2 agree with the computed val-

ues of .

As Overall and Spiegel (1969) pointed out, the approach we have taken in testing the

effects of A, B, and AB is not the only one we could have chosen. They presented two alter-

native models that might have been considered in place of this one. Fortunately, however,

the different models all lead to the same conclusions in the case of equal sample sizes,

since in this situation effects are independent of one another and therefore are additive.

When we consider the case of unequal sample sizes, however, the choice of an underlying

model will require careful consideration.

h2

SSAB = 27.344

SSAB = SSregressiona,b,ab
2 SSregressiona,b

= 231.969 2 204.625 = 27.344
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Table 16.3 Regression solution for the data in Table 16.2

Summary Table

Source df SS MS F

A 1 5.282 5.282 ,1

B 3 199.344 66.448 11.452*

AB 3 27.344 9.115 1.571

Error 24 139.250 5.802

31 371.220

* p , .05

SSerror = SSresiduala,b,ab
= 139.250

SSB = SSregressiona,b,ab
2 SSregressiona,ab

= 231.969 2 32.625 = 199.344

SSA = SSregressiona,b,ab
2 SSregressionb,ab

= 231.969 2 226.687 = 5.282

SSAB = SSregressiona,b,ab
2 SSregressiona,b

= 231.969 2 204.625 = 27.344

SSregressiona,ab
= 32.625  R2 = .088

SSregressionb,ab
= 226.687 R2 = .611

SSregressiona,b
= 204.625 R2 = .551

SSresiduala,b,ab
= 139.250

SSregressiona,b,ab
= 231.969 R2 = .625

1 A number of authors (e.g., Judd & McClelland) prefer to use the increase in the error term (rather than the
decrease in SS

regression
) when an effect is deleted. The result will be the same.



16.4 Analysis of Variance with Unequal 
Sample Sizes

The least-squares approach to the analysis of variance is particularly useful for the case of fac-

torial experiments with unequal sample sizes. However, special care must be used in selecting

the particular restricted models that are employed in generating the various sums of squares.

Several different models could underlie an analysis of variance. Although in the case of

equal sample sizes these models all lead to the same results, in the unequal n case they do

not. This is because with unequal ns, the row, column, and interaction effects are no longer

orthogonal and thus account for overlapping portions of the variance. (I would strongly

recommend quickly reviewing the example given in Chapter 13, Section 13.11,

pp. 444–446.) Consider the Venn diagram in Figure 16.1. The area enclosed by the

surrounding square will be taken to represent SS
total

. Each circle represents the variation

attributable to (or accounted for by) one of the effects. The area outside the circles but

within the square represents SS
error

. Finally, the total area enclosed by the circles represents

, which is the sum of squares for regression when all the terms are included

in the model. If we had equal sample sizes, none of the circles would overlap, and each

effect would be accounting for a separate, independent, portion of the variation. In that

case, the decrease in SS
regression

resulting from deleting of an effect from the model would

have a clear interpretation—it would be the area enclosed by the omitted circle and thus

would be the sum of squares for the corresponding effect.

But what do we do when the circles overlap? If we were to take a model that included

terms for A, B, and AB and compared it to a model containing only A and B terms, the decre-

ment would not represent the area of the AB circle, since some of that area still would be

accounted for by A and/or B. Thus, SSAB, which we calculate as ,

represents only the portion of the enclosed area that is unique to AB—the area labeled with

a “3.” So far, all the models that have been seriously proposed are in agreement. SSAB is that

portion of the AB circle remaining after adjusting for A and B.

But now things begin to get a little sticky. Two major approaches have been put forth

that differ in the way the remainder of the pie is allotted to A and B. Overall and Spiegel

(1969), put forth three models for the analysis of variance, and these models continue to

generate a voluminous literature debating their proper use and interpretation, even though

the discussion began 30 years ago. We will refer to these models as Type I, Type II, and

Type III, from the terminology used by SPSS and SAS. (Overall and Spiegel numbered

them in the reverse order, just to make things more confusing.) Basically, the choice be-

tween the three models hinges on how we see the relationship between the sample size and

the treatments themselves, or, more specifically, how we want to weight the various cell

SSregressiona,b,ab
2 SSregressiona,b

SSregressiona,b,ab
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means to produce row and column means. Before exploring that issue, however, we must

first examine the competing methods.

Method III (or Type III Sum of squares) is the method we used in the preceding

section. In this case, each effect is adjusted for all other effects. Thus we obtain SSAB

as , SSA as , and SSB as

. In terms of Figure 16.1, each effect is defined as the part

of the area that is unique to that effect. Thus, SSA is represented by area “1,” SSB by area

“2,” and SSAB by area “3.”

Method II (or Type II SS) breaks up the pie differently. We continue to define SSAB

as area “3.” But now that we have taken care of the interaction, we still have areas

“1,” “2,” “4,” “5,” “6,” and “7,” which can be accounted for by the effects of A
and/or B. Method II essentially redefines the full model as and obtains

, and SSB as . Thus, A is allot-

ted areas “1” and “4,” whereas B is allotted areas “2” and “5.” Methods II and III are sum-

marized in Table 16.4.

Both of these methods make a certain amount of sense when looked at from the point

of view of the Venn diagram in Figure 16.1. However, the diagram is only a crude approxi-

mation and we have pushed it about as far as we can go.2

SSregressiona,b
2 SSregressiona

SSA = SSregressiona,b
2 SSregressionb

SSregressiona,b

SSregressiona,b,ab
2 SSregressiona,ab

SSregressiona,b,ab
2 SSregressionb,ab

SSregressiona,b,ab
2 SSregressiona,b
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Table 16.4 Alternative models for solution of nonorthogonal designs

Method III

Portion of 

Source df SS Diagram

A 1

B 2

AB 3

Error

Total

Method II

and

Portion of 

Source df SS Diagram

A

B

AB 3

Error

Total SS
Y

N 2 1

SSresiduala,b,ab
N 2 ab

SSregressiona,b,ab
2 SSregressiona,b

(a 2 1)(b 2 1)

2 1 5SSregressiona,b
2 SSregressiona

b 2 1

1 1 4SSregressiona,b
2 SSregressionb

a 2 1

Yijk = m 1 ai 1 bj 1 eijk

Yijk = m 1 ai 1 bj 1 abij 1 eijk

SS
Y

N 2 1

SSresiduala,b,ab
N 2 ab

SSregressiona,b,ab
2 SSregressiona,b

(a 2 1)(b 2 1)

SSregressiona,b,ab
2 SSregressiona,ab

b 2 1

SSregressiona,b,ab
2 SSregressionb,ab

a 2 1

Yijk = m 1 ai 1 bj 1 abij 1 eijk

2 From this discussion you could easily get the impression that Method II will always account for more of the
variation than Method III. This is not necessarily the case, since the degree of overlap represents the correlation
between effects, and suppressor relationships might appear as “black holes,” canceling out accountable variation.

Method III

Method II



As Carlson and Timm (1974) argued, a more appropriate way to compare the models is

to examine the hypotheses they test. These authors point out that Method III represents an

estimation of treatment effects when cell means are weighted equally, and is particularly

appropriate whenever we consider sample size to be independent of treatment conditions.

A convincing demonstration of this is presented in Overall, Spiegel, and Cohen (1975).

Carlson and Timm also showed that Method II produces estimates of treatment effects

when row and column means are weighted by the sample size, but only when no interac-

tion is present. When an interaction is present, simple estimates of row and column effects

cannot be made, and, in fact, the null hypotheses actually tested are very bizarre indeed

[see Carlson and Timm (1974) for a statement of the null hypotheses for Method II.] SPSS,

which once relied on a method similar to Method II, finally saw the light some years ago

and came around to using Method III as the default. They labeled this method “Unique SS”

because each effect is assigned only that portion of the variation that it uniquely explains.

An excellent discussion of the hypotheses tested by different approaches is presented in

Blair and Higgins (1978) and Blair (1978). As Cochran and Cox suggested, “the only com-

plete solution of the ‘missing data’ problem is not to have them” (p. 82).

There is a third method of computing sums of squares that at first seems particularly

bizarre. Just to make matters even more confusing than they need to be, this is the method

that SPSS and SAS refer to as “Type I SS,” or Method I, but which I will refer to as

hierarchical sums of squares, though it is sometimes referred to as sequential sums of

squares, which is the term that SPSS uses. The peculiar thing about this approach is that it

is dependent on the order in which you name your variables. Thus if you tell SAS or SPSS

to model (predict or account for) the dependent variable on the basis of A, B, and AB, the

program will first assign . Then , and

finally . In this situation the first effect is assigned

all of the sums of squares it can possibly account for. The next effect is assigned all that it

can account for over and above what was accounted for by the first one. Finally, the inter-

action effect is assigned only what it accounts for over and above the two main effects. But,

if you ask the software to model the dependent variable on the basis of B, A, and AB, then

SSB will equal , which is quite a different thing from .

The only time I could recommend using this approach is if you have a strong reason to

want to control the variables in a particular order.3 If you can defend the argument that

Variable A is so important that it should be looked at first without controlling for any other

variables, then perhaps this is a method you can use. But I have never seen a case where

I would want to do that, with the possible exception of dealing with a variable as a covari-

ate, which we will discuss shortly. The only reason that I bring the issue up here at all is to

explain some of the choices you will have to make in using computer software. (For a more

complete discussion of this issue go to my www.uvm.edu/~dhowell/StatPages/ and click

on New Material.)

Howell and McConaughy (1982) argued that there are very few instances in which one

would want to test the peculiar null hypotheses tested by Method II. The debate over the

“correct” model will probably continue for some time, mainly because no one model is

universally “correct,” and because there are philosophical differences in the approaches to

model specification [see Howell & McConaughy (1982) and Lewis & Keren (1977) versus

Appelbaum & Cramer (1974), O’Brien (1976), and Macnaughton (1992).] However, the

conclusion to be drawn from the literature at present is that for the most common situations

Method III is appropriate, since we usually want to test unweighted means. (This is the

SSregressiona,b
2 SSregressiona

SSregressionb

SSAB = SSregressiona,b,ab
2 SSregressiona,b

SSB = SSregressiona,b
2 SSregressiona

SSA = SSregressiona
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3 There is a good and honorable tradition of prioritizing variables in this way for theoretical studies using standard
multiple regression with continuous variables. I have never seen a similar application in an analysis of variance
framework, though I have seen a number of people write about hypothetical examples.

Method I

hierarchical sums

of squares

sequential sums

of squares



default method employed by SPSS. Method III sum of squares are the values labeled as

Type III SS in SAS, and now by more recent versions of SPSS.) It is also the method that

is approximated by the unweighted means solution discussed in Chapter 13. (You may

recall that in Chapter 13 we saw that the traditional label “unweighted means solution” re-

ally should be the “equally weighted means solution,” if that name hadn’t been appropri-

ated in the past for a different procedure, since, using it, we are treating all means equally,

regardless of the sample sizes.) Method III essentially assumes that observations are miss-

ing completely at random, so there is no reason that a cell with more observations should

carry any more weight than one with fewer observations. If this is not the case you should

consider a different method.

As an illustration of this method, we will take the data used in the previous example

but add four scores to produce unequal cell sizes. The data are given in Table 16.5, with the

unweighted and weighted row and column means and the values resulting from the various

regression solutions. The unweighted means are the mean of means (therefore, the mean of

row
1

is the mean of the four cell means in that row). The weighted mean of row
1
, for exam-

ple, is just the sum of the scores in row
1

divided by the number of scores in row
1
.

From Table 16.5 we see that , indicating that approximately 53% of the

variation can be accounted for by a linear combination of the predictor variables. We do

not know, however, how this variation is to be distributed among A, B, and AB. For that we

need to form and calculate the reduced models.

R2
a,b,ab = .532
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Table 16.5 Illustrative calculations for nonorthogonal factorial design

Unweighted Weighted

B
1

B
2

B
3

B
4

Mean Mean

A
1

5 2 8 11

7 5 11 15

9 7 12 16 8.975 8.944

8 3 14 10

9 9

A
2

7 3 9 11

9 8 12 14

10 9 14 10 9.625 9.778

9 11 8 12

7 13

Unweighted Means 8.000 6.475 10.625 12.1 9.300

Weighted Mean 8.000 6.333 10.556 12.1 9.3611

Full Model

Reduced Models

SSregressiona,a,b
= 29.7499

SSregressionb,a,b
= 203.9500

R2
b,ab = .523

SSregressiona,b
= 188.430

R2
a,b = .483

SSresidual = 182.6001

SSregressiona,b,ab
= 207.7055

R2
a,b,ab = .532



Testing the Interaction Effects

First, we delete the predictors associated with the interaction term and calculate . For

these data, representing a drop in R2 of about .05. If we examine the pre-

dictable sum of squares (SS
regression

), we see that eliminating the interaction terms has pro-

duced a decrement in SS
regression

of

This decrement is the sum of squares attributable to the AB interaction (SSAB).

In the case of unequal ns, it is particularly important to understand what this term rep-

resents. You should recall that , for example, equals . Then

The final term in parentheses is the squared semipartial correlation between the criterion

and the interaction effects, partialling out (adjusting for) the effects of A and B. In other

words, it is the squared correlation between the criterion and the part of the AB interaction

that is orthogonal to A and B. Thus, we can think of SSAB as really being SSAB(adj)
, where the

adjustment is for the effects of A and B. (In the equal-n case, the issue does not arise because

A, B, and AB are independent, and therefore there is no overlapping variation to partial out.)4

Testing the Main Effects

Because we are calculating Method III SS, we will calculate the main effects of A and B in

a way that is directly comparable to our estimation of the interaction effect. Here, each

main effect represents the sum of squares attributable to that variable after partialling out

the other main effect and the interaction.

To obtain SSA, we will delete the predictor associated with the main effect of A and cal-

culate . For these data, , producing a drop in R2 of .532 2 .523 5

.009. In terms of the predictable sum of squares ( ), the elimination of a from the

model produces a decrement in of

SSA =       3.7555

SSregressionb,ab
= 203.9500

SSregressiona,b,ab
= 207.7055

SSregression

SSregression

R2
b,ab = .523SSregressionb,ab

= SSY (R2
0(ab.a,b))

= SSY (R2
a,b,ab 2 R2

a,b)

SSAB = SSY (R2
a,b,ab) 2 SSY (R2

a,b)

SSY (R2
a,b,ab)SSregressiona,b,ab

SSAB = 19.2754

SSregressiona,b
= 188.4301

SSregressiona,b,ab
= 207.7055

R2
a,b = .483,

R2
a,b
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4 Some people have trouble understanding the concept of nonindependent treatment effects. As an aid, perhaps an
extreme example will help point out how a row effect could cause an apparent column effect, or vice versa. Con-
sider the following two-way table. When we look at differences among means, are we looking at a difference due
to A, B, or AB? There is no way to tell.

B
1

B
2

Means

A
1 10

A
2 30

Means 10 30

n = 20n = 0

X = 30

n = 0n = 20

X = 10



This decrement is the sum of squares attributable to the main effect of A.

By the same reasoning, we can obtain by comparing for the full model

and for a model omitting b.

These results are summarized in Table 16.6, with the method by which they were ob-

tained. Notice that the sums of squares do not sum to . This is as it should be, since

the overlapping portions of accountable variation (segments “4,” “5,” “6,” and “7” of

Figure 16.1) are not represented anywhere. Also notice that SS
error

is taken as the SS
residual

from the full model, just as in the case of equal sample sizes. Here again we define SS
error

as the portion of the total variation that cannot be explained by any one or more of the

independent variables.

As I mentioned earlier, the unweighted-means solution presented in Chapter 13 is an

approximation of the solution (Method III) given here. The main reason for discussing that

solution in this chapter is so that you will understand what the computer program is giving

you and how it is treating the unequal sample sizes.

The very simple SAS program and its abbreviated output in Exhibit 16.3 illustrate that

the Type III sums of squares from SAS PROC GLM do, in fact, produce the appropriate

analysis of the data in Table 16.5.

16.5 The One-Way Analysis of Covariance

An extremely useful tool for analyzing experimental data is the analysis of covariance. As

presented within the context of the analysis of variance, the analysis of covariance appears

to be unpleasantly cumbersome, especially so when there is more than one covariate.

SStotal

SSB = 177.9556

SSregressiona,ab
=   29.7499

SSregressiona,b,ab
= 207.7055

SSregressionSSB
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Table 16.6 Calculation of sums of squares using Method III—the unweighted

means solution

Method III (Unweighted Means)

Source df SS

A a 2 1

B b 2 1

AB (a 2 1)(b 2 1)

Error N 2 ab

Total N 2 1

Summary Table for Analysis of Variance

Source df SS MS F

A 1 3.7555 3.7555 ,1

B 3 177.9556 59.3185 9.10

AB 3 19.2754 6.4251 ,1

Error 28 182.6001 6.5214

Total 35 (390.3056)

SSY

SSY(1 2 R2
a,b,ab)

SSY(R2
a,b,ab 2 R2

a,b)

SSY(R2
a,b,ab 2 R2

a,ab)

SSY(R2
a,b,ab 2 R2

b,ab)

analysis of

covariance
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Exhibit 16.3 Abbreviated SAS analysis of the data in Table 16.7

Data Nonorth;

Infile ‘Table16-7.dat’;

Input A B dv;

Run;

Proc GLM Data = Nonorth;

Class A B;

Model dv = A B A*B;

Analysis of Variance

Source DF Type III SS Mean Square F Value Pr > F

A 1 3.7555556 3.7555556 0.58 0.4543

B 3 177.9556246 59.3185415 9.10 0.0002

A*B 3 19.2755003 6.4251668 0.99 0.4139

Error 28 182.6000000 6.5214286

Within the framework of multiple regression, however, it is remarkably simple, requiring

little, if any, more work than does the analysis of variance.

Suppose we wish to compare driving proficiency on three different sizes of cars to test

the experimental hypothesis that small cars are easier to handle. We have available three

different groups of drivers, but we are not able to match individual subjects on driving

experience, which varies considerably within each group. Let us make the simplifying

assumption, which will be discussed in more detail later, that the mean level of driv-

ing experience is equal across groups. Suppose further that using the number of steering

errors as our dependent variable, we obtain the somewhat exaggerated data plotted in

Figure 16.2. In this figure the data have been plotted separately for each group (size of car),

as a function of driving experience (the covariate), and the separate regression lines have

been superimposed.

One of the most striking things about Figure 16.2 is the large variability in both per-

formance and experience within each treatment. This variability is so great that an analysis

of variance on performance scores would almost certainly fail to produce a significant

effect. Most of the variability in performance, however, is directly attributable to differ-

ences in driving experience, which has nothing to do with what we wish to study. If we

could somehow remove (partial out) the variance that can be attributed to experience

X

Driving experience

Large

Medium Cars

Small

P
er

fo
rm

a
n

ce

(X2, Y2)

(X1, Y1)

(X3, Y3)

Figure 16.2 Hypothetical data illustrating error-reduction in the analysis of covariance

covariate



(the covariate), we would have a clearer test of our original hypothesis. This is exactly what

the analysis of covariance is designed to do, and this is precisely the situation in which it

does its job best—its job in this case being to reduce the error term.

A more controversial use of the analysis of covariance concerns situations in which the

treatment groups have different covariate (driving experience) means. Such a situation (us-

ing the same hypothetical experiment) is depicted in Figure 16.3, in which two of the treat-

ments have been displaced along the X axis. At the point at which the three regression lines

intersect the vertical line , you can see the values , , and . These are the

adjusted Y means and represent our best guess as to what the Y means would have been if
the treatments had not differed on the covariate. The analysis of covariance then tests

whether these adjusted means differ significantly, again using an error term from which

the variance attributable to the covariate has been partialled out. Notice that the adjusted

performance means are quite different from the unadjusted means. The adjustment has

increased 
1

and decreased 
3
.

Although the structure and procedures of the analysis of covariance are the same re-

gardless of whether the treatment groups differ on the covariate means, the different ways

of visualizing the problem as represented in Figures 16.2 and 16.3 are instructive. In the

first case, we are simply reducing the error term. In the second case, we are both reducing

the error term and adjusting the means on the dependent variable. We will have more to say

about this distinction later in the chapter.

Assumptions of the Analysis of Covariance

Aside from the usual analysis of variance assumptions of normality and homogeneity of

variance, we must add two more assumptions. First we will assume that whatever the rela-

tionship between Y and the covariate (C), this relationship is linear.5 Second, we will assume

homogeneity of regression—that the regression coefficients are equal across treatments—

. This is merely the assumption that the three lines in Figure

16.2 or 16.3 are parallel, and it is necessary to justify our substitution of one regression line

(the pooled within-groups regression line) for the separate regression lines. As we shall see

shortly, this assumption is testable. Note that no assumption has been made about the

nature of the covariate; it may be either a fixed or a random variable. (It can even be a cate-

gorical variable if we create dummy variables to represent the different levels of the vari-

able, as we did in the earlier parts of this chapter.)

b*
1 = b*

2 = b*
3 = Á = b*

YY

Y¿3Y¿2Y¿1X = X
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(X2, Y2)
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Figure 16.3 Hypothetical data illustrating mean adjustment in the analysis

of covariance

5 Methods for handling nonlinear relationships are available but will not be discussed here.
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homogeneity of
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Calculating the Analysis of Covariance

When viewed within the framework of multiple regression, the analysis of covariance is

basically no different from the analysis of variance, except that we wish to partial out the

effects of the covariate. As Cohen (1968) put it, “A covariate is, after all, nothing but an

independent variable which, because of the logic dictated by the substantive issues of the

research, assumes priority among the set of independent variables as a basis for accounting

for Y variance” (p. 439).

If we want to ask about the variation in Y after the covariate (C) has been partialled out,

and if the variation in Y can be associated with only C, the treatment effect (a), and error,

then represents the total amount of accountable variation. If we now compare

with , the difference will be the variation attributable to treatment

effects over and above that attributable to the covariate.

We will take as an example a variation on the study by Conti and Musty (1984)

presented in Chapter 11. As you may recall, in that study the authors were interested in

examining the effects of different amounts of THC, the major active ingredient in mari-

juana, injected directly into the brain. The dependent variable was locomotor activity,

which normally increases with the administration of THC by more traditional routes.

Because of the nature of the experimental setting (all animals were observed under base-

line conditions and then again after the administration of THC), activity should decrease in

all animals as they become familiar and more comfortable with the apparatus. If THC has

its effect through the nucleus accumbens, however, the effects of moderate doses of THC

should partially compensate for this anticipated decrease, leading to relatively greater

activity levels in the moderate-dose groups as compared to the low- or high-dose groups.

Conti and Musty (1984) actually analyzed postinjection activity as a percentage of pre-

injection activity, because that is the way such data are routinely analyzed in their field. An

alternative procedure would have been to run an analysis of covariance on the postinjection

scores, partialling out preinjection differences. Such a procedure would adjust for the fact that

much of the variability in postinjection activity could be accounted for by variability in prein-

jection activity. It would also control for the fact that, by chance, there were group differences

in the level of preinjection activity that could contaminate postinjection scores.

As will become clear later, it is important to note here that all animals were assigned at

random to groups. Therefore, we would expect the group means on the preinjection phase

to be equal. Any differences that do appear on the preinjection phase, then, are due to

chance, and, in the absence of any treatment effect, we would expect that postinjection

means, adjusted for chance preinjection differences, would be equal. The fact that subjects

were assigned at random to treatments is what allows us to expect equal adjusted group

means at postinjection (if is true), and this in turn allows us to interpret group differ-

ences at postinjection to be a result of real treatment differences rather than of some arti-

fact of subject assignment.

The data and the design matrix for the Conti and Musty (1984) study are presented in

Table 16.7. The raw data have been divided by 100 simply to make the resulting sums of

squares manageable.6 In the design matrix that follows the data, only the first and last subject

in each group are represented. Columns 6 through 9 of X represent the interaction of the co-

variate and the group variables. These columns are used to test the hypothesis of homogene-

ity of regression coefficients across groups:

H0: b*
1 = b*

2 = b*
3 = b*

4 = b*
5

H0

SSregressionC
SSregressionC,a

SSregressionC,a
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times their present size. The F and t values would be unaffected.1002 = 10,000



The full model (including the interaction predictors) states that

where represents the treatment effect for the jth treatment, c represents the covariate, 

represents our term testing homogeneity of regression, and represents the error associ-

ated with the ith subject in treatment j.
We can compare two models either on the basis of the change in between the

two models (using the residual from the more complete model for our error term), or on

the basis of the decrease in . In this case the latter is somewhat simpler.R2

SSregression

eij

ctjtj

Yij = tj 1 c 1 ctj 1 eij

602 Chapter 16 Analyses of Variance and Covariance as General Linear Models

Table 16.7 Pre- and postinjection data from Conti and Musty (1984)

Control 0.1 mg 0.5 mg 1 mg 2 mg

Pre Post Pre Post Pre Post Pre Post Pre Post

4.34 1.30 1.55 0.93 7.18 5.10 6.94 2.29 4.00 1.44

3.50 0.94 10.56 4.44 8.33 4.16 6.10 4.75 4.10 1.11

4.33 2.25 8.39 4.03 4.05 1.54 4.90 3.48 3.62 2.17

2.76 1.05 3.70 1.92 10.78 6.36 3.69 2.76 3.92 2.00

4.62 0.92 2.40 0.67 6.09 3.96 4.76 1.67 2.90 0.84

5.40 1.90 1.83 1.70 7.78 4.51 4.30 1.51 2.90 0.99

3.95 0.32 2.40 0.77 5.08 3.76 2.32 1.07 1.82 0.44

1.55 0.64 7.67 3.53 2.86 1.92 7.35 2.35 4.94 0.84

1.42 0.69 5.79 3.65 6.30 3.84 5.69 2.84

1.90 0.93 9.58 4.22 5.54 2.93

Mean 3.377 1.094 5.387 2.586 6.494 3.906 5.045 2.485 3.943 1.560

Design Matrix

Cov T
1

T
2

T
3

T
4

CT
1

CT
2

CT
3

CT
4

4.34 1 0 0 0 4.34 0 0 0 1.30

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.90 1 0 0 0 1.90 0 0 0 0.93

1.55 0 1 0 0 0 1.55 0 0 0.93

. . . . . . . . . . . . . . . . . . . . . . . . . . .

9.58 0 1 0 0 0 9.58 0 0 4.22

7.18 0 0 1 0 0 0 7.18 0 5.10

X 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . Y 5 . . .

(47 3 9) 6.30 0 0 1 0 0 0 6.30 0 (47 3 1) 3.84

3.94 0 0 0 1 0 0 0 6.94 2.29

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.35 0 0 0 1 0 0 0 7.35 2.35

4.00 21 21 21 21 24.00 24.00 24.00 24.00 1.44

. . . . . . . . . . . . . . . . . . . . . . . . . . .

5.54 21 21 21 21 25.54 25.54 25.54 25.54 2.93



The regression analysis of this model would produce

If there is no significant difference in within-treatment regressions—that is, if the regres-

sion lines are parallel and thus the slopes of the regression lines that could be calculated

for each group separately are homogeneous—called homogeneity of regression—the dele-

tion of the interaction term should produce only a trivial decrement in the percentage of

accountable variation. When we delete the CT terms, we have

The F test on this decrement is the usual F test on the difference between two models:

Given an F of 1.03 on 4 and 37 degrees of freedom, we have no basis to reject the assump-

tion of homogeneity of regression (common regression coefficients) within the five treat-

ments. Thus, we can proceed with the analysis on the basis of the revised full model that

does not include the covariate by treatment interaction:

This model will serve as the basis against which we compare reduced models.

The three sets of results of the multiple-regression solutions using (1) the covariate and

dummy treatment variables, (2) just the treatment variables, and then (3) just the covariates

are presented in Table 16.8.

From Table 16.8 you can see that using both the covariate (Pre) and the group member-

ship dummy variates (T
1

. . . T
4
), the sum of squares for regression ( ) is equal to

82.6435, which is the portion of the total variation that can be accounted for by these two

sets of predictors. You can also see that the residual sum of squares ( ) is 20.1254,

which is the variability that cannot be predicted. In our analysis of covariance summary

table, this will become the sum of squares for error.

When we remove the dummy group membership variates from the equation and use

only the covariate (Pre) as a predictor, drops from 82.6435 to 73.4196. The dif-

ference between with and without the group membership predictors must be the

amount of the sum of squares that can be attributable to treatment over and above the

amount that can be explained by the covariate. For our data, this is

This last value is called the adjusted treatment sum of squares for the analysis of covari-

ance, because it has been adjusted for any effects of the covariate. In this case, it has been

adjusted for the fact that the five groups differed on the pretest measure.

We need one additional term to form our analysis of covariance summary table, and

that is the sum of squares to be attributed to the covariate. There are a number of different

ways to define this term, but the most common is to define it analogously to the way the

adjusted treatment effect was defined. We will attribute to the covariate that portion of the

= 9.2239

= 82.6435 2 73.4196

SStreat(adj) = SSregressiont,c
2 SSregressionc

SSregression

SSregression

SSresidual

SSregressiont,c

Yij = m 1 tj 1 c 1 eij

=
(47 2 921)(.8238 2 .8042)

(4)(.1762)
= 1.03

F( f 2 r, N 2 f 2 1) =
(N 2 f 2 1)(R2

t,c,ct 2 R2
t,c)

(f 2 r)(1 2 R2
t,c,ct)

R2
t,c = .8042

R2
t,c,ct = .8238
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variation that cannot be defined by the treatment effect. In other words, we will take the

model with both the covariate and treatment predictors and compare it to a model with only

the treatment predictors. The difference in the two sums of squares due to regression will

be the sum of squares that the covariate accounts for over and above what is accounted for

by treatment effects. For our data, this is

We now have all the information necessary to construct the analysis of covariance sum-

mary table. This is presented in Table 16.9. Notice that in this table the error term is

= 38.3407

= 82.6435 2 44.3028

SScovariate = SSregressiont, c
2 SSregressiont
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Table 16.8 Regression analysis

(a) Full Model

Analysis of Variance Summary Table for Regression

Source df SS MS F

Regression 5 82.6435 16.5287 33.6726

Residual 41 20.1254 0.4909

Total 46 102.7689

(b) Reduced Model—Omitting Treatment Predictors

Analysis of Variance Summary Table for Regression

Source df SS MS F

Regression 1 73.4196 73.4196 112.5711

Residual 45 29.3493 0.6522

Total 46 102.7689

(c) Reduced Model—Omitting Covariate (Pre)

Analysis of Variance Summary Table for Regression

Source df SS MS F

Regression 4 44.3028 11.0757 7.9564

Residual 42 58.4661 1.3921

Total 46 102.7689

R2
c = .4311

YNij = 21.2321(T1) 1 0.2599(T2) 1 1.5794(T3) 1 0.1589(T4) 1 2.3261

R2
c = .7144

YNij = 0.5311(Pre) 2 0.26667

R2
t,c = .8042

YNij = 0.4347(Pre) 2 0.5922(T1) 1 0.0262(T2) 1 0.8644(T3) 1 0.0738(T4) 1 0.2183



from the full model and the other sums of squares are as calculated before. Notice

also that there is one degree of freedom for the covariate, since there is one covariate; there

are (k 2 1) 5 (5 2 1) 5 4 df for the adjusted treatment effect; and there are N – k – c 5 41 df
for error (where k represents the number of groups and c represents the number of

covariates).

From the summary table we see that On 4 df this gives us

. Dividing that term by 5 0.4909 we have F 5 4.698 on (4, 41)

df, which is significant at p , .05. Thus we can conclude that after we control for individual

preinjection differences in activity, the treatment groups do differ on postinjection activity.

Adjusted Means

Since , we have rejected 

and conclude that there were significant differences among

the treatment means after the effect of the covariate has been partialled out of the analysis.

To interpret these differences, it would be useful, if not essential, to obtain the treatment

means adjusted for the effects of the covariate. We are basically asking for an estimate of

what the postinjection treatment means would have been had the groups not differed on the

preinjection means. The adjusted means are readily obtained from the regression solution

using the covariate and treatments as predictors.

From the analysis of the revised full model, we obtained (see Table 16.8)

1 0.0738(T4) 1 0.2183

YNij = 0.4347(Pre) 2 0.5922(T1) 1 0.0262(T2) 1 0.8644(T3)

m3(adj) = m4(adj) = m5(adj)

H0 : m1(adj) = m2(adj) 5F.05(4, 41) = 2.61 , Fobt = 4.698

MSerrorMStreat(adj) = 2.3060

SStreat(adj) = 9.2239.

SSresidual
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Table 16.9 Summary tables for analysis of covariance

General Summary Table for One-Way Analysis 
of Covariance

Source df SS

Covariate c

Treat (adj)

Residual

Total

Summary Table for Data in Table 16.7

Source df SS MS F

Covariate 1 38.3407 38.3407 78.108*

Treat (adj) 4 9.2239 2.3060 4.698*

Residual 41 20.1254 0.4909

Total 46 102.7689

Full Model:

* p , .05

Y
N

ij = 0.4347(Pre) 2 0.5922(T1) 1 0.0262(T2) 1 0.8644(T3) 1 0.0738(T4) 1 0.2183

N 2 1

SSresidual(t,c)
N 2 k 2 1

SSregression(t,c)
2 SSregression(c)

k 2 1

SSregression(t,c)
2 SSregression(t)



Writing this in terms of means and representing adjusted means as , we have

where (the mean preinjection score) and T
1
, T

2
, T

3
, and T

4
are (0, 1, 21)

variables. (We substitute the mean Pre score for the individual Pre score because we are

interested in the adjusted means for Y if all subjects had received the mean score on the

covariate.) For our data, the adjusted means of the treatments are:

The adjusted means are plotted in Figure 16.4.

The grand mean is

= 2.3075

1 0.8644(0) 1 0.0738(0) 1 0.2183

Y¿. = 0.4347(4 .8060) 2 0.5922(0) 1 0.0262(0)

= 1.9353

1 0.0738(21) 1 0.2183

Y¿5 = 0.4347(4 .8060) 2 0.5922(21) 1 0.0262(21) 1 0.8644(21)

= 2.3813

1 0.0738(1) 1 0.2183

Y¿4 = 0.4347(4 .8060) 2 0.5922(0) 1 0.0262(0) 1 0.8644(0)

= 3.1719

1 0.0738(0) 1 0.2183

Y¿3 = 0.4347(4 .8060) 2 0.5922(0) 1 0.0262(0) 1 0.8644(1)

= 2.3336

1 0.0738(0) 1 0.2183

Y¿2 = 0.4347(4 .8060) 2 0.5922(0) 1 0.0262(1) 1 0.8644(0)

= 1.7153

1 0.0738(0) 1 0.2183

Y¿1 = 0.4347(4 .8060) 2 0.5922(1) 1 0.0262(0) 1 0.8644(0)

Pre = 4.8060

1 0.0738(T4) 1 0.2183

Y¿j = 0.4347(Pre) 2 0.5922(T1) 1 0.0262(T2) 1 0.8644(T3)

Y¿j
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which is the mean of the adjusted means. (In a case in which we have equal sample sizes,

the adjusted grand mean will equal the unadjusted grand mean.)7

Now we are about to go into deep water in terms of formulae, and I expect eyes to start

glazing over. I can’t imagine that anyone is going to expect you to memorize these formu-

lae. Just try to understand what is happening and remember where to find them when you

need them. Don’t expect to find them printed out by most statistical software.

Any individual comparisons among treatments would now be made using these adjusted

means. In this case, however, we must modify our error term from that of the overall analysis

of covariance. If we let represent the error sum of squares from an analysis of variance

on the covariate, then Huitema (1980), in an excellent and readable book on the analysis of

covariance, gives as a test of the difference between two adjusted means

where is the error term from the analysis of covariance. For an excellent discus-

sion of effective error terms and comparisons among means, see Winer (1971, p. 771ff )

and, especially, Huitema (1980).

As an example, suppose we wish to compare and , which theory had predicted would

show the greatest difference. From the preceding analysis, we either know or can compute

[calculation not shown]

The critical value . We would thus reject the null hypothesis that the

adjusted means of these two conditions are equal in the population. Even after adjusting

for the fact that the groups differed by chance on the pretest, we find significant postinjec-

tion differences.

Exhibit 16.4 contains SPSS output for the analysis of variance. (The pretest and

posttest means were computed using the compare means procedure.) Notice that I

requested a “spread versus level” plot from the options menu, and it reveals that there is a

correlation between the size of the mean and the size of the variance. Notice, however, that

the relationship appears very much reduced when we plotted the relationship between the

adjusted means and their standard errors.

F.05(1, 41) = 4.08

=
2.1217

0.1271
= 16.69

F(1, 41) =
(1.7153 2 3.1719)2

0.4909B a 1

10
1

1

9
b 1

(3.3770 2 6.4944)2

202.938
RY¿3 = 3.1719Y¿1 = 1.7153

C3 = 6.4944C1 = 3.3770

SSe(c) = 202.938

MS¿error = 0.4909

Y¿3Y¿1

MSœ
error

F(1, N 2 a 2 1) =
(Y¿j 2 Y¿k)

2

MS¿errorB a 1

nj
1

1

nk
b 1

(Cj 2 Ck)
2

SSe(c)
R

SSe(c)
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7 An alternative approach to calculating adjusted means is to define

where is the covariate mean for Group j, is the covariate grand mean, and is the regression coefficient for 

the covariate from the complete model (here 5 0.4347). This more traditional way of calculating adjusted
means makes it clear that the adjusted mean is some function of how deviant that group was on the covariate. The
same values for the adjusted means will result from using either approach.

bw

bwC.Cj

Y¿j = Yj 2 bw(Cj2C)

MSœ
error
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Estimated Marginal Means

Treatment Group

Dependent Variable: POSTTEST

Treatment group

Control

0.1 mg

0.5 mg

1mg

2 mg

Mean

1.715a

2.333a

3.172a

2.381a

1.935a

Std. Error

.232

.223

.248

.248

.226

Lower
Bound

1.246

1.882

2.671

1.880

1.480

95% Confidence Interval

a Evaluated at covariates appeared in the model: PRETEST 5 4.8060

Upper
Bound

2.185

2.785

3.672

2.882

2.391

Mean

N

Std. Deviation

Mean

N

Std. Deviation

Mean

N

Std. Deviation

Mean

N

Std. Deviation

Mean

N

Std. Deviation

Mean

N

Std. Deviation

Treatment group

Control

0.1mg

0.5mg

1 mg

2 mg

Total

PRETEST

3.3770

10

1.3963

5.3870

10

3.4448

6.4944

9

2.3781

5.0450

8

1.6876

3.9430

10

1.2207

4.8060

47

2.3788

POSTTEST

1.0940

10

.5850

2.5860

10

1.5332

3.9056

9

1.4768

2.4850

8

1.1874

1.5600

10

.8765

2.2857

47

1.4947

Report

Exhibit 16.4 SPSS output for analysis of Conti and Musty data

Type III Sum
of Squares

82.644a

.347

38.341

9.224

20.125

348.327

102.769

Source

Corrected Model

Intercept

PRETEST

GROUP

Error

Total

Corrected Total

df

5

1

1

4

41

47

46

Mean
Square

16.529

.347

38.341

2.306

.491

F

33.673

.707

78.108

4.698

Sig.

.000

.405

.000

.003

Eta
Squared

.804

.017

.656

.314

Tests of Between-Subjects Effects
Dependent Variable: POSTTEST

a R Squared 5 .804 (Adjusted R Squared 5 .780)

(continues)



16.6 Computing Effect Sizes in an
Analysis of Covariance

As you might expect, computing effect sizes is a bit more complicated in analysis of

covariance than it was in the analysis of variance. That is because we have choices to make

in terms of the means we compare and the error term we use. You may recall that with fac-

torial designs and repeated measures designs we had a similar problem concerning the

choice of the error term for the effect size.

As before, we can look at effect size in terms of r-family and d-family measures.

Normally I would suggest r-family measures when looking at an omnibus F test, and a

d-family measure when looking at specific contrasts. We will start with an r-family exam-

ple, and then move to the d-family. The example we have been using based on the study by

Conti and Musty produced a significant F on the omnibus null hypothesis. Probably the

most appropriate way to talk about this particular example would make use of the fact that

Group (or Dose) was a metric variable, increasing from 0 to 2 mg.8 However I am going to

take a “second-best” approach here because the majority of the studies we run do not have

the independent variable distributed as such an ordered variable.

r-Family Measure

As our r-family measure of association we will use h2, acknowledging that it is positively

biased. You should recall that h2 is defined as the treatment SS divided by the total SS. But

which sums of squares for treatments should we use—the ones from an analysis of vari-

ance on the dependent variable, or the ones from the analysis of covariance? Kline (2004)

offers both of those alternatives, though he uses an adjusted SS
total

in the second,9 without
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Exhibit 16.4 (continued )

Spread vs.  Level Plot of POSTTEST

Groups: Treatment group

Level (mean)

4.03.53.02.52.01.51.0
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)

2.5

2.0

1.5

1.0

0.5

0.0

Mean (adj)

4.03.53.02.52.01.51.0

S
p

re
a
d

 (
v
a
ri

a
n

ce
)

2.5

2.0

1.5

1.0

0.5

0.0

Spread vs. Level Plot of Adjusted POSTTEST

8 SPSS will test polynomial contrasts on the adjusted means. Just click on the CONTRAST button and ask for
polynomial contrasts. For this example there is a significant quadratic component.
9 SPSS uses this same adjustment if you request effect sizes, and it is simply SS

treat
1 SS

error
.    



suggesting a choice. If the covariate naturally varies in the population (as it does in this

case, where we expect different animals to vary in their pretest score, then it makes the

most sense to divide the SS
treat

from the analysis of covariance by the SS
total

(unadjusted)

from that analysis. This will produce a value of h2 which is the percentage of “normal vari-

ation” accounted for by the independent variable.10 Then

An alternative approach, which will produce the same answer, is to take h2 as the dif-

ference between the R2 from a model predicting the dependent variable from only the co-

variate (the pretest) and one predicting the dependent variable from both the covariate and

the treatment. The increase in explained variation from the first of these models to the sec-

ond represents what the treatment contributes after controlling for the covariate. For our

example R2 using just the covariate is .714. (You can obtain this by an analysis of variance

using the covariate as the independent variable, or by a regression of the independent vari-

able on the covariate.) When you add in the treatment effect the R2 is .804. These values

are shown in the following table.

Step Predictors R2 Change in R2 F for change

1 Pretest .714

2 Pretest, Treatment .804 .090 4.689

h2 is the difference between these two values of R2, which is the contribution to explained

variation of the treatment after controlling for the covariate. This is the same value we ob-

tained by the first approach.

d-Family Measure

Measures from the d-family often are more interpretable, and they are most often used for

specific contrasts between two means. The example we have been using is not a very good

one for a contrast of two means because the independent variable is a continuum. But I will

use the contrast between the control group and the .5 mg group as an example, because

these are the two conditions that Conti and Musty’s theory would have expected to show

the greatest mean difference. Because we are working with an analysis of covariance, the

appropriate means to compare are the adjusted means ( ) from that analysis. In this case

they are 3.1719 for the .5 mg condition and 1.7153 for the control condition. (You may

recall that we performed a test on the difference between these adjusted means in the pre-

vious section, and it was significant.)

You should recall that we have generally used

as our effect size estimate. When we are comparing two group means, is simply the dif-

ference between the two means because the coefficients are [21 0 1 0 0]. For our example

is 3.1719 – 1.7153 5 1.4566. But the question of most importance is what we will use

for the estimate of the standard deviation. One of several choices would be the square root

of MS
error

from an analysis of variance, because this would be an estimate of the average

variability within each group, and would thus standardize the mean difference in the metric

cN

cN

d =
cN

sN

Yi

h2 =
SStreat(adj)

SStotal

=
9.2239

102.7689
= .09
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10 If you were interested in the for the quadratic relationship between dose and the activity level, controlling
for the pretest activity level, you could just divide the SS

quadratic
by SS

total
.

h2



of the original measurements. (Recall that we used SS
total

from the analysis of variance

when we calculated h2.) An alternative would be the square root of MS
error

from the analy-

sis of covariance, which would standardize the mean difference in the metric of the ad-

justed scores, which is a bit more difficult to understand. Cortina and Nouri (2000) have

made the sensible suggestion that when the covariate normally varies in the population, as

ours does, we want to include that variability in our estimate of error. This means that we

would use the square root of MS
error

from the analysis of variance on the posttest scores. In

that analysis MS
error

is 1.392, which is simply the square root of the weighted mean of the

group variances). Then

Injection of the optimal dose of THC (.5 mg) leads to an increase of postinjection activity

by nearly 1 and a quarter standard deviations relative to the control group.

16.7 Interpreting an Analysis of Covariance

Interpreting an analysis of covariance can present certain problems, depending on the

nature of the data and, more important, the design of the experiment. A thorough and read-

able discussion of most of these problems is presented by Huitema (1980). Other impor-

tant sources for consideration of these problems are Anderson (1963), Evans and Anastasio

(1968), Huitema (2005), Lord (1967, 1969), Maxwell and Cramer (1975), Reichardt

(1979), Smith (1957), and Weisberg (1979).

The ideal application for an analysis of covariance is an experiment in which partici-

pants are randomly assigned to treatments (or cells of a factorial design). In that situation,

the expected value of the covariate mean for each group or cell is the same, and any differ-

ences can be attributed only to chance, assuming that the covariate was measured before

the treatments were applied. In this situation, the analysis of covariance will primarily re-

duce the error term, but it will also, properly, remove any bias in the dependent variable

means caused by chance group differences on the covariate. This was the situation in the

Conti and Musty (1984) study that we have been discussing.

In a randomized experiment in which the covariate is measured after the treatment has

been applied and has affected the covariate, interpreting the results of an analysis of

covariance is difficult at best. In this situation the expected values of the group covariate

means are not equal, even though the subjects were assigned randomly. It is difficult to in-

terpret the results of the analysis because you are asking what the groups would have been

like had they not differed on the covariate, when in fact the covariate differences may be an

integral part of the treatment effect. This problem is particularly severe if the covariate was

measured with error (i.e., if it is not perfectly reliable). In this case an alternative analysis,

called the true-score analysis of covariance, may be appropriate if the other interpretive

problems can be overcome. Such an analysis is discussed in Huitema (1980, Chapter 14).

When subjects are not assigned to the treatment groups at random, interpreting the

analysis of covariance can be even more troublesome. The most common example of this

problem is what is called the nonequivalent groups design. In this design, two (or more)

intact groups are chosen (e.g., schools or classrooms of children), a pretest measure is

obtained from subjects in both groups, the treatment is applied to one of the groups, and

the two groups are then compared on some posttest measure. Since participants are not

assigned to the groups at random, we have no basis for assuming that any differences that

exist on the pretest are to be attributed to chance. Similarly, we have no basis for expecting

d =
cN

sN
=

X3 2 X11MSerror

=
3.1719 2 1.715311.392

=
1.4566

1.1798
= 1.23
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analysis of

covariance

nonequivalent

groups design



the two groups to have the same mean on the posttest in the absence of a real treatment

effect. Huitema (1980, pp. 149ff) gives an excellent demonstration that when the groups

differ at the beginning of the experiment, the phenomenon of regression to the mean could

lead to posttest differences even in the absence of a treatment effect. For alternative analy-

ses that are useful under certain conditions, see Huitema (1980). Maris (1998) takes a dif-

ferent view of the issue.

The problems of interpreting results of designs in which subjects are not randomly

assigned to the treatment groups are not easily overcome. This is one of the reasons why

random assignment is even more important than random selection of subjects. It is difficult

to overestimate the virtues of random assignment, both for interpreting data and for mak-

ing causal statements about the relationship between variables. In what is probably only a

slight overstatement of the issue, Lord (1967) remarked, “In the writer’s opinion, the ex-

planation is that with the data usually available for such studies, there is simply no logical

or statistical procedure that can be counted on to make proper allowances for uncontrolled

pre-existing differences between groups” (p. 305). (Lord was not referring to differences

that arise by chance through random assignment.) Anderson (1963) made a similar point

by stating, “One may well wonder exactly what it means to ask what the data would be like

if they were not what they are” (p. 170). All of this is not to say that the analysis of covari-

ance has no place in the analysis of data in which the treatments differ on the covariate.

Anyone using covariance analysis, however, must think carefully about her data and the

practical validity of the conclusions she draws.

16.8 Reporting the Results of an Analysis 
of Covariance

The only difference between describing the results of an analysis of covariance and an

analysis of variance is that we must refer to the covariate and to adjusted means. For the

experiment by Conti and Musty we could write

Conti and Musty (1984) examined the effect of THC on locomotor activity in rats.

They predicted that moderate doses of THC should show the greatest increase in activ-

ity (or the least decrease due to adaptation). After a pretesting session five different

groups of rats were randomly assigned to receive 0, .1 mg, .5 mg, 1 mg, or 2 mg of THC.

Activity level was measured in a 10-minute postinjection interval. Because there was

considerable variability in pretest activity, the pretest measure was used as a covariate

in the analysis.

The analysis of covariance was significant (F(4, 41) 5 4.694, p 5 .003), with inter-

mediate doses showing greater effect. Eta-squared was .09 using a SS
total

that has not

been adjusted for the covariate. A contrast of the means of the control group and the

.5 mg group revealed a significant difference (F(1, 41) 5 16.69, p , .05), with a stan-

dardized effect size (d ) of 1.23.

16.9 The Factorial Analysis of Covariance

The analysis of covariance applies to factorial designs just as well as it does to single-

variable designs. Once again, the covariate may be treated as a variable that, because of

methodological considerations, assumes priority in the analysis. In this section we will deal

only with the case of equal cell sizes, but the generalization to unequal ns is immediate.
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The logic of the analysis is straightforward and follows that used in the previous ex-

amples. is the variation attributable to a linear combination of the covariate,

the main effects of A and B, and the AB interaction. Similarly, is the variation

attributable to the linear combination of the covariate and the main effects of A and B. The

difference

is the variation attributable to the AB interaction, with the covariate and the main effects

partialled out. Since, with equal sample sizes, the two main effects and the interaction are

orthogonal, all that is actually partialled out in equal n designs is the covariate.

By the same line of reasoning

represents the variation attributable to B, partialling out the covariate, and

represents the variation attributable to the main effect of A, again partialling out the covariate.

The error term represents the variation remaining after controlling for A, B, and AB,

and the covariate. As such it is given by

The general structure of the analysis is presented in Table 16.10. Notice that once again the

error term loses a degree of freedom for each covariate. Since the independent variable and

the covariate account for overlapping portions of the variation, their sums of squares will

not equal .

As an example, consider the study by Spilich et al. (1992) that we examined in Chapter 13

on performance as a function of cigarette smoking. In that study subjects performed either a

Pattern Recognition task, a Cognitive task, or a Driving Simulation task. The subjects were

divided into three groups. One group (Active Smoking) smoked during or just before the task.

A second group (Delayed Smoking) were smokers who had not smoked for three hours, and a

third group (NonSmoking) was composed of NonSmokers. The dependent variable was the

number of errors on the task. To make this suitable for an analysis of covariance I have added

an additional (hypothetical) variable, which is the subject’s measured level of distractibility.

(Higher distractibility scores indicate a greater ease at being distracted.)

The data are presented in Table 16.11 and represent a 3 3 3 factorial design with one

covariate (Distract).

SStotal

SSresidualc, a, b, ab

SSregressionc, a, b, ab
2 SSregressionc, b,ab

SSregressionc, a, b, ab
2 SSregressionc, a,ab

SSregressionc, a, b, ab
2 SSregressionc, a, b

SSregressionc,a,b

SSregressionc, a, b, ab
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Table 16.10 Structure of the analysis of covariance for factorial designs

Source df SS

A(adj) a – 1

B(adj) b – 1

AB(adj) (a – 1)(b – 1)

Error N – ab – c
Covariate c

Total N 2 1

SSregressionc, a, b, ab
2 SSregressiona, b, ab

SSresidualc, a, b, ab

SSregressionc, a, b, ab
2 SSregressionc,a, b

SSregressionc, a, b, ab
2 SSregressionc,a, ab

SSregressionc, a, b, ab
2 SSregressionc, b,ab



614 Chapter 16 Analyses of Variance and Covariance as General Linear Models

Table 16.11 Hypothetical data on smoking and performance (modeled on Spilich et al., 1992)

Pattern Recognition

NS: Errors 9 8 12 10 7 10 9 11 8 10 8 10 8 11 10

Distract 107 133 123 94 83 86 112 117 130 111 102 120 118 134 97

DS: Errors 12 7 14 4 8 11 16 17 5 6 9 6 6 7 16

Distract 101 75 138 94 138 127 126 124 100 103 120 91 138 88 118

AS: Errors 8 8 9 1 9 7 16 19 1 1 22 12 18 8 10

Distract 64 135 130 106 123 117 124 141 95 98 95 103 134 119 123

Cognitive Task

NS: Errors 27 34 19 20 56 35 23 37 4 30 4 42 34 19 49

Distract 126 154 113 87 125 130 103 139 85 131 98 107 107 96 143

DS: Errors 48 29 34 6 18 63 9 54 28 71 60 54 51 25 49

Distract 113 100 114 74 76 162 80 118 99 146 132 135 111 106 96

AS: Errors 34 65 55 33 42 54 21 44 61 38 75 61 51 32 47

Distract 108 191 112 98 128 145 76 107 128 128 142 144 131 110 132

Driving Simulation

NS: Errors 15 2 2 14 5 0 16 14 9 17 15 9 3 15 13

Distract 110 96 112 114 137 125 168 102 109 111 137 106 117 101 116

DS: Errors 7 0 6 0 12 17 1 11 4 4 3 5 16 5 11

Distract 93 102 108 100 123 131 99 116 81 103 78 103 139 101 102

AS: Errors 3 2 0 0 6 2 0 6 4 1 0 0 6 2 3

Distract 130 83 91 92 109 106 99 109 136 102 119 84 68 67 114

Table 16.12 contains an abbreviated form of the design matrix, showing only the

entries for the first and last subject in each cell. Notice that the matrix contains a column

for the covariate (denoted C ), the usual design matrix elements for the main effects of Task

(T ) and Group (G), and the Task 3 Group interaction. I have also added columns repre-

senting the interaction of the covariate with the Task 3 Group interaction. The latter will

be used to test the hypothesis for all values of i and j, since the assumption of

homogeneity of regression applies to any analysis of covariance.

It is important to consider just what the interactions involving the covariate represent.

If I had included the terms and I could have used them to test the null hypothesis

that the regression lines of Errors as a function of Distract have equivalent slopes in the

three tasks. Similarly, if I had included and , I could have tested homogeneity of

regression in each of the three smoking groups. Since I am most interested in testing the

hypothesis of homogeneity of regression in each of the nine cells, I have included only the

terms.

The first regression is based on all predictors in X. From this analysis we obtain

MSresidualc, a, b, ab, cab
= 71.10333

SSregressionc, a, b, ab,cab
= 36728.42272

CTGij

CG2CG1

CT2CT1

H0: b*
i = b*

j



If we drop the interaction terms representing the interaction of the covariate (Distract) with

the Task 3 Group interaction, we have

5 36389.60175

The difference between these two sums of squares 5 338.82097. The most complete model

had 13 degrees of freedom, while the second had 9 df, meaning that the above sum of

squares is based on 13 2 9 5 4 df. Converting to mean squares we have

We can test the difference between these two models by using from the more

complete model and computing

This is an F on [(f 2 r), (N 2 f 2 1)] 5 4 and 121 df. The critical value is

, so we will not reject the null hypothesis of homogeneity of regression.

We will conclude that we have no reason to doubt that the regression lines relating Errors

to Distract have the same slope in the nine cells. This will allow us to adopt a much

F.05(4, 121) = 2.45

F =
MSdifference

MSresidual

=
84.70524

71.10333
= 1.19

MSresidual

MSdifference = 338.82097>4 = 84.70524.

SSregressionc, a, b, ab
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Table 16.12 Design matrix for the analysis of covariance for smoking data

C T
1

T
2

G
1

G
2

TG
11

TG
12

TG
21

TG
22

cTG
11

cTG
12

cTG
21

cTG
22

107 1 0 1 0 1 0 0 0 107 0 0 0 9

97 1 0 1 0 1 0 0 0 97 0 0 0 10

101 1 0 0 1 0 1 0 0 0 101 0 0 12

118 1 0 0 1 0 1 0 0 0 118 0 0 16

64 1 0 21 21 21 21 0 0 264 264 0 0 8

123 1 0 21 21 21 21 0 0 2123 2123 0 0 10

126 0 1 1 0 0 0 1 0 0 0 126 0 27

143 0 1 1 0 0 0 1 0 0 0 143 0 49

113 0 1 0 1 0 0 0 1 0 0 0 113 48

X 5 Y 5

96 0 1 0 1 0 0 0 1 0 0 0 96 49

108 0 1 21 21 0 0 21 21 0 0 2108 2108 34

132 0 1 21 21 0 0 21 21 0 0 2132 2132 47

110 21 21 1 0 21 0 1 0 2110 0 2110 0 15

116 21 21 1 0 21 0 1 0 2116 0 2116 0 13

93 21 21 0 1 0 21 0 21 0 293 0 293 7

102 21 21 0 1 0 21 0 21 0 2102 0 2102 11

130 21 21 21 21 1 1 1 1 130 130 130 130 3

114 21 21 21 21 1 1 1 1 114 114 114 114 3
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Table 16.13 Regression results for various models for data in Table 16.11

Model SS
regression

MS
residual

R2

C, T, G, TG 36,389.60175 75.53859 0.8027

C, T, G 34,763.09104 0.7669

C, G, TG 12,519.11654 0.2762

C, T, TG 35,826.34433 0.7903

T, G, TG 31,744.72593 0.7003

simpler full model against which to compare subsequent reduced models. Our revised full

model is

or, in more traditional analysis of variance terms,

The results of the several multiple regression solutions needed for the analysis of co-

variance are shown in Table 16.13. By calculating and testing the differences between full

and reduced models, you will be able to compute the complete analysis of covariance.

Exhibit 16.5 contains the results of an SPSS analysis of these data. You should com-

pare your results with the results in that exhibit.

For purposes of comparison I have presented the analysis of variance from Exhibit 13.1.

This is the analysis on the same data, but without the covariate.

Notice that in this analysis we have a significant effect due to Task, which is uninter-

esting because the tasks were quite different and we would expect that some tasks would

lead to more errors than others. We also have a Task 3 Group interaction, which was what

we were seeking because it tells us that smoking makes a difference in certain kinds of sit-

uations (which require a lot of cognitive processing) but not in others. Notice that we did

not have an overall effect due to Group. Notice also that our was 107.834, whereas

in the analysis of covariance it was 71.539.

When we look at our analysis of covariance, one of the first things we see is that 

(71.539) is about one-third smaller than it was in the analysis of variance. This is due to the

fact that the covariate (Distract) was able to explain much of the variability in Errors that

had been left unexplained in the analysis of variance.

In Exhibit 16.5 we see that we have a significant effect for Groups. This is in part a

function of the smaller error term, and in part a function of adjustments of group means

because of small differences in mean Distract scores across groups. Unless we are willing

to assume that smokers in general are more distractable (and perhaps they are), then it is

MSerror

MSerror

Source df SS MS F

Task 2 28,661.526 14,330.763 132.895*

Group 2 354.548 177.274 1.644

Task 3 Group 4 2728.652 682.213 6.326*

Error 126 13,587.084 107.834

Total 134 45,331.810

* p , 0.05

Yijk = m 1 Ck 1 ai 1 bj 1 abij 1 ´ijk

YN = b0 1b1C 1b2T1 1b3T2 1b4G1 1b5G2 1 b6TG11 1 b7TG12 1 b8TG21 1b9TG22
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Type III
Sum of

Squares

36389.602b

892.395

4644.876

23870.485

563.257

1626.511

8942.324

90341.000

45331.926

Source

Corrected Model

Intercept

DISTRACT

TASK

SMKGRP

TASK * SMKGRP

Error

Total

Corrected Total

df

9

1

1

2

2

4

125

135

134

Mean
Square

4043.289

892.395

4644.876

11935.243

281.629

406.628

71.539

F

56.519

12.474

64.928

166.836

3.937

5.684

Sig.

.000

.001

.000

.000

.022

.000

Eta
Squared

.803

.091

.342

.727

.059

.154

Noncent.
Parameter

508.671

12.474

64.928

333.673

7.873

22.736

Observed
Powera

1.000

.939

1.000

1.000

.699

.977

Tests of Between-Subjects Effects
Dependent Variable: ERRORS

a Computed using alpha 5 .05
b R Squared 5 .803 (Adjusted R Squared 5 .789)

1. Task * Smoking Group

Dependent Variable: ERRORS

Task

Patrecog

Cognitive

Driving

Smoking Group

NonSmokers

Delayed smokers

Active Smokers

NonSmokers

Delayed smokers

Active Smokers

NonSmokers

Delayed smokers

Active Smokers

Mean

9.805a

9.732a

9.558a

27.770a

40.436a

43.785a

8.505a

8.921a

5.820a

Std. Error

2.184

2.184

2.184

2.188

2.185

2.233

2.191

2.200

2.226

Lower
Bound

5.482

5.410

5.235

23.440

36.112

39.366

4.169

4.568

1.414

Upper
Bound

14.128

14.054

13.882

32.101

44.760

48.204

12.842

13.275

10.226

95% Confidence Interval

a Evaluated at covariates appeared in the model: DISTRACT 5 112.52.

2. Task

Dependent Variable: ERRORS

Task

Patrecog

Cognitive

Driving

Mean

9.699a

37.330a

7.749a

Std. Error

1.261

1.274

1.273

Lower
Bound

7.203

34.810

5.230

Upper
Bound

12.194

39.851

10.268

95% Confidence
Interval

a Evaluated at covariates appeared in the model:
DISTRACT 5 112.52.

Exhibit 16.5 SPSS analysis of covariance of Spilich data

(continues)



appropriate to adjust for random differences among groups. (An analysis of variance on the

covariate [Distract] showed no significant effects.)

Notice that Exhibit 16.5 presents partial eta-squared for the effects. These effect-size

measures can be calculated as the difference between two values, divided by ( ).

For example, the model without the dummy variables for Task has an 5 .2762. This leaves

1 2 .2762 5 72.38% of the variation unexplained. When we add in the Task variables (going

to the full model) we have 5 .8027. This is an increase of .8027 2 .2762 5 .5265, which

accounts for .5265/.7238 5 72.74% of the variation that had been left unexplained. This is

the value given in Exhibit 16.5 for Task. Similar calculations will reproduce the other values.

Adjusted Means

The method of obtaining adjusted means is simply an extension of the method employed in

the Conti and Musty example. We want to know what the cell means would have been if

the treatment combinations had not differed on the covariate.

From the full model we have

which equals

Since we want to know what the Y means would be if the treatments did not differ on the

covariate, we will set for all treatments.

For all observations in the appropriate row of the design matrix, with

, is

1 0 1 0 1 0 0 0 112.518

Applying the regression coefficients and taking the intercept into account, we have

= 9.804

2 1.404(0) 2 6.661(0) 1 1.668(0) 1 0.292512(112 .518)

Y11 = 214.654 2 8.561(1) 1 19.071(0) 2 2.900(1) 1 1.437(0) 1 3.006(1)

C replaced by C
Cell11

C = C = 112.518

2 6.661TG21 1 1.668TG22 1 0.292512Distract

YN = 214.654 2 8.561T1 1 19.071T2 22.900G1 1 1.437G2 13.006TG11 21.404TG12

YN = b0 1b1C 1b2T1 1b3T2 1b4G1 1b5G2 1 b6TG11 1 b7TG12 1 b8TG21 1b9TG22

R2

R2
1 2 R2

reducedR2

618 Chapter 16 Analyses of Variance and Covariance as General Linear Models

3. Smoking Group

Dependent Variable: ERRORS

Smoking Group

NonSmokers

Delayed smokers

Active Smokers

Mean

15.360a

19.696a

19.721a

Std. Error

1.264

1.266

1.261

Lower
Bound

12.859

17.191

17.225

Upper
Bound

17.862

22.202

22.217

95% Confidence
Interval

a Evaluated at covariates appeared in the model: DISTRACT 5 112.52.

Exhibit 16.5 (continued)



Applying this procedure to all cells we obtain the following adjusted cell means

These are the cell means given in Exhibit 16.5, and the row and column means can be

found as the mean of the cells in that row or column.

Testing Adjusted Means

The adjusted means are plotted in Figure 16.5. They illustrate the interaction and also the

meaning that may be attached to the main effects. Further analyses of these data are proba-

bly unnecessary because differences due to smoking seemed to be confined to the condition

that requires high levels of cognitive processing. However, for the sake of completeness we

will assume that you wish to make a comparison between the mean of the NonSmoking

group and the combined means of the Active and Delayed groups. In this case you want

to compare with and combined. This comparison requires some modification of

the error term, to account for differences in the covariate. This adjustment is given by

Winer (1971) as

where and represent the sum of squares attributable to Groups and Error

(respectively) in an analysis of variance on the covariate, and is the error term from

the overall analysis of covariance.

MS¿error

SSe(c)SSg(c)

MS–error = MS¿error 
C
1 1

SSg(c)

g 2 1

SSe(c)

S
X¿3.X¿2.X¿1.

Pattern Rec Cognitive Driving Row Means

NonSmokers 9.805 27.770 8.505 15.360

Delayed 9.732 40.436 8.921 19.696

Active 9.558 43.785 5.820 19.721

Column Means 9.699 37.330 7.749 18.259
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Figure 16.5 Adjusted cell means as a function of Group and Task



Thus,

To compare the adjusted means, we have

Since , we can reject and conclude that the Active Smoking group

performs more poorly (overall) than the average of the other two groups.

Another experimenter might be interested in examining the effects of Group only for

the Cognitive task. If we want to examine these simple effects, we will again need to mod-

ify our error term in some way. This is necessary because we will be looking at Groups for

only some of the data, and the covariate mean of the Cognitive task subjects may differ

from the covariate mean for all subjects. Probably the safest route here would be to run a

separate analysis of covariance for only those subjects performing the cognitive task.

Although this method has the disadvantage of costing us degrees of freedom for error, it

has the advantage of simplicity and eliminates the need to make discomforting assumptions

in the adjustment of our error term.

To complete our discussion of the tests we might wish to conduct, consider the experi-

menter who wants to compare two particular adjusted cell means (whether or not they are in

the same row or column). The adjusted error term for this comparison was given by Winer

(1971) as

where is the sum of squares from an analysis of variance on the covariate.

You may wonder why we continually worry about adjusting the error term in making

comparisons. The general nature of the answer is apparent when you recall what the confi-

dence limits around the regression line looked like in Chapter 9. (They were curved—in

fact they were elliptical.) For X 5 , we were relatively confident about . However, as X
departed more and more from we became less and less confident of our prediction, and

consequently the confidence limits widened. If you now go back to Figure 16.3, you will

see that the problem applies directly to the case of adjusted means. In that figure, is a

long way from , and we would probably have relatively little confidence that we have

estimated it correctly. On the other hand, we can probably have a reasonable degree of

confidence in our estimate of . It is just this type of consideration that causes us con-

stantly to adjust our error term.

The example we have used points up an important feature of the analysis of covariance—

the fact that the covariate is just another variable that happens to receive priority. In designing

the study, we were concerned primarily with evaluating the effects of smoking. However, we

had two variables that we considered it necessary to control: type of task and distractibility.

The first one (Task) we controlled by incorporating it into our design as an independent

Y¿2

Y1

Y¿1

X
YNX

SScells(c)

MS–error =
2MS–error

n
C1 1

SScells(c)

tg 2 1

SSe(c)

S

H0F.05(1,125) = 3.92

F(1,125) =
nc2

ga2
i MS–error

=
45(28.697)2

6(72.019)
= 7.88

c = 2(15.360) 2 1(19.696) 2 1(19.721) = 28.697

MS–error = 71.538C1 1

730.015

2 2 1

54285.867
S = 72.019

SSe(c) = 54285.867

SSg(c) = 730.015

MS¿error = 71.538
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variable. The second (Distractibility) we controlled by measuring it and treating it as a

covariate. In many respects, these are two ways of treating the same problem. Although there

are obvious differences in the way these two variables are treated, there are also important

similarities. In obtaining , we are actually partialling out both task and covariate. It is

true that in the case of equal ns task is orthogonal to group, leaving nothing to partial out; but

that is merely a technicality. In the case of unequal ns, the partialling out of both variables is

a very real procedure. Although it is important not to lose sight of the fact that the analysis of

covariance is a unique technique with its own additional assumptions, it is equally important

to keep in mind that a covariate is just another variable.

16.10 Using Multiple Covariates

We have been concerned with the use of a single covariate. There is no theoretical or prac-

tical reason, however, why we must restrict ourselves in this way. For example, a study on

the effectiveness of several different teaching methods might wish to treat IQ, Age, and

Type of School (progressive or conservative) as covariates. When viewed from the point of

view of multiple regression, this presents no particular problem, whereas when viewed

within the traditional framework of the analysis of variance, the computational complexi-

ties for only a very few covariates would be overwhelming.

In the expression , b is really only a shorthand way of representing a set of pre-

dictors (e.g., ). By the same token, c can be used to stand for a set of covariates

( ). Thus, in terms of the more specific notation, might really represent

When seen in this light, the use of multiple covariates is no different from that of single

covariates. If C represents the covariates IQ, Age, and School, then remains

It should be apparent from the previous example that no restriction is placed on the

nature of the covariate, other than that it is assumed to be linearly related to the criterion.

It can be a continuous variable, as in the case of IQ and Age, or a discrete variable, as in

the dichotomous classification of Schools as progressive and conservative.

A word of warning: Just because it is possible (and in fact easy) to use multiple covari-

ates is not a good reason for adopting this procedure. Interpreting an analysis of covariance

may be difficult enough (if not impossible) with only one covariate. The problems increase

rapidly with the addition of multiple covariates. Thus, it might be easy to say, in evaluating

several methods of teaching English, that such and such a method is better if groups are

equated for age, IQ, type of school, parents’ occupation, and so on. But the experimenter

must then ask himself if such equated groups actually exist in the population. If they do

not, he has just answered a question about what would happen in groups that could never

exist, and it is unlikely that he will receive much applause for his efforts. Moreover, even if

it is possible to form such groups, will they behave in the expected manner? The very fact

that the students are now in homogeneous classes may itself have an effect on the dependent

variable that could not have been predicted.

16.11 Alternative Experimental Designs

The analysis of covariance is not the only way to handle data in which a covariate is im-

portant. Two common alternative procedures are also available: stratification (matched

samples) and difference scores.

SSAB(adj) = SSregression(IQ, Age, School, A1,B1, B2,AB11,AB12) 2 SSregression(IQ, Age, School, A1, B1,B2)

SSAB(adj)

R2
0.IQ, Age, School, A1, B1,B2,AB11,AB12

R2
c,a,b,abC1,C2, . . . , Ck

B1,B2, . . . , Bb

R2
c,a,b,ab

SSgroup
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Key Terms

If we have available measures on the covariate and are free to assign subjects to treat-

ment groups, then we can form subsets of subjects who are homogeneous with respect to

the covariate, and then assign one member of each subset to a different treatment group. In

the analysis of variance, we can then pull out an effect due to blocks (subsets) from the

error term.

The use of matched samples and the analysis of covariance are almost equally effective

when the regression of Y on C is linear. If r equals the correlation in the population

between Y and C, and represents the error variance in a straight analysis of variance on

Y, then the use of matched samples reduces the error variance to

The reduction due to the analysis of covariance in this situation is given by

where is the degrees of freedom for the error variance. Obviously, for any reasonable

value of , the two procedures are almost equally effective, assuming linearity of regres-

sion. If the relationship between Y and C is not linear, however, matching will be more

effective than covariance analysis.

A second alternative to the analysis of covariance concerns the use of difference

scores. If the covariate (C ) represents a test score before the treatment is administered and

Y a score on the same test after the administration of the treatment, the variable C 2 Y is

sometimes used as the dependent variable in an analysis of variance to control for initial

differences on C. Obviously, this approach will work only if C and Y are comparable meas-

ures. We could hardly justify subtracting a driving test score (Y ) from an IQ score (C ). If

the relationship between C and Y is linear and if 5 1.00, which is rarely true, the analy-

sis of difference scores and the analysis of covariance will give the same estimates of the

treatment effects. When is not equal to 1, the two methods will produce different re-

sults, and in this case it is difficult to justify the use of difference scores. In fact, for the

Conti and Musty (1984) data on THC, if we took the difference between the Pre and Post

scores as our dependent variable, the results would be decidedly altered ( ).

In this case, the analysis of covariance was clearly a more powerful procedure. Exercise

16.24 at the end of the chapter illustrates this view of the analysis of covariance. For a more

complete treatment of this entire problem, see Harris (1963) and Huitema (1980, 2005).

The thing to keep in mind here is that a slope of one on the relationship between pre-

and post-test scores implies that the intervention led to a similar increase in scores, regard-

less of where people started. But it might be that the change is proportional to where

people started out. Someone who is very poor in math may have much more to gain by an

intervention program than someone who was doing well, and thus the gain score will be

directly (and negatively) related to the pretest score. In the example from Conti and Musty

(1984), more active animals were likely to change more than less active animals, which

may be why they took as their dependent variable the posttest score as a percentage of the

pretest score, rather than just the difference between their two scores.

F4,42 = 0.197

bCY

bCY

fe

fe

s2
e(1 2 r2)

( fe)

( fe 2 1)

s2
e(1 2 r2)

s2
e
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General linear model (16.1)

Design matrix (16.1)

Method III (16.4)

Method II (16.4)

Method I (16.4)

Hierarchical sums of squares (16.4)

Sequential sums of squares (16.4)

Analysis of covariance (16.5)

Covariate (16.5)

difference scores
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Exercises

16.1 The following hypothetical data were obtained from poor, average, and good readers on the

number of eye fixations per line of text.

Poor Average Good

10 5 3

7 8 5

8 4 2

11 6 3

5 5 4

a. Construct the design matrix for these data.

b. Use any standard regression program to calculate a least-squares analysis of variance.

c. Run the analysis of variance in the traditional manner and compare your answers.

16.2 For the data in Exercise 16.1,

a. Calculate treatment effects and show that the regression model reproduces these treat-

ment effects.

b. Demonstrate that for the regression model is equal to for the analysis of variance.

16.3 Taking the data from Exercise 16.1, add the scores 5 and 8 to the Average group and the

scores 2, 3, 3, and 5 to the Good group. Rerun the analysis for Exercise 16.1 using the more

complete data.

16.4 Rerun the analysis of Exercise 16.2 for the amended data from Exercise 16.3.

16.5 A psychologist was concerned with the relationship between Gender, Socioeconomic Status

(SES), and perceived Locus of Control. She took eight adults (age 5 25 to 30 years) in each

Gender–SES combination and administered a scale dealing with Locus of Control (a high

score indicates that the individual feels in control of his or her everyday life).

SES

Low Average High

Male 10 16 18

12 12 14

8 19 17

14 17 13

10 15 19

16 11 15

15 14 22

13 10 20

Female 8 14 12

10 10 18

7 13 14

9 9 21

12 17 19

5 15 17

8 12 13

7 8 16

h2R2

Adjusted Y means (16.5)

Homogeneity of regression (16.5)

(16.5)

True-score analysis of covariance (16.7)

Nonequivalent groups design (16.7)

Stratification (16.11)

Difference scores (16.11)

MS¿error



a. Run a traditional analysis of variance on these data.

b. The following sums of squares have been computed on the data using the appropriate

design matrix (a 5 Gender, b 5 SES)

Compute the summary table for the analysis of variance using these sums of squares.

16.6 Using the SES portion of the design matrix as our predictor, we find that

.

a. Why is this value the same as in the answer to Exercise 16.5?

b. Will this be the case in all analyses of variance?

16.7 When we take the data in Exercise 16.5 and delete the last two low-SES males, the last three

average-SES males, and the last two high-SES females, we obtain the following sums of

squares:

Compute the analysis of variance using these sums of squares.

16.8 Using only the SES predictors for the data in Exercise 16.7, we find .

Why is this not the same as in Exercise 16.7?

16.9 For the data in Exercise 16.5, the complete model is

a. Show that this model reproduces the treatment and interaction effects as calculated by

the method shown in Table 16.2.

16.10 For the data in Exercise 16.7, the complete model is

a. Show that this model reproduces the treatment and interaction effects as calculated in

Table 16.3.

16.11 Using the following data, demonstrate that Method I (the method advocated in this chapter)

really deals with unweighted means.

B
1

B
2

5 11

3 9

A
1

14

6

11

9

10 6

11 2

A
2

12

7

16.12 Draw a Venn diagram representing the sums of squares in Exercise 16.5.

16.13 Draw a Venn diagram representing the sums of squares in Exercise 16.7.

1.2306A1 2 3.7167B1 2 0.3500B2 1 0.4778AB11 2 0.5444AB12 1 13.6750

1.1667A1 2 3.1667B1 2 0.1667B2 1 0.8333AB11 2 0.1667AB12 1 13.4167

SSSES

SSreg(b) = 379.3325

SSreg(ab) = 15.8132

SSreg(b) = 379.3325

SSreg(a) = 95.4511SSreg(a,ab) = 112.3392

SSreg(b,ab) = 398.7135SSreg(a,b) = 437.6338

SSreg(a,b,ab) = 458.7285SSY = 750.1951

SSSES

SSreg(b) = 338.6667

SSreg(a,ab) = 84.000

SSreg(b,ab) = 357.333SSreg(a,b) = 404.0000

SSreg(a,b,ab) = 422.6667SSY = 777.6667
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16.14 If you have access to SAS, use that program to analyze the data in Exercise 16.7. 

Add /SS1 SS2 SS3 SS4 to the end of your Model command and show that

a. Type I sums of squares adjust each term in the model only for those that come earlier in

the model statement.

b. Type II sums of squares adjust main effects only for other main effect variables, while

adjusting the interaction for each of the main effects.

c. Type III sums of squares adjust each term for all other terms in the model.

d. Type IV sums of squares in this case are equal to the Type II sums of squares.

16.15 In studying the energy consumption of families, we have broken them into three groups.

Group 1 consists of those who have enrolled in a time-of-day electrical-rate system (the

charge per kilowatt-hour of electricity is higher during peak demand times of the day). Group 2

is made up of those who inquired into such a system but did not use it, and Group 3 repre-

sents those who have shown no interest in the system. We record the amount of the electrical

bill per month for each household as our dependent variable (Y). As a covariate, we take the

electrical bill for that household for the same month last year (C). The data follow:

Group 1 Group 2 Group 3

Y C Y C Y C

58 75 60 70 75 80

25 40 30 25 60 55

50 68 55 65 70 73

40 62 50 50 65 61

55 67 45 55 55 65 

a. Set up the design matrix.

b. Run the analysis of covariance.

16.16 To refine the experiment described in Exercise 16.15, a psychologist added an additional set

of households to each group. This group had a special meter installed to show them exactly

how fast their electric bill was increasing. (The amount-to-date was displayed on the meter.)

The data follow; the nonmetered data are the same as those in Exercise 16.15.

Y C Y C Y C

Nonmetered 58 75 60 70 75 80 

25 40 30 25 60 55

50 68 55 65 70 73

40 62 50 50 65 61

55 67 45 55 55 65

Metered 25 42 40 55 55 56

38 64 47 52 62 74

46 70 56 68 57 60

50 67 28 30 50 68

55 75 55 72 70 76

a. Run the analysis of covariance on these data—after first checking the assumption of

homogeneity of regression.

b. Draw the appropriate conclusions.

16.17 Compute the adjusted means for the data in Exercise 16.16.
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16.18 Compute the energy savings per household for the data in Exercise 16.16 by subtracting this

year’s bill from last year’s bill. Then run an analysis of variance on the savings scores and

compare that to the analysis of covariance.

16.19 Klemchuk, Bond, and Howell (1990) examined role-taking in children. Children were

administered a battery of role-taking tasks. They were classified as being in daycare or not

being in daycare, and as ages 2–3 or ages 4–5. The hypothesis was that children with day-

care experience would perform better on role-taking tasks. The data are available at the

book’s Web site as Ex16-19.dat. Run the appropriate analysis.

Computer Exercises

16.20 Use the data set named in Epinuneq.dat on the instructor’s disk to examine the results of the

study by Introini-Collison and McGaugh (1986) described prior to Exercises 11.28–11.31.

Using any statistical package, run a two-way analysis of variance with unequal sample

sizes. What would you conclude from this analysis?

16.21 Use the data from Mireault (1990) in the file named Mireault.dat referred to in Exercise 7.6

to run a two-way analysis of variance on the Global Symptom Index T score (GSIT) using

Gender and Group as independent variables. Plot out the cell means and interpret the results.

16.22 Using the same data as in Exercise 16.21, run an analysis of covariance instead, using year

in college (YearColl) as the covariate.

a. Why would we want to consider YearColl as a covariate?

b. How would you interpret the results?

16.23 In Exercise 16.22 we used YearColl as the covariate. Run an analysis of variance on

YearColl, using Gender and Group as the independent variables. What does this tell us that

is relevant to the preceding analysis of covariance?

16.24 Everitt reported data on a study of three treatments for anorexia in young girls. One treat-

ment was cognitive behavior therapy, a second was a control condition with no therapy, and

a third was a family therapy condition. These are the same data we examined in Chapter 14.

The data follow.
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Group Pretest Posttest Gain

1 80.5 82.2 1.7

1 84.9 85.6 0.7

1 81.5 81.4 20.1

1 82.6 81.9 20.7

1 79.9 76.4 23.5

1 88.7 103.6 14.9

1 94.9 98.4 3.5

1 76.3 93.4 17.1

1 81.0 73.4 27.6

1 80.5 82.1 1.6

1 85 96.7 11.7

1 89.2 95.3 6.1

1 81.3 82.4 1.1

1 76.5 72.5 24.0

1 70.0 90.9 20.9

1 80.4 71.3 29.1

1 83.3 85.4 2.1

1 83.0 81.6 21.4

1 87.7 89.1 1.4

1 84.2 83.9 20.3

1 86.4 82.7 23.7

Group Pretest Posttest Gain

1 76.5 75.7 20.8

1 80.2 82.6 2.4

1 87.8 100.4 12.6

1 83.3 85.2 1.9

1 79.7 83.6 3.9

1 84.5 84.6 0.1

1 80.8 96.2 15.4

1 87.4 86.7 20.7

2 80.7 80.2 20.5

2 89.4 80.1 29.3

2 91.8 86.4 25.4

2 74.0 86.3 12.3

2 78.1 76.1 22.0

2 88.3 78.1 210.2

2 87.3 75.1 212.2

2 75.1 86.7 11.6

2 80.6 73.5 27.1

2 78.4 84.6 6.2

2 77.6 77.4 20.2

2 88.7 79.5 29.2

2 81.3 89.6 8.3



a. Run an analysis of variance on group differences in Gain scores. (You may have already

done this in Chapter 14.)

b. Now run the analysis on Posttest scores, ignoring Pretest scores.

c. Finally, run the analysis on Posttest scores using Pretest as the covariate.

d. How do these three answers relate to one another, and what do they show about the dif-

ferences and similarities between analysis of covariance and the treatment of gain (or

change) scores?

e. Calculate h2 on Groups for the analysis of covariance.

f. Calculate d for the contrast on the two therapy groups (ignoring the control group)

using adjusted means.

16.25 Write up the results of Everitt’s experiment, including effect sizes.

Discussion Questions

16.26 I initially thought of creating an analysis of variance example from the example in Chapter 14,

Section 14.7. I could have used Sex and Group as the independent variables, posttest scores

as the dependent variable, and pretest scores as the covariate (ignoring FU6 and FU12 en-

tirely). This would have made a very bad example for the analysis of covariance. Why

would that be? Is there any way in which we might be able to salvage the study as an analy-

sis of covariance example?

16.27 I said that in any experiment where we have pretest and posttest scores we could either look

at the difference scores (compared across groups) or use the pretest as a covariate. These

two analyses will be equivalent only when the slope relating posttest to pretest scores is

1.00. How likely do you think it is that such a condition would be met (or at least approxi-

mated)? What does b 5 1.00 actually imply?

16.28 Make up or find an example with respect to Exercise 16.25 where the slope is not nearly 1.0.

Analyze it using both the analysis of covariance and a t test on difference scores. Do either of

these analyses make sense?
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Group Pretest Posttest Gain

2 78.1 81.4 3.3

2 70.5 81.8 11.3

2 77.3 77.3 0.0

2 85.2 84.2 21.0

2 86.0 75.4 210.6

2 84.1 79.5 24.6

2 79.7 73.0 26.7

2 85.5 88.3 2.8

2 84.4 84.7 0.3

2 79.6 81.4 1.8

2 77.5 81.2 3.7

2 72.3 88.2 15.9

2 89.0 78.8 210.2

3 83.8 95.2 11.4

3 83.3 94.3 11.0

Group Pretest Posttest Gain

3 86.0 91.5 5.5

3 82.5 91.9 9.4

3 86.7 100.3 13.6

3 79.6 76.7 22.9

3 76.9 76.8 20.1

3 94.2 101.6 7.4

3 73.4 94.9 21.5

3 80.5 75.2 25.3

3 81.6 77.8 23.8

3 82.1 95.5 13.4

3 77.6 90.7 13.1

3 83.5 92.5 9.0

3 89.9 93.8 3.9

3 86.0 91.7 5.7

3 87.3 98.0 10.7
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CHAPTER 17

Log-Linear Analysis

Object ives

To present log-linear models as ways of exploring discrete data from

experiments having multiple independent variables.

Contents

17.1 Two-Way Contingency Tables

17.2 Model Specification

17.3 Testing Models

17.4 Odds and Odds Ratios

17.5 Treatment Effects (Lambda)

17.6 Three-Way Tables

17.7 Deriving Models

17.8 Treatment Effects

629



MOST OF THIS BOOK has been concerned with variables that are measured on a more or less

continuous scale and for which the mean, or a related sample statistic, would be a typical

measure of interest. However, many variables we deal with are measured categorically,

such as the classic study by Geller, Witmer, and Orebaugh (1976), discussed in Chapter 6,

in which a supermarket flier on “daily specials” was categorized both in terms of whether

it contained a message about littering and where it was found at the end of the day (trash

can, litter, removed from store). In that particular example we were able to show that where

a notice was left depended on whether it contained a message about littering. In other

words, the two variables are not independent—they interact.

Experimenters faced with multiple categorical variables have often dealt with them

two at a time, creating two-way contingency tables and computing the standard Pearson

chi-square test statistic to check for independence. Recently, however, major efforts to de-

velop procedures that deal with multiple categorical variables simultaneously have been

undertaken. (I say “recently” because even though the important work in this field started

with Leo Goodman at the University of Chicago in the 1960s, it generally takes at least 20

to 30 years for statistical procedures to work their way from initial development in the sta-

tistical journals, to occasional appearance in the experimental literature, to widespread ac-

ceptance. Log-linear models are just beginning to make it to the latter stage.)

The presentation of log-linear models presents several challenges. In the first place

such models are much easier to understand when presented as simple contingency tables

with two dimensions (variables). However, the two-dimensional case is not handled appre-

ciably better by log-linear models than by the standard approach, and the reader can easily

be left wondering “So what?” Log-linear models come into their own with three-, four-, or

higher-dimensional cases, but the explanation can become unpleasantly tortuous and

opaque. For this reason we will start with the two-dimensional case, lay out most of the

reasoning, and then move on to higher dimensions.

A second problem with log-linear models is that each author views them from a differ-

ent perspective. If you skim several of the excellent books on such models, you might

almost think that they were talking about different topics. Some authors are interested pri-

marily in hypothesis testing, whereas others are interested primarily in model building.

Some concentrate on examining individual effects, whereas others mention individual

effects only in passing. Some concentrate on models in which all of the variables are

treated as independent variables, whereas others focus on cases in which one or more vari-

ables are thought of as dependent variables and the others as independent variables. This

chapter will try to steer a middle course, focusing on those aspects of the models that apply

most directly to psychology and related disciplines. I recommend that the first time through

you concentrate on the hypothesis testing aspects of log-linear models. Then go back and

pay more serious attention to estimating treatment effects.

A number of excellent references on this subject are available. Some of the clearest are

Agresti (1984, 1990—especially the former), Green (1988), Kennedy (1983), Marascuilo

and Serlin (1990), and Wickens (1989), which is very complete and readable. An excellent

presentation of the applications of standard computer software is given in Tabachnick and

Fidell (2007). I have borrowed heavily from all of these sources.

My motivation in writing this chapter is a little different from the motivation for other

chapters. There is a great deal of technical information here that I would not expect my stu-

dents to grapple with until they had a particular need for the material. I think that this

chapter is most likely to be read by someone who has found herself with a set of data on

categorical variables and knows (or has been told) that log-linear models might be the way

to go. This chapter was written primarily from the point of view of helping that person

wade through complex and confusing material on the topic. I try to explain what those

terms are all about, and why you would care. I also try to explain what various sections of
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the computer printout mean. (I use SPSS GENLOG as my example program, but if you

have a different program, just apply it to the example data and note the parallels in the

printout. But don’t be put off if your answers are slightly different. Different programs use

different algorithms, which come to slightly different answers. That’s not nice, but it is the

way things are.)

Symmetric and Asymmetric Models

In general, log-linear analysis treats independent and dependent variables alike, ignoring

the distinction between them. We as experimenters, however, build our interpretation of the

data in part on whether a variable is seen, by us, as independent or dependent.

To take a simple example, suppose that we have developed a scale of myths related to

rape (“If a woman is raped she was probably partly responsible”) and myths related to

spouse abuse (“An abused wife is always free to leave her abuser”). Suppose further that

our subjects have responded Agree, Neutral, or Disagree with the terms on both scales. If

we want to look at the relation between the rape myths and spouse abuse myths, neither

variable would be dependent relative to the other. This would remain so if we added yet an-

other dimension and categorized subjects in terms of other sorts of beliefs (e.g., just-world

beliefs). Relations of this sort, in which all the variables are treated alike as dependent vari-

ables, are classed as symmetric relationships.

Now suppose that we take another variable (Gender) and look to see whether there are

differences in rape myths between males and females. Here most people would see Gender

as an independent variable and Rape myth as a dependent variable. We would account for

Rape myth as a function of Gender, but would be unlikely to account for Gender on the

basis of Rape myth. This is an asymmetric relationship.

Log-linear models apply to both symmetric and asymmetric models. The difference comes

more in the interpretation than in the mathematics. When you have an asymmetric model, you

will focus more on the dependent variable and its relations with independent variables. When

the model is symmetric, you will spread your interest more widely. In addition, with asymmet-

ric models you may choose to keep certain nonsignificant variables in the model on the basis

of their role in the study. With symmetric models we are more even-handed.

17.1 Two-Way Contingency Tables

We will begin with the simplest example of a 2 3 2 contingency table. Although log-linear

analysis does not have a great deal more to offer than the standard Pearson chi-square ap-

proach in this situation, it will allow us to examine a number of important concepts in a

simple setting. Agresti (2002) suggests that with a single categorical response (dependent)

variable, it is simpler to use logistic regression. As we move to more complex situations we

will leave more and more of the actual calculations to computer software, because such

computations can become extremely cumbersome.

As an example we will use a study by Pugh (1983) on the “blaming-the-victim” issue

in prosecutions for rape. Pugh’s paper is an excellent example of how to use log-linear

analysis to establish a statistical model to explain experimental results. But we will, at first,

simplify the underlying experiment to create an example that is more useful for our pur-

poses. The simplification involves collapsing over, and thereby ignoring, some experimen-

tal variables. (In general, we would not collapse across variables unless we were confident

that they did not play a role or we were not interested in any role they did play.)

Pugh designed a study to examine what many have seen to be the disposition of jurors

to base their judgments of defendants on the alleged behavior of the victim. Defense attorneys
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often adopt a strategy suggesting that the victim is in some way responsible for the crime. By

attacking the victim’s past behavior, the victim is put on trial instead of the defendant. Pugh’s

study varied the gender of the juror, the level of stigma attached to the victim, and the degree

to which the juror could assign fault to the victim, and then looked at the degree to which the

defendants were judged guilty or not guilty. For our first example we will collapse over two of

those variables and look at the relationship between the degree to which the victim was be-

lieved to be “at fault” and the verdict. These data are shown in Table 17.1. (Expected frequen-

cies for the standard test of the independence of these two variables are shown in parentheses.)

If we ran the standard Pearson chi-square test on these data, we would find, with a mi-

nor change in notation,

which is significant at a 5 .05. The change in notation, equating with the observed fre-

quency in and with the expected frequency in that cell, was instituted to bring the

notation in line with the standard notation used with log-linear analysis.

If we calculate the likelihood ratio (see Section 6.8) instead of the Pearson’s

chi-square, we would have

which is also approximated by the distribution on 1 degree of freedom.1 Again we

would reject the null hypothesis of independence of rows and columns. We would conclude

that in making a judgment of guilt or innocence the jurors base that judgment, in part, on

the perceived fault of the victim.

The use of the chi-square test, whether using Pearson’s statistic or the likelihood ratio sta-

tistic, focuses directly on hypothesis testing. We are asking if there is a relationship between

assignment of fault and the juror’s decision. (From this point on, all statistics will be like-
lihood ratio s unless otherwise noted.2) But we can look at these data from a different

perspective—the perspective of model building. We saw the modeling approach clearly in the

analysis of variance where we associated a two-way factorial design with the model

Xijk = m 1 ai 1 bj 1 abij 1 eijk

x2
x2

x2

= 37.3503

= 2a153 ln 
153

127.559
1 24 ln 

24

49.441
1 105 ln 

105

130.441
1 76 ln 
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50.559
b

x2 = 2a fij lna
fij

Fij
b

x2

Fijcellij

fij

x2
1 = a

(O 2 E )2

E
= a

( fij 2 Fij)
2

Fij
= 35.93
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Table 17.1 Data from Pugh (1983) collapsed across two variables

Verdict

Guilty Not Guilty Total

Low 153 24 177

(127.559) (49.441)

Fault High 105 76 181

(130.441) (50.559)

Total 258 100 358

1 In this chapter we will frequently refer to natural logarithms. These are normally abbreviated as ln or as log
e
.

We will use ln throughout.
2 If you use SAS the likelihood ratio chi-square will be labeled as the “deviance.”



In the case of the analysis of variance, we first posited this model to underlie the ob-

tained data and then used the model and its associated error term to develop tests of the

components of that model. When the data analysis was complete, we let the model stand

but made statements of the form, “There is a significant effect due to variable A and the

A 3 B interaction, but there is no significant difference due to variable B.”

In Chapter 15, Section 15.10 on stepwise multiple regression, we reversed the process.

We used the data themselves to create a model rather than using an a priori model as in the

analysis of variance. Using the backward solution, which is most relevant here, we contin-

ued to remove variables from our model so long as their removal did not produce a signifi-

cant decrement in (or until we met some similar criterion). When we were done we were

left with a model all of whose components contributed significantly to the prediction of Y.

In the case of log-linear models, we generally fall somewhere between these two

approaches. We use a model-building approach, as in the regression situation, but the re-

sultant model may, as in the analysis of variance, contain nonsignificant terms.

Consider Pugh’s data and a variety of different models that might be posited to account

for those data. I don’t remotely believe that the first few models are likely to be true, but

they are possible models, and they are models that you must understand. Moreover, they

are models that might be included in a complete analysis, if only to serve as a basis for

comparison of alternative models.

Equiprobability Model

At the simplest level, we might hypothesize that respondents distribute themselves among

the four cells at random. In others words, p(Low, Guilty) 5 p(High, Guilty) 5 p(Low, Not

Guilty) 5 p(High, Not Guilty) 5 .25. This model basically says that nothing interesting is

going on in this study and one-quarter of the subjects (.25 3 358 5 89.5) would be expected

to fall in each cell.

Using the likelihood ratio to test this model, we have

This can be evaluated as a on 4 2 1 5 3 df (we lose one degree of freedom due to

the restriction that the cell totals must sum to N ), and from Appendix we find that

. Clearly, we can reject and conclude that this model does not fit the data.

In other words, the individual cell frequencies cannot be fit by a model in which all cells

are considered equally probable. Notice that rejection of is equivalent to rejection of the

underlying model. This is an important point and comes up whenever we are trying to de-

cide on a suitable model.

Conditional Equiprobability Model

Our first model really had no variable contributing to the observed frequency (not differ-

ences due to Fault, not differences due to Verdict, and not differences due to the interaction of

those variables). A second model, however, might hold that the individual cell frequencies

H0

H0x2
.05(3) = 7.82

x2
x2

= 109.5889

= 2a153 ln 
153

89.5
1 24 ln 

24

89.5
1 105 ln 

105

89.5
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b
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Observed: 153 24 105 76

Expected: 89.5 89.5 89.5 89.5
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3 To emphasize this point assume that I wanted to look at Gender and Age in studying Empathy, and suppose that
I had 150 women and 10 men in my sample. Then Gender will almost certainly have to be in the model even if it
has absolutely nothing to do with empathy—how else would we explain the radical difference in the number of
males and females in the study?

Table 17.2 Observed and expected frequencies for the first conditional

equiprobability model

Verdict

Guilty Not Guilty Total

Low 153 24 177

(129) (50)

Fault High 105 76 181

(129) (50)

Total 258 100 358

= 37.3960

= 2a153 ln 
153

129
1 24 ln 

24

50
1 105 ln 

105

129
1 76 ln 

76

50
b

x2 = 2a fija
fij

Fij
b

represent differences due to assignment of Verdict, because noticeably more people were found

guilty than were found innocent. Notice that Verdict is likely to be an important variable not be-

cause it has any theoretical significance, but because there were more Guilty verdicts than

NonGuilty ones, and we have to take that into account.3 By this model, 258/358 5 72.1% of

the observations fall in column 1 and 27.9% fall in column 2. Beyond that, however, observa-

tions are assumed to be equally likely to fall in rows 1 and 2. In other words, the null hypothesis

states that once we have conditioned on the judgment of guilt or innocence (i.e., adjusted for

the fact that more people were judged guilty than not guilty), assignment to Fault levels is

equally probable. By this model we would have the expected frequencies (shown in parenthe-

ses) contained in Table 17.2. (The expected frequencies in this model came from assuming that

half of the column 1 total would fall in row 1 and half in row 2; similarly for column 2.)

This model has 4 2 2 5 2 degrees of freedom because we have imposed two

restrictions—the cell frequencies in each column must sum to the expected frequency

for that column. Because , we will again reject and conclude that the

model does not fit the observed data either.

A second conditional equiprobability model could be created by assuming that cell fre-

quencies are affected only by differences in levels of Fault. In this case probabilities are

equal within each Fault condition but different between them. The expected frequencies in

this case are given in Table 17.3.

This has 4 2 2 5 2 degrees of freedom for the same reason that the model in

Table 17.2 did, and again the significant shows that this model is an inadequate fit to

the data. Thus, we have so far concluded that the data cannot be explained by assuming

that observations fall in the four cells at random. Nor can they be explained by positing

differences due simply to an unequal distribution across either Verdict or Fault. More

would appear to be happening in the data. The next step would be to propose a model

involving both Verdict and Fault operating independently of one another. This is the

standard null model routinely tested by a chi-square test on a contingency table. It is so

standard that we often lose sight of the fact that it is the model we usually test (and hope

to reject).

x2
x2

H0x2
.05(2) = 5.99



Mutual Dependence Model

We are now testing a model that assumes that two factors operate jointly, but independ-
ently, to produce expected cell frequencies. If the two variables are independent, then

where RT stands for the row total, CT for the column total, GT for the grand total, and the

“dot notation” is used to show that we have collapsed across that dimension. This is the

same formula for expected frequencies that we saw in Chapter 6.

We began this chapter by testing this hypothesis of independence. The expected frequen-

cies and the likelihood ratio are given on page 632. From those calculations we found that

which is significant on 1 df. Thus, we can further conclude, and importantly so in this case,

that a model that posits an independence between Fault and Verdict also does not fit the

data. The only conclusion remaining is that the likelihood of a jury convicting a defendant

of rape depends on an interaction between Fault and Verdict. Perceived guilt is, in part, a

function of the blame that is attributed to the victim.

If we use the model that includes both Verdict and Fault, as well as their interaction,

we will have what is called a saturated model. This is a model that has as many parame-

ters (an intercept, a row effect, a column effect, and an interaction effect) as it has cells,

and it is guaranteed to fit perfectly with .

The models that we have examined are listed below in Table 17.4—for the moment you

can ignore Column two. You can see that all but the last one fail to fit the data (i.e., have a

x2 = 0

x2 = 37.3503

x2

Fij =
RT 3 CT

GT
=

fi. 3 f.j

f..
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Table 17.3 Observed and expected frequencies for the second conditional

equiprobability model

Verdict

Guilty Not Guilty Total

Low 153 24 177

(88.5) (88.5)

Fault High 105 76 181

(90.5) (90.5)

Total 258 100 358

= 109.544

= 2a153 ln 
153

88.5
1 24 ln 

24

88.5
1 105 ln 

105

90.5
1 76 ln 

76

90.5
b

x2 = 2a fija
fij

Fij
b

saturated model

Table 17.4 Five possible models for data in Table 17.1

Model Representation df p

1. Equiprobability ln(Fij) 5 109.5889 3 ,.05

2. Conditional Equiprobability ln(Fij) 5 37.3960 2 ,.05

3. Conditional Equiprobability ln(Fij) 5 109.5442 2 ,.05

4. Independence ln(Fij) 5 37.3503 1 ,.05

5. Saturated ln(Fij) 5 0.00 0 — l 1 li
V 1 l j

F 1 lij
VF

l 1 li
V 1 l j

F

l 1 lj
F

l 1 li
V

l

x2



significant ) That means that unless you allow for an interaction of the variables, you

will not be able to fit the data adequately. Thus Verdict and Fault interact.

17.2 Model Specification

The models we have been discussing can be represented algebraically as well as

descriptively. The algebraic notation can seem awkward, but it allows us to learn a

great deal more about the data. It is somewhat confusing because we start out with one

set of parameters, represented as t (tau), usually with a superscript, and then shortly

convert to the natural logarithm of t, represented as l (lambda), with superscripts.

Both of these statistics strongly resemble the grand mean (m) and treatment effects

(a, b, and ab) that we saw in the analysis of variance. (You might think that we would

be satisfied with one or the other, but in fact both have their uses.) I would urge you

to read the next two sections fairly quickly just to see where we are heading, and then

come back to it after you see how such parameter estimates are used in more complex

models.

The following gets a bit confusing at first, but it’s not really that hard. Remember in

the analysis of variance that we had models like

All that I’m going to do is derive some terms that are parallel to these. First you’ll see t.

Think of it as m. Then you’ll see and . Think of these as and . I’ll make mention

of —you can guess what that is like. And finally, I’ll take logs of all this stuff. That’s 

just so that I can add them up the same way we added m, , , and , to get an ex-

pected frequency.

In the simplest equiprobability model, all cell frequencies are explained by a single pa-

rameter t, where t is estimated by the geometric mean of the expected cell frequencies

given by the model. In other words,

(This model corresponds to the equiprobability model discussed in the previous section.)

A geometric mean is the nth root of the product of n terms, so in this case the geometric

mean of the four expected frequencies is

which is not a very exciting result.

For the first conditional equiprobable models we have to go further. We again define 

as the geometric mean of the expected cell frequencies in that model, but here those

expected frequencies are different from the equiprobability model because they take differ-

ences due to Verdict into account.

We also define (where the superscript “V” stands for “Verdict”) as the ratio of the

geometric mean of the expected frequencies for the first (Guilty) column to the geometric

mean of the expected frequencies of all the cells (the grand mean) ( ). Then

NtV
1 =

1(129)(129)

Nt
=

129

80.3119
= 1.6062

tN

Nt1
V

Nt = 14 (129)(129)(50)(50) = 80.3119

tN

14 (89.5)(89.5)(89.5)(89.5) = = 89.5

Fij = tN

abijbjai

tFV
ij

bjaitV
jtF

i

Xijk = m 1 ai 1 bj 1 abij 1 eijk

x2.
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You can think of very much the way you thought of the treatment effect ( ) in the

analysis of variance. It is the contribution of . But for the analysis of variance, 

was the amount that was added to the grand mean to obtain the column mean. Here, on

the other hand, is the amount by which we multiply to obtain the column’s expected

frequency. 5 1.6062 says that the column one expected frequency is 1.6062 times

larger than the overall mean—or 160.62% of it. For the Not Guilty column,

Then we can show that for this model

For cell 11, we would have 80.3119 3 1.6062 5 129, which has reproduced the expected

frequency that we used in Table 17.2. The other expected cell frequencies follow because

rows and columns must sum to row and column totals; we have 1 df.
We have a similar model when we consider just the Fault variable instead of just the

Verdict variable. Here we have

To go one step further, we can consider the independence model (Table 17.1), which

contained both Fault and Verdict effects but not their interaction. Here we will need

both and to account for both Verdict and Fault. Working with the expected frequen-

cies from the independence model we have:

Then, for example,

which agrees, within rounding error, with the actual expected value for the independence

model. You should verify for yourself that in the general case, for the independence model,

the expected frequency for cellij is

I have led you through the last few paragraphs to make a simple but very important point.

In the analysis of variance we wrote an additive linear model for observations in each cell as

With log-linear models of categorical data, we have seen that we can write the multi-
plicative independence model for expected cell frequencies as

Fij = NtNti
VNtj

F

Xijk = m 1 ai 1 bj 1 abij 1 eijk

Fij = NtNti
VNtj

F

F11 = Nt Nt1
V Nt1

F = 80.3069 3 1.6062 3 0.9889 = 127.557

Nt2
F =

1(130.441)(50.559)

Nt
=

81.2094

80.3069
= 1.0112

Nt1
F =

1(127.559)(49.441)

Nt
=

79.4144

80.3069
= 0.9889

Nt2
V =

1(49.441)(50.559)

Nt
=

49.9969

80.3069
= 0.6226

Nt1
V =

1(127.559)(130.441)

Nt
=

128.9920

80.3069
= 1.6062

Nt = 14 (127.559)(49.441)(130.441)(50.559) = 80.3069

tF
itV

j

Fij = NtNti
F

Fij = NtNtj
V

Nt2
V =

1(50)(50)

Nt
=

50

80.3119
= 0.6226

Ntj
V

tNNtj
V

bjcolumnj

bjNtj
V
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This model is multiplicative rather than additive and doesn’t look much like the analysis of

variance model.4 But if you recall your high school algebra, you will remember that prod-

ucts become sums when you take logs. Thus, we can convert the preceding expression to

and we have something that very closely resembles the analysis of variance model.

We can then confuse everyone a little more by substituting the symbol l (lambda) to rep-

resent the natural log of t and have

which is an additive linear expression directly analogous to the model we had for the analy-

sis of variance. This model is linear in the logs, hence the name log-linear models.

To summarize, in the analysis of variance we modeled expected cell means as the sum

of the grand mean and row and column treatment effects. In log-linear models we model

the log of expected cell frequencies as the sum of the logs of the overall geometric mean

and the row and column effects. The arithmetic is slightly different and we are modeling

different things, but the logic is the same.

Given my new notation, I can now go back and characterize the separate models by

their underlying equations. The models are numbered in the order of their presentation, and

were shown in column two of Table 17.4.

1. Equiprobability model: 

2. Conditional equiprobability model 1: 

3. Conditional equiprobability model 2: 

4. Mutual independence model: 

5. Saturated model: 

The interaction term in the saturated model is defined as what is left unex-

plained when we fit model 4 above. Thus,

This is a model in which every expected frequency is forced to be exactly equal to every

obtained frequency, and will be exactly 0.00. A saturated model always fits the data perfectly.

Whereas in the analysis of variance we usually set up the complete model and test for

interaction, the highest-order interaction in the log-linear analysis is not tested directly. The

interaction model in the R 3 C case is basically the model that we adopt if the simpler mu-

tual independence model (also called the additive model) does not fit.

17.3 Testing Models

The central issue in log-linear analysis is the issue of choosing an optimal model to fit the

data. In a normal chi-square test on a two-dimensional contingency table we just jump in,

posit what I have called the additive model, and, if we reject it, conclude that an interaction

term is necessary because the variables are not independent. I have done some of that here,

but I have shown you five possible models instead of one or two. That would certainly be

unnecessary if we were just interested in the two-variable case where we have only one

x2

lVF
ij = lnA fijB 2 l 2 lV

i 2 lF
j = lnA fijB 2 lnAFijB

AlVF
ij B

ln(Fij) = l 1 lV
i 1 lF

j 1 lVF
ij

ln(Fij) = l 1 lV
i 1 lF

j

ln(Fij) = l 1 lF
j

ln(Fij) = l 1 lV
i

ln(Fij) = l

ln(Fij) = l 1 lV
i 1 lF

j

lnAFijB = lnA NtB 1 lnA Nti
VB 1 lnA Ntj

F B
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serious alternative to the saturated model. But the approach will be very useful when we

come to more complex designs.

From Table 17.4 (on p. 635) we see that the first four models all have significant val-

ues. This means that for each of these models there is a significant difference between ob-

served and expected values; none of them fits the obtained data. From such results we must

conclude that only a model that incorporates the interaction term can account for the re-

sults. Thus, as we have previously concluded, Fault and Verdict interact and, within the

context of Pugh’s experiment, we cannot model the data without taking this interaction into

account. Because, for Pugh, Verdict is a dependent variable, we conclude that decisions

about guilt or innocence are dependent on perceptions about Fault. (This is one of the few

places in inferential statistics where we actually seek nonsignificant results.)

From the point of view of fitting models, these results suggest that we should conclude

that

But when viewed from the perspective of the analysis of variance, something is missing in

such a conclusion. In the analysis of variance we start out with (and generally retain) a

model such as this, but we also test the individual elements of the model. In other words

we asked, “Within the complete model are there significant effects due to V, to F, and to

their interaction?” That is a question we haven’t really asked here. When we tested, for ex-

ample, the model , we were asking whether such a model fit the data, but

we were not asking the equally important question, When we adjust for other effects is

there a difference attributable to Fault?

There are two ways of asking these questions using log-linear models—the easy way

and the harder way, paralleling what we did in the equal-n case of the analysis of variance

in Chapter 16. The advantage of the more complicated way is that it generalizes to the

process we will use on interactions in more complex designs.

Let’s start with the easy way because it supplies a frame of reference. If you want to

know whether there is a difference in the data attributable to Verdict (i.e., are there sig-

nificantly more decisions of Guilty than Not Guilty), why not just ask that question

directly by looking at the marginal totals? In other words, just run a one-dimensional

likelihood ratio , as shown in Table 17.5. The 5 72.1929 is a significant result on 1 df,
and we would conclude that there is a difference in the number of cases judged guilty

and not guilty.

Now let’s ask the same question about low and high levels of Fault (see Table 17.6).

This effect (0.0447) is clearly not significant—nor would Pugh have expected it to be given

x2x2

ln(Fij) = l 1 lF
j

ln(Fij) = l 1 lV
i 1 lF

j 1 lVF
ij

x2
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Table 17.5 Test on differences due to Verdict

Verdict

Guilty Not Guilty

f
ij

258 100

F
ij

179 179

= 72.1929

= 2 a258 ln 
258

179
1 100 ln 

100

179
b

x2 = 2a fij ln a
fij

Fij
b



the design of the experiment, which deliberately placed nearly equal numbers of observa-

tions in the two levels of Fault.

The interaction itself we have already tested at the beginning of the chapter. There we

found that 5 37.3503, and we concluded that Fault and Verdict were not independent.

We have run each of these tests separately. Now let’s see how we can derive them from

the log-linear models that we have already created. (In higher-order designs we can still

test the effect of single variables [what the analysis of variance labels as main effects], but

not interaction, in the way we just did. However, the model-comparison approach to be

adopted generalizes to interaction effects as well.)

We have found that the simplest model [ ] produces a 5 109.5889. (In SAS 

the likelihood ratio is denoted as “deviance.”) When we added to this model, dropped 

to 37.3960, reflecting the variation in cell frequencies attributable to Verdict. This drop

(109.5889 – 37.3960 5 72.1929) is the for Verdict, and its degrees of freedom equal

the difference between the degrees of freedom in the two models (3 2 2 5 1). This is ex-

actly the same value we obtained in Table 17.5 when we compared the marginal frequen-

cies. In other words, adjusting for yields the same result as basing our results on

the marginals.

By a similar line of reasoning, we can note that taking Fault into account and going from

to reduces from 109.5889 to 109.5442, for a decrease of

0.0447. This is the same as the marginal on Fault that we obtained in Table 17.6.

Finally, we should note that when we go from a model of to

, drops from 37.3503 to 0.00. This drop (37.3503) is

the same as the for the interaction based on marginal frequencies. This equality will

not generally hold for more complex designs unless we are looking at the highest-order

interaction.

One other feature of log-linear models should be mentioned. The minimal model

[ ] produced 5 109.5889. The individual components of the saturated model

had values of 72.1929, 0.0447, and 37.3503. These sum to 109.5889. In other words,

these likelihood ratio values are additive. This would not have been the case had we

computed the Pearson chi-square statistic instead, which is one very good reason to

concentrate on likelihood ratio .

At this point you should have an overview of parameter estimates. It would be smart to

go back to the beginning of Section 17.2 and reread that section. (I would if I were you,

and I wrote the chapter.)

x2

x2
x2

x2ln(Fij) = l

x2

x2ln(Fij) = l 1 lV
i 1 lF

j 1 lVF
ij

ln(Fij) = l 1 lV
i 1 lF

j

x2

x2ln(Fij) = l 1 lF
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Table 17.6 Test on differences due to Fault

Fault

Low High

f
ij

177 181

F
ij

179 179

= 0.0447

= 2 a177 ln 
177

179
1 181 ln 

181

179
b

x2 = 2a fij ln a
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Differences Between Log-Linear Models 
and the Analysis of Variance

Although I have frequently compared the analysis of variance and log-linear models and

pointed to the many real similarities between the two techniques, this comparison may at

times lead to confusion. The purpose behind the models is not quite the same in the two

situations. The analysis of variance models cell means, whereas log-linear analysis models

cell frequencies.

To take a simple example, assume that we have an experiment looking at the effects of

Previous artistic experience and Gender (two independent variables) on the quality of a

written Composition (the dependent variable). First suppose that Composition is measured

on a continuous scale, that Artistic experience and Gender are dichotomies, and that we

have 20 male and 40 female subjects. Note those cell sizes; they are important! Further as-

sume that Gender has absolutely nothing to do with Composition. Then in an analysis of

variance framework with Gender ( ) included, our model would be

Here we would expect the main effect of Gender to be 0.00 because we have assumed

the condition that Gender does not influence Composition. On the other hand, if in fact dif-

ferences did exist between the quality of Composition for males and females, a significant

main effect would appear. The presence or absence of an effect due to Gender relates to

whether or not male and female subjects differ on the scores on Composition.

Now assume the same experiment, again with 20 males and 40 females, but this time

record Composition scores as high, medium, and low, and include Composition as a categori-

cal variable in our log-linear model. We fit a log-linear model to these data. This time even if

there are no differences in Composition between males and females, we will still need to in-

clude Gender in our model, and its effects will be significant. The reason is quite simple. With

our log-linear model we are not trying to model mean Composition; we are trying to model

cell frequencies. We are not trying to ask whether males have better composition scores than

females. We are trying to explain why there are more scores in some cells than in others.

Those cells dealing with female subjects will have relatively larger frequencies than those

cells with male subjects (all other things equal) because there are more female subjects. Sim-

ilarly, if we had equal numbers of male and female subjects, even with huge differences in

quality of Composition between the two sexes, the effect of Gender would be 0.00.

I point this out, and will come back to it again, because it is too easy and seductive to

see Gender playing the same role in the two kinds of experiments. In fact, in asymmetric

log-linear models the main effects associated with our independent variables (and their in-

teractions with each other) are often of no interest whatsoever. They may merely reflect our

sampling plan. They need to be included to model the data properly, but they do not have a

substantive role. In such models it is the interaction of these variables that is of interest

(and that parallels main effects in the analysis of variance.) If we assume that there are gen-

der differences in composition, then the main effect of gender in our analysis of variance

becomes a Gender 3 Composition interaction in our log-linear model.

17.4 Odds and Odds Ratios

Before moving to complex designs, there are two other basic concepts that are more easily

explained with simple tables than with higher-order tables. These concepts were discussed

in Chapters 6 and 15, but deserve review.

Xijk = m 1 ai 1 bj 1 abij 1 eijk

bj

Section 17.4 Odds and Odds Ratios 641



Looking at our original data in Table 17.1, we note that in the low fault condition

153 people were found guilty and 24 were found not guilty. Thus, the conditional odds

of being judged guilty given that the victim was seen as low on Fault is 153/24 5

6.3750. (This can be read to mean that in the low fault group the odds in favor of being

found guilty are 6.3750:1.) For every person in that group who is found not guilty, 6.375

are found guilty. These are equivalent ways of saying the same thing. The conditional odds

of being found guilty given that the victim is seen as having a high degree of fault are only

105/76 5 1.3816.

If there had been no interaction between Fault and Verdict, the odds of being found

guilty would have been the same in the two Fault conditions. Therefore, the ratio
of the two odds would have been approximately 1.00. Instead, the ratio of the two con-

ditional odds, the odds ratio ( ), is 6.3750/1.3816 5 4.6142. The odds that a defen-

dant will be found guilty in the low fault condition are about 4.6 times greater than

in the high fault condition. The “blame the victim” strategy, whether fair or not, seems

to work.

An important feature of the odds ratio is that it is independent of the size of the sam-

ple, whereas is not. A second advantage is that within the context of a 2 3 2 table, a

test on the odds ratio would be equivalent to a likelihood ratio test of independence.

A third advantage of is that its magnitude will not be artificially affected by the pres-

ence of unequal marginal distributions. In other words, if we doubled the number of

cases in the high fault condition (but still held other things constant), (either Pear-

son’s or likelihood ratio) and phi would change. The odds ratio ( ), however, would

not be affected.

17.5 Treatment Effects (Lambda)

As we have already seen, log-linear models have a nice parallel with the analysis of variance,

and that parallelism extends to the treatment effects. In the analysis of variance, treatment 

effects are denoted by terms like m, , , and , whereas in log-linear models we denote

these effects by , , , and . As you know, log-linear models work with the natural logs

of frequencies rather than with the frequencies themselves.

In Section 17.3 we saw that the independence model (the model without the inter-

action term) did not fit the data from Pugh’s study ( 5 37.35). To model the data ad-

equately, we are going to have to use a model that contains the interaction term:

. Remember that for the fully saturated model the observed

and expected frequencies are the same. Thus we will start with the logs of these frequen-

cies as the raw data, as shown in Table 17.7. Notice that the table also contains the row and

column marginal means and the grand mean.

ln(Fij) = l 1 lV
i 1 lF

j 1 lVF
ij

x2
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Table 17.7 Natural logs of cell frequencies

Verdict

Guilty Not Guilty Marginals

High 5.03043 3.17805 4.10424
Fault

Low 4.65396 4.33073 4.49235

Marginals 4.84220 3.75439 4.29830

conditional odds

odds ratio ( )Æ



Now recall that when we calculated treatment effects in the analysis of variance we

took deviations of means around the grand mean. We will do something similar here.

Thus,

ANOVA Effects Log-linear Model Effects

Note the parallelism. Further, . Thus, we can

calculate all the rest of the effects directly.5

17.6 Three-Way Tables

We now have all of the concepts that are necessary to move to more complex designs.

Log-linear models come into their own once we move to contingency tables of more than

two dimensions. These are the situations in which standard chi-square analyses are not able

to reveal a full understanding of the data. In this section we will concentrate on three-way

tables because they illustrate all of the essential points. Extrapolation to tables of higher

dimensionality is direct. Good examples of the analysis and interpretation of four- and

five-way tables can be found in Pugh (1983) and Tabachnick and Fidell (2007), respec-

tively. (If you try to duplicate the results in Pugh’s paper, instruct your program to add 0.5

to the cell frequencies in the four-way table before running any analyses. This is normally

done anyway on a temporary basis when the program deals with the highest interaction to

avoid problems of cell frequencies of zero; ln(0) is undefined. Pugh instructed BMDP4F to

leave the 0.5 in while computing all tables.)

When we move beyond a simple R 3 C table, the calculations of expected frequen-

cies, especially for interactions involving subsets of variables, become appreciably

more complex. Such calculations are usually carried out by an iterative process in which

initial estimates are continually refined until the result meets some specified criterion.

Most analyses at this level are solved by computers, and that is the approach adopted

here. This chapter will focus on analyses computed by SPSS GENLOG, though SPSS

has two other procedures for log-linear analysis—SPSS LOGLINEAR and SPSS

HILOGLINEAR. SYSTAT, or PROC CATMOD and GENMOD in SAS are also possi-

bilities. Results of different programs sometimes vary because they use different algo-

rithms for their solutions.

lFV
22 = 0.38229

lFV
21 = -0.38229

lFV
12 = -0.38229

lV
2 = -0.54390

lF
2 =    0.19406

alF
i = alV

j = a il
FV
ij = a

j
lFV

ij = 0.00

= 0.38229

lFV
11 = 5.03043 2 4.10424 2 4.84220 1 4.29830NaNbij = Xij 2 Xi. 2 X.j 1 X..

lV
1 = 4.84220 2 4.29830 = 0.54390Nbj = X.j 2 X..
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l = 4.29830Nm = X..
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Assumptions

One of the pleasant things about log-linear models is the relative absence of assumptions.

Like the more traditional chi-square test, log-linear analysis does not make assumptions

about population distributions, although it does assume, as does the Pearson chi-square,

that observations are independent. You may apply log-linear analysis in a wide variety of

circumstances, including even the analysis of badly distributed (ill-behaved) continuous

variables that have been classified into discrete categories.

The major problem with log-linear analysis is the same problem that we encountered

with traditional chi-square: The expected frequencies have to be sufficiently large to allow

the assumption that frequencies in each cell would be normally distributed over repeated

sampling. In the case of chi-square, we set the rule that all (or at least most) of the expected

frequencies should be at least 5. We also saw that serious departures from this rule were

probably acceptable, as long as all expected frequencies exceeded 1 and 80% were greater

than 5. However, in such cases we would have unacceptably low power. We have a similar

situation with log-linear analysis. Once again we require that at least all cells have expected

frequencies greater than 1 and that no more than 20% of the cells have expected frequen-

cies less than 5. The biggest problem comes with what are called sparse matrices, which

are contingency tables with a large number of empty cells. In these cases you may wish to

combine categories on the basis of some theoretical rationale, increase sample sizes,

collapse across variables, or do whatever you can to increase the expected frequencies.

Regardless of the effects such small cells have on the level of Type I errors, you are virtu-

ally certain to have very low levels of power.

Hierarchical and Nonhierarchical Models

Most, but not all, analyses of log-linear models involve what are called hierarchical mod-

els. You can think of a hierarchical model as one for which the presence of an interaction

term requires the presence of all lower-order interactions and main effects involving the

components of that higher-order interaction. For example, suppose that we had four

variables, A, B, C, and D. If you include in the model the three-way interaction ACD, a

hierarchical model would also have to include A, C, D, AC, AD, and CD, because each of

these terms is a subset of ACD. Similarly, if your model included ABC and ABD, the

model would actually include A, B, C, D, AB, AC, BC, AD, and BD. It need not include

CD, ACD, BCD, or ABCD, because those are not components of either of the three-way

interactions.

Hierarchical models are in many ways parallel to models used in the analysis of vari-

ance. If you turn to any of the models in Chapters 13, 14, and 16 you will note that they are

all hierarchical—for a three-way analysis of variance all main effects and two-way interac-

tions are included, along with the three-way interaction. Just as in the analysis of variance,

the presence of a term in log-linear models does not necessarily mean that it will make a

significant contribution. (If we design a study having exactly as many males as females,

the contribution of Gender to a log-linear model will be precisely 0. We still usually in-

clude it in the model because of its influence on other expected frequencies.) SPSS

HILOGLINEAR, and SYSTAT TABLES handle only hierarchical models. On the other

hand, SPSS GENLOG, SPSS LOGLINEAR, SAS PROC CATMOD, and SYSTAT LOGIT

are capable of analyzing nonhierarchical models. We will deal only with hierarchical mod-

els in this chapter. Schafer (1997, p. 293) states that “A model that includes AB but omits
A allows A to be related to B, but requires the average log-probability across levels of B to

be the same within every level of A. Under ordinary circumstances one would not expect

this to happen except by chance.”

l

l
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One of the convenient things about hierarchical designs is that they allow us to specify

models very clearly and simply. Assume that we have four variables (A, B, C, and D). The

notation ABC specifies a model that includes the ABC interaction, and, because we are

speaking about hierarchical models, also includes A, B, C, AB, AC, and BC. We do not have

to write out the latter to specify the model (well, you do in SPSS GENLOG)—ABC will

suffice. Similarly, the label AB stands for a model that includes A, B, and AB, but not C or

any interactions involving C. Finally, a model written as AB, ACD is really the model that

involves A, B, C, D, AB, AC, AD, CD, and ACD, but not BC, BD, ABC, ABD, or BCD. In

much of what follows we will characterize models by the interactions that define them

(sometimes called their defining set, or generating class). Because the program that we

will use for the following examples (SPSS GENLOG) is not restricted to hierarchical mod-

els, if we want to tell it to use a hierarchical model for AB, AC, we need to explicitly spec-

ify the model as A, B, C, AB, AC. With a program such as SPSS HILOGLINEAR, the same

model would be specified as AB, AC because the rest would be assumed. I chose GENLOG

because its printout most neatly fits the material that I want to present.

A Three-Way Example

In the previous section we examined the relationship between Fault and Verdict in the

study of rape by Pugh (1983). Pugh also attempted to manipulate a third variable

(Moral) by varying the trial transcript to present the victim as someone with “high moral

character,” “low moral character,” or “neutral” on this dimension. We now have three

variables by which to categorize the data: Fault (F ), Moral (M ), and Verdict (V ). Fault

and Moral refer to characteristics attributed to the victim, whereas Verdict represents a

judgment on the defendant. Fault and Verdict each have two levels, whereas Moral has

three levels. Pugh’s data collapsed across a fourth variable (Gender of juror) are given

in Table 17.8.

Possible Models

Our task is to try to explain the pattern of obtained cell frequencies in Table 17.8. We could

ask a variety of possible questions in seeking an explanation, including the following:

1. Can the pattern of cell frequencies be explained (solely) by differences in the number of

participants in the three Moral conditions?
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defining set

generating class

Table 17.8 Pugh’s data collapsed across Gender

Moral

Verdict Fault High Neutral Low Total

Guilty
Low 42 79 32 153

High 23 65 17 105

Total 65 144 49 258

Not Guilty
Low 4 12 8 24

High 11 41 24 76

Total 15 53 32 100

Column total 80 197 81 358



2. Can the pattern of cell frequencies be explained by differences in the number of people

judged Guilty and Not guilty?

3. Can the pattern be explained by a combination of the number of participants in the three

Moral conditions and a higher incidence of Guilty over Not guilty?

4. Can the pattern be explained by an interaction of Moral and Verdict—for example,

are there more judgments of Guilty when the victim is seen as being of “high moral

character” and fewer when she is seen as being of “low moral character” or “neutral

moral character”?

5. Can the pattern be explained by both the Moral 3 Verdict interaction and the difference

in the number of cases where the victim was seen as high or low in Fault?

6. Can the pattern be explained by both a Moral 3 Verdict interaction and a Moral 3 Fault

interaction?

7. Can the pattern be explained by a three-way interaction involving Fault, Moral, and

Verdict?

Each of these possibilities—and there are a total of 18 if you count the hypothesis that

the cell frequencies are random (equiprobable)—represents a possible underlying model.

Our task will be to decide which of these models both fits the data and is parsimonious.

(I already know that the saturated model, which by definition involves the highest-order

interaction, will fit the data perfectly—but it is certainly not parsimonious.)

This list of questions corresponds directly to a list of different models. Letting F, M,

and V stand for Fault, Moral, and Verdict, we can associate the first question with a model

specified as M. To be more precise, our underlying structural model, which is almost cer-

tainly much too simple, would be

In the same way we can write out the other models, as shown in Table 17.9.

Notice once again that this is not an analysis of variance—that is, we are not trying to

explain variability in a single dependent variable (Verdict) on the basis of two independent

variables (Fault and Moral). It is easy to keep falling into that trap. We are trying to explain

a pattern of observed cell frequencies, and the explanation may involve any or all of the

variables (dependent or independent) and their interactions. Even where you have one

clearly defined dependent variable and two clearly defined independent variables, part of

the variability may involve just the independent variables—for example, higher frequen-

cies in the Group 1 cells may be due to the often inconsequential fact that you assigned

more participants to Group 1.

ln(Fijk) = l 1 lM
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Table 17.9 Some possible models for data in Table 17.8

Question Model Specification

1 M

2 V

3 M, V

4 MV

5 MV, F

6 FM, MV

7 FMVln(Fij) = l 1 lF 1 lM 1 lV 1 lMV 1 lFM 1 lFV 1 lFMV

ln(Fij) = l 1 lF 1 lM 1 lV 1 lMV 1 lFM

ln(Fij) = l 1 lF 1 lM 1 lV 1 lMV

ln(Fij) = l 1 lM 1 lV 1 lMV

ln(Fij) = l 1 lM 1 lV

ln(Fij) = l 1 lV

ln(Fij) = l 1 lM



Examining the Saturated Model

In considering two-way tables, we defined a saturated model as one that includes all possi-

ble effects. The same holds for three-way and higher-order tables. Consider the model that

can be designated as FMV or written as

This is the saturated model for our data. It includes all possible effects and exhausts the

degrees of freedom available in the data. (One degree of freedom goes to estimating l, one

each to estimating F, V, and FV, and two each to estimating M, FM, MV, and FMV; M has

three levels and thus two degrees of freedom for it and its interactions.) These sum to 12,

and because we have 12 cells there isn’t anything left over. If we knew the values of the

various lambdas, and eventually we will, the resultant expected frequencies would exactly

equal the observed frequencies, leaving nothing else to be explained. For this reason we

know without even looking at the data that the likelihood ratio for this model will be

exactly 0.00. We should not be any happier with this perfect fit than we are when we draw

a straight line to fit perfectly any two points, and for the same reason—the model exhausts

the degrees of freedom.

We do not fit a saturated model to data just because we hope that it will fit—we know

that before we start. We usually fit it hoping that it will help us identify simpler models by

revealing nonsignificant effects. If we could show, for example, that we could do about as

well by eliminating the three-way interaction and two of the two-way interactions, we

would be well on our way to representing the data by a relatively simple model.

In Exhibit 17.1 you will see part of the printout from the SPSS GENLOG analysis of

the saturated model.6 You can either run GENLOG from syntax or from drop-down

menus. The syntax is given first, and the only line that will change in further analyses is

the /Design statement. You can see from the output that chi-square is precisely 0.000, as it

should be, and that the expected frequencies exactly match the obtained frequencies. What

we would like to do is to find a model that fits nearly as well but has fewer components.

x2

ln(Fijk) = l 1 lF 1 lM 1 lV 1 lMV 1 lFM 1 lFV 1 lFMV
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GENLOG

Verdict Fault Moral

/PRINT = FREQ RESID ADJRESID ZRESID DEV ESTIM CORR COV

/CRITERIA = CIN(95) ITERATE(20) CONVERGE(.001) DELTA(.5)

/DESIGN Fault Moral Verdict Fault*Moral Fault*Verdict Moral*Verdict Fault*Moral*Verdict

.

a Model: Poisson
b Design: Constant 1 Fault 1 Moral 1 Verdict 1 Fault *

Moral 1 Verdict * Fault 1 Verdict * Moral 1 Verdict *
Fault * Moral

Goodness-of-Fit Testsa,b

Likelihood Ratio
Pearson Chi-Square

Value

.000

.000

df

0
0

Sig.

.

.

6 If you generate the model from drop-down menus, be sure to specify that you want it to print out estimates in
the options menu. By default the options menu adds 0.5 to every cell if you request a saturated model. This is to
prevent trying to calculate ln(0), which is undefined.

Exhibit 17.1 Saturated model applied to Pugh’s data on three variables

(continues)



17.7 Deriving Models

The saturated model is certainly not the only possible model that would fit these data, and

we are going to search for a model that will fit nearly as well and have a simpler structure.

I am not going to show you output for all possible models, but for an example suppose that

we start with a model that tries to explain the cell frequencies on the basis of Verdict, Fault,

Moral, and the Verdict 3 Moral interaction. (I chose this model for an example almost at

random.) The generating class for this model would be F, MV, but GENLOG requires that

we specify it explicitly as “/Design Verdict Fault Moral Verdict * Moral.” The result fol-

lows in Exhibit 17.2.

Notice that the likelihood ratio chi-square for this model is 40.163 on 5 degrees of free-

dom, which is statistically significant at p 5 .000. Thus this model does not present an ad-

equate fit to the data. Notice that this conclusion is bolstered by the substantial differences

between the observed and expected cell counts. One valuable thing about hierarchical mod-

els is that they allow us to compare individual models by subtracting their corresponding

likelihood ratio chi-squares. For model F, MV in Exhibit 17.2, chi-square 5 40.163 on 5 df.
The saturated model had a chi-square 5 0 on 0 df. We can ask the question “Does F, MV
represent a significantly worse fit than F 3 M 3 V?” by taking the difference between the

two values of chi-square and treating that as a chi-square on the difference in the degrees

of freedom. Here

5 40.163 – 0 5 40.163

on 5 – 0 5 5 df. The critical value for 5 df is 11.07, which means that the new model fits

significantly worse than the saturated one.

Partly for completeness and partly to help in arriving at an optimal model, I have run

the syntax for each of the 17 possible models. (The eighteenth would be the model with no

predictors.) Some programs will generate all of the possible models on command, but

GENLOG will not. The results of these analyses are presented in Exhibit 17.3. The models

x2
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Cell Counts and Residualsb

Verdict Fault Moral

1 1 1
2
3

2 1
2
3

2 1 1
2
3

2 1
2
3

Observed

Count

42.500
79.500
32.500

23.500
65.500
17.500

4.500
12.500
8.500

11.500
41.500
24.500

%

11.7%
21.8%
8.9%

6.5%
18.0%
4.8%

1.2%
3.4%
2.3%

3.2%
11.4%
6.7%

Count

42.500
79.500
32.500

23.500
65.500
17.500

4.500
12.500

8.500

11.500
41.500
24.500

%

11.7%
21.8%
8.9%

6.5%
18.0%
4.8%

1.2%
3.4%
2.3%

3.2%
11.4%
6.7%

Residual

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

Standardized
Residual

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

Adjusted
Residual

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

Deviance

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

Expected

a Model: Poisson
b Design: Constant 1 Fault 1 Moral 1 Verdict 1 Fault * Moral 1 Verdict * Fault 1 Verdict * Moral 1 Verdict * Fault * Moral

Exhibit 17.1 (continued )



are again specified by their “generating class” or “defining set“, meaning that if there are

interactions the main effects are assumed and not listed. Thus the generating class MV,

FM implies that M, V, and F are part of the model because they are part of the interac-

tion. If the generating class were MF, the model would contain M, F, and MF, but not V
or any of its interactions. (As I stated before, you cannot use generating classes in SPSS

GENLOG, but have to list each main effect and interaction that you want. This is not true

with SPSS HILOGLINEAR or SAS PROC CATMOD, which automatically create hier-

archical models.)

From this table you can see that four models are nonsignificant at a 5 .05, meaning

that they produce estimated cell frequencies that are not significantly different from the

obtained frequencies. These are models that we should consider. (The corresponding

rows are shaded.) These are (MF, MV, FV ), (FV, MF ), (MV, FV ), and (M, FV ). I am ig-

noring the saturated model because we know that it fits perfectly. Because our models

are hierarchical, the difference in the log-likelihood chi-square values attached to the

models is itself a test on whether we would lose a significant amount of predictability by

going to the simpler model. The difference between the chi-square for the model con-

taining (MF, MV, FV ) and the complete model is 0.26 – 0.00 5 0.26, which is a chi-

square statistic on 2 – 0 5 2 df, which is a nonsignificant decrease. So we are as well off

with the MF, MV, FV model as we were with the saturated model. Now we can move up
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a Model: Poisson
b Design: Constant 1 Fault 1 Moral 1 Verdict 1 Verdict * Moral

Goodness-of-Fit Testsa,b

Likelihood Ratio
Pearson Chi-Square

Value

40.163
38.602

df

5
5

Sig.

.000

.000

Cell Counts and Residualsa,b

Verdict Fault Moral

1 1 1
2
3

2 1
2
3

2 1 1
2
3

2 1
2
3

Observed

Count

42
79
32

23
65
17

4
12
8

11
41
24

%

11.7%
22.1%
8.9%

6.4%
18.2%
4.7%

1.1%
3.4%
2.2%

3.1%
11.5%
6.7%

Count

32.137
71.196
24.226

32.863
72.804
24.774

7.416
26.204
15.821

7.584
26.796
16.179

%

9.0%
19.9%
6.8%

9.2%
20.3%
6.9%

2.1%
7.3%
4.4%

2.1%
7.5%
4.5%

Residual

9.863
7.804
7.774

–9.863
–7.804
–7.774

–3.416
–14.204
–7.821

3.416
14.204

7.821

Standardized
Residual

1.740
.925

1.579

–1.721
–.915

–1.562

–1.254
–2.775
–1.966

1.241
2.744
1.944

Adjusted
Residual

2.705
1.682
2.391

–2.705
–1.682
–2.391

–1.802
–4.228
–2.898

1.802
4.228
2.898

Deviance

1.661
.909

1.505

–1.820
–.932

–1.657

–1.376
–3.109
–2.175

1.161
2.543
1.813

Expected

a Model: Poisson
b Design: Constant 1 Fault 1 Moral 1 Verdict 1 Verdict * Moral

Exhibit 17.2 Test of simplified model F, MV



the table and compare the MF, MV, FV model with each of the models that include two-

way interactions. If we compare chi-square for the MF, MV, FV model with chi-square

for the FV, MF model, the difference in chi-square values is 8.66 2 0.26 5 .8.40, which

is a chi-square on 4 – 2 5 2 df. This decrement is statistically significant, indicating that

we have lost real interpretive power by dropping MV from the model. So we don’t want

to do that. But if we now compare the MF, MV, FV model with the MV, FV model we

have 5 2.81 – 0.26 5 2.55 on 4 – 2 df, which is not statistically significant. This sug-

gests that we do not need MF in our model. Moving up one additional row we see that

dropping FV from our model would lead to a significant decrement. This leaves us with

MV, FV as our best model to date. If you compare the likelihood ratio chi-square for that

model with the likelihood ratio chi-square for any of the models above it, you see that

dropping any other components of the model would lead to a statistically significant decre-

ment. For example, although the model M, FV is not statistically significant 

( p 5 .0720), and therefore fits the data at least adequately, it is significantly different from

MV, FV (11.58 – 2.81 5 8.77 on 6 – 4 5 2 df. As a result of these tests we are left with

the model (MV, FV). (One very good reason for using hierarchical models is that they al-

low us to test differences between models in this way. If we don’t have hierarchical mod-

els we cannot always test the decrement in chi-square resulting from omitting a term

from the model.)

Stepwise Procedures

Just as with multiple regression, there are stepwise procedures for model building. SPSS

HILOGLINEAR includes just such a procedure, which starts with the saturated model and

shows what would happen if various parts of the model were eliminated. An example of

such an approach can be seen in Exhibit 17.4.

x
2
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LIKELIHOOD- PEARSON

MODEL D.F. RATIO CHISQ PROB. CHISQ PROB.
----------- ---- ------------------- -------- --------- ----------

M 9 121.17 .0000 109.51 .0000

F 10 191.88 .0000 201.66 .0000

V 10 119.73 .0000 125.38 .0000 

M, F 8 121.12 .0000 110.43 .0000 

F, V 9 119.68 .0000 125.03 .0000 

V, M 8 48.98 .0000 49.13 .0000 

M, F, V 7 48.93 .0000 49.02 .0000 

MF 6 118.21 .0000 105.99 .0000 

MV 6 40.21 .0000 38.64 .0000 

FV 8 82.33 .0000 84.99 .0000 

M, FV 6 11.58 .0720 11.63 .0709 

F, MV 5 40.16 .0000 38.60 .0000 

V, MF 5 46.01 .0000 45.02 .0000 

MF, MV 3 37.25 .0000 35.94 .0000 

MV, FV 4 2.81 .5898 2.80 .5921 

FV, MF 4 8.66 .0701 8.74 .0680

MF, MV, FV 2 .26 .8801 .26 .8802

MVF 0 0.00 1.000 0.00 1.000

Exhibit 17.3 Test of all possible models



From Exhibit 17.4 you can see that the program begins with the saturated model. It

then considers what would happen if each of the two-variable interactions were removed.

We see that if the Verdict 3 Fault interaction were removed the change in the log likeli-

hood chi-square would be 36.990 on 1 df. That would be a significant decrement in the fit

of the model, so we won’t want to drop that. Similarly dropping Verdict 3 Moral would

also lead to a significant decrement. However dropping Fault 3 Moral would only produce
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Exhibit 17.4 Stepwise solution

* * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * *

DESIGN 1 has generating class

Verdict*Fault*Moral

Note: For saturated models .500 has been added to all observed cells. This value may be changed 

by using the CRITERIA = DELTA subcommand.

Backward Elimination (p = .050) for DESIGN 1 with generating class

Verdict*Fault*Moral

Likelihood ratio chi square = .00000 DF = 0 P = .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -

If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter

Verdict*Fault*Moral 2 .255 .8801 3

Step 1

The best model has generating class

Verdict*Fault

Verdict*Moral

Fault*Moral

Likelihood ratio chi square = .25546 DF  =  2 P =     .880

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -

If Deleted Simple Effect is                   DF L.R. Chisq Change Prob Iter

Verdict*Fault 1 36.990 .0000 2

Verdict*Moral 2 8.406 .0149 2

Fault*Moral 2 2.556 .2786 2

Step 2

The best model has generating class

Verdict*Fault

Verdict*Moral

Likelihood ratio chi square = 2.81175 DF  =  4 P =     .590

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -

If Deleted Simple Effect is                   DF L.R. Chisq Change Prob Iter

Verdict*Fault 1 37.351 .0000 2

Verdict*Moral 2 8.768 .0125 2

* * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * *

The final model has generating class

Verdict*Fault

Verdict*Moral



a change in chi-square of 2.556 on 2 df, which is not significant. This leaves us with the

more optimal model of (Verdict 3 Fault Verdict 3 Moral). The program looks to see if ei-

ther of the remaining two-way interactions can be deleted, and finds that both would result

in a significant decrement.

You might expect the program to then see what happens if we were to drop one of the

main effects, but that won’t do. Remember that for a hierarchical model any effect that

appears in an interaction must also appear as a main effect. Thus if our model contains

Verdict 3 Fault, both Verdict and Fault must also appear. And if it also contains Verdict 3

Moral, Moral must also appear. Therefore the simplest possible model is (Verdict 3 Fault

Verdict 3 Moral), which is the same conclusion we came to earlier.

17.8 Treatment Effects

Now that we have chosen a model, we can return to the treatment effect statistics that were

discussed in conjunction with two-dimensional tables. Here we can see how they add to our

understanding of the data. We can ask SPSS GENLOG to fit our model, produce observed

and expected frequencies, and calculate treatment effects (lambdas). Exhibit 17.5 contains

this information for the model

It is important to understand that estimates of depend on the way the program you

are using codes the data internally. For example I entered 1s, 2s, and 3s as the values for

Moral. SPSS GENLOG takes my codes and converts them to dummy variables, where

Moral
2

is coded 1 if the observation came from the second level of Moral, and 0 otherwise.

l

ln(Fijk) = l 1 lF 1 lM 1 lV 1 lFV 1 lMV
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Parameter Estimatesc,d

Parameter

Constant
[Fault = 1]
[Fault = 2]
[Moral = 1]
[Moral = 2]
[Moral = 3]
[Verdict = 1]
[Verdict = 2]
[Verdict = 1] * [Fault = 1]
[Verdict = 1] * [Fault = 2]
[Verdict = 2] * [Fault = 1]
[Verdict = 2] * [Fault = 2]
[Verdict = 1] * [Moral = 1]
[Verdict = 1] * [Moral = 2]
[Verdict = 1] * [Moral = 3]
[Verdict = 2] * [Moral = 1]
[Verdict = 2] * [Moral = 2]
[Verdict = 2] * [Moral = 3]

Estimate

3.191a

–1.153
0b

–.758
.505

0b

–.198
0b

1.529
0b

0b

0b

1.040
.573

0b

0b

0b

0b

Std. Error

.234
.

.313

.224
.

.246
.

.266
.
.
.

.366

.278
.
.
.
.

Z

–4.923
.

–2.422
2.254

.
–.807

.
5.744

.

.

.
2.845
2.060

.

.

.

.

Sig.

.000
.

.015

.024
.

.420
.

.000
.
.
.

.004

.039
.
.
.
.

Lower Bound

–1.612
.

–1.371
.066

.
–.680

.
1.007

.

.

.
.324
.028

.

.

.

.

Upper Bound

–.694
.

–.145
.943

.
.283

.
2.051

.

.

.
1.757
1.119

.

.

.

.

a Constants are not parameters under the multinomial assumption. Therefore, their standard errors are not calculated.
b This parameter is set to zero because it is redundant.
c Model: Multinomial
d Design: Constant 1 Fault 1 Moral 1 Verdict 1 Verdict * Fault 1 Verdict * Moral

95% Confidence Interval

Exhibit 17.5 Parameter estimates for the model V*FV*M



Because there are only 2 df for Moral, there is no dummy variable corresponding to the last

level of Moral. (Remember, all of this is done internally, and you won’t see the recoding.

Moreover, coding the levels as (2,1) will lead to different estimates than coding them as (1, 2),

though other statistics will be unchanged. You have to read the manual to see what the pro-

gram does.) Other programs, however, use a 1, 0, 21 type of coding, which we saw when

we discussed the analysis of variance. The net result is that SPSS GENLOG forces the co-

efficient for the highest level of a variable to be 0, whereas other programs force the sum

of the coefficients for that variable to be 0, making the last one equal to –1 times the sum

of the others. For this reason you may see very drastic differences between the parameter

estimates produced by different programs. The end result in terms of expected values will

be the same, but the solutions may look very different.

From Exhibit 17.5 we see that our model can be written as

Because SPSS codes an observation as 1 if it is the member of a particular treatment

or interaction level, and 0 if it is not, we can calculate expected frequencies by substitut-

ing 1s or 0s in the model and solving for ln(Fij). We then exponentiate the result to ob-

tain the expected frequency. The easiest case is an observation in the (Not Guilty, High

Fault, Low Moral) cell, because it would be coded 0 on everything. That would lead us

to ln(F
113

) 5 3.191 2 0 2 0 2 0 1 . . . 1 0 5 3.191. Then e3.191 5 24.31, which, as we

will see in Exhibit 17.6, is the expected value for that cell.

Expected Cell Frequencies

Finally, let us look at how well our model predicts the observed cell frequencies. The

results are shown in Exhibit 17.6.

In this exhibit you see the observed and expected cell frequencies followed by a

statistical test on the residuals (deviates)—the difference between observed and expected

1 1.529VF11 1 1.040VM11 1 0.573VM12

= 3.191 2 1.153 F1 2 0.758 M1 1 0.505 M2 2 0.198 V1

ln (Fijk) = l 1 lF 1 lM 1 lV 1 lFV 1 lMV
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Cell Counts and Residualsb

Verdict Fault Moral

1 1 1
2
3

2 1
2
3

2 1 1
2
3

2 1
2
3

Observed

Count

42
79
32

23
65
17

4
12

8

11
41
24

%

11.7%
22.1%
8.9%

6.4%
18.2%
4.7%

1.1%
3.4%
2.2%

3.1%
11.5%
6.7%

Count

38.547
85.395
29.058

26.453
58.605
19.942

3.600
12.720
7.680

11.400
40.280
24.320

%

10.8%
23.9%
8.1%

7.4%
16.4%
5.6%

1.0%
3.6%
2.1%

3.2%
11.3%
6.8%

Residual

3.453
–6.395

2.942

–3.453
6.395

–2.942

.400
–.720

.320

–.400
.720

–.320

Standardized
Residual

.556
–.692
.546

–.671
.835

–.659

.211
–.202
.115

–.118
.113

–.065

Adjusted
Residual

1.008
–1.632

.950

–1.008
1.632
–.950

.262
–.338
.161

–.262
.338

–.161

Deviance

.548
–.701
.537

–.687
.821

–.676

.207
–.204
.115

–.119
.113

–.065

Expected

a Model: Poisson
b Design: Constant 1 Fault 1 Moral 1 Verdict 1 Verdict * Fault 1 Verdict * Moral

Exhibit 17.6 Estimated cell frequencies for optimal model



frequencies. This test is easy to compute because the standard error of a residual is simply

the square root of the expected frequency. Thus,

is conservatively a standard normal deviate (Agresti, 1990). Standardized residuals (z) in

excess of 1.96 should give cause for concern (the model did not fit that cell well), but be-

cause you are running a large number of such tests a Bonferroni correction would be in or-

der. To do this, treat the deviates as though they were t values on an infinite number of

degrees of freedom and use Appendix to adjust for the number of independent tests. For

our example we have no significant deviations. The sum of the squared entries in the

Deviance column will equal the log-likelihood .

Interpreting the Model

From the analysis we have just gone through, we can say quite a bit about our data. Gener-

ally, statements about main effects are less interesting than statements about interactions,

but I will discuss both. In the first place, the frequencies were a function of the level of the

Moral variable, but because these frequencies were largely fixed by the experimenter, they

are of no great interest. Similarly, the data reflect small, but significant, differences in the

attribution of Fault to the victim, with slightly more subjects seeing the victim as high in

fault. This again was in part attributable to the experimenter’s sampling plan. What was not

under the direct control of the experimenter, and is of more interest, is a significantly

higher number of defendants judged guilty than judged not guilty. Collapsing across the

other dimensions, the odds in favor of a guilty judgment are 258/100 5 2.58.

When we look at the interactions we see that there is an interaction between Moral

and Verdict. A guilty verdict is more likely when the victim is seen as of high moral char-

acter than when she is seen as of low moral character. Put another way, the odds in favor

of a guilty verdict for the High, Neutral, and Low Moral conditions are 65/15 5 4.33,

144/53 5 2.72, and 49/32 5 1.53, respectively. Whether a defendant is seen as guilty ap-

pears to depend on events beyond the alleged crime itself.

Finally, there is an interaction between Fault and Verdict. When the victim is seen as

low in fault, the odds in favor of a guilty verdict are 153/24 5 6.38. In the high fault condi-

tion, those same odds are 105/76 5 1.38. (Thus, the odds ratio is 6.38/1.38 5 4.62, and the

log(odds ratio) 5 ln(4.62) 5 1.53, which is the parameter estimate for the Verdict 3 Fault

interaction). A judgment of guilty is clearly dependent on the degree to which the victim is

seen as being at fault. These data shed light on the tendency of defense attorneys to try to

put the blame on the victim, in that they show that juries’ judgments of guilt or innocence

are influenced by attributions of fault and low moral character to the victim.

Ordinal Variables

In this chapter we have treated our variables as if they were measured on a nominal scale,

although Moral did have an ordinal scale of Low, Neutral, and High. If variables are meas-

ured on an ordinal scale, standard log-linear analysis, though legitimate, does not use that

information. Scrambling the levels of each variable would lead to the same statistical results.

Recently attention has focused on alternative treatments that allow us to use ordinal

scaling of variables where it is available. Discussions of log-linear models with ordinal

variables can be found in Green (1988) and Agresti (1984, 1990). SPSS can accommodate

such analyses.

x2

t¿

6

z =
Observed 2 Expected1Expected
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Exercises

All of the problems in this chapter will require solution by one or more computer programs.

My answers in the back of the book are based on SPSS GENLOG, and they may differ from

answers you receive if you use a different program.

17.1 Allison (1991) offers an interesting example from a study by Morgan and Techman (1988)

looking at race, gender, and the sexual intercourse for a sample of 15- and 16-year olds. The

data follow.

Intercourse

Race Gender Yes No

White Male 43 134

Female 26 149

Black Male 29 23

Female 22 36

What are the possible models that could be hypothesized to underlie the data matrix?

17.2 In Exercise 17.1 Intercourse is the obvious dependent variable. What is the difference

between the roles played by the Gender 3 Race interaction and the Gender 3 Intercourse

interaction?

17.3 Use SPSS HILOGLINEAR to derive the optimal model for the data in Exercise 17.1 using

backward elimination. (Hint: use LogLinear/Model Selection from the menus.) Then re-

produce the results using specific models found in Exercise 17.1. Compute and interpret 

coefficients for the most appropriate model.

17.4 Maimaris, Summer, Browning, and Palmer (1994) reported on a study of head injuries in

children and adults involved in bicycle accidents. They broke down the data on the basis of

Age, whether a motor vehicle was involved, whether the rider was wearing a helmet, and

whether there was a head injury. The data appear below.

Motor 

Vehicle Helmet Injury Count

Young Yes

Yes

Yes 0

No 9

No

Yes 8

No 36

No

Yes

Yes 0

No 41

l

Key Terms

Log-linear models (Introduction)

Symmetric relationships (Introduction)

Asymmetric relationship (Introduction)

Saturated model (17.1)

Geometric mean (17.2)

(lambda) (17.2)

Saturated model (17.2)

Additive model (17.2)

Conditional odds (17.4)

Odds ratio ( ) (17.4)

Sparse matrices (17.6)

Hierarchical model (17.6)

Defining set (17.6)

Generating class (17.6)

Æ

l

(continues)
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Motor 

Vehicle Helmet Injury Count

No

Yes 20

No 195

Old Yes

Yes

Yes 2

No 17

No

Yes 42

No 174

No

Yes

Yes 2

No 43

No

Yes 30

No 421

17.5 Examine the table of cell frequencies and predict what terms must be in the model to

explain the pattern of differences.

17.6 Run the loglinear analysis using the saturated model and draw conclusions

17.7 Now run the analyses using SPSS HILOGLINEAR to solve for an optimal model using

backward deletion.

17.8 What is the optimal model calculated in Exercise 17.7?

17.9 Interpret the results of your analyses.

17.10 Maimaris et al. concluded “No child who wore a helmet at the time of the accident sustained

a head injury.” Does that seem like a conclusion that would follow from your analysis?

17.11 Calculate the odds ratio of an adult having a head injury as a function of whether or not that

adult wears a helmet. (Why could you not do the same thing for children?)

Dabbs and Morris (1990) investigated the effects of elevated testosterone levels in a repre-

sentative sample of U.S. adult males (mean age 37). Subjects were classified as High (upper

10%) or Normal on testosterone, as high or low on socioeconomic status (SES), and as en-

gaging (or not engaging) in adult delinquency. Their data follow.

Low SES High SES

Normal High Normal High

Delinquent Testosterone Testosterone Testosterone Testosterone

Yes 190 62 53 3

No 1104 140 1114 70

17.12 Calculate the odds of being classed as an adult delinquent for each of the categories in the

preceding table.

17.13 What are the odds ratios of delinquency for the four SES/Testosterone groups in the preced-

ing table?

17.14 Apply a log-linear model to the data from Dabbs and Morris and interpret the results.

17.15 Dabbs and Morris collected data on a number of other variables, including childhood delin-

quency, hard-drug use, and many sex partners. Why would it be inappropriate to create a

dimension labeled Behavior (adult delinquency, childhood delinquency, hard-drug use,

many sex partners) and use that as an additional variable in the analysis? In other words,

what is wrong with analyzing SES 3 Testosterone 3 Behavior?
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This chapter was based heavily on a study by Pugh (1983) on the blaming-the-victim phe-

nomenon in rape cases. The complete data from Pugh are given below, adding the Gender

of the judge as the final variable.

Stigma (S) Verdict (V )

Gender (G) (Moral Character) Fault (F ) Guilty Not Guilty

Male High Low 17 4

High 11 7

Male Neutral Low 36 4

High 23 18

Male Low Low 10 6

High 4 18

Female High Low 25 0

High 12 4

Female Neutral Low 43 8

High 42 23

Female Low Low 22 2

High 13 6

17.16 Run the complete analysis on these data. What effect does adding Gender to the analysis

produce? You can compare your conclusions against the results given in Pugh’s paper.

17.17 Agresti (1990) presents data on the relationship of the assignment of the death penalty, the

defendant’s race, and the victim’s race. The data follow.

RaceDefendant RaceVictim DeathPenalty Frequency

1 1 1 19

1 1 2 132

1 2 1 0

1 2 2 9

2 1 1 11

2 1 2 52

2 2 1 6

2 2 2 97

Note: For Race, 1 5 White; 2 5 Black. For DeathPenalty, 1 5 Yes; 2 5 No.

a. Fit an appropriate model.

b. Summarize the conclusions you would draw.

Discussion Questions

17.18 If you search on PsychINFO under “log-linear” you will find many studies that used such

models. Find an interesting study that contains the necessary cell frequencies and write up a

short example that can be used to illustrate the material covered in this chapter.

17.19 Apply the same data to two or more software packages and note the similarities and differ-

ences in the output. How, if at all, can you resolve the discrepancies?
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CHAPTER 18

Resampling and

Nonparametric

Approaches to Data

Object ives

To present resampling and nonparametric (distribution-free) procedures that can

be used for testing hypotheses but which rely on less restrictive assumptions

about populations than do previously discussed tests.
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MOST OF THE STATISTICAL PROCEDURES we have discussed throughout this book have in-

volved estimation of one or more parameters of the distribution of scores in the popula-

tion(s) from which the data were sampled and assumptions concerning the shape of that

distribution. For example, the t test uses the sample variance (s2) as an estimate of the pop-

ulation variance ( ) and also requires the assumption that the population from which the

sample was drawn is normal. Tests such as the t test, which involve either assumptions

about specific parameters or their estimation, are referred to as parametric tests.

There is a class of tests, however, that does not rely on parameter estimation and/or

distribution assumptions. Such tests are usually referred to as nonparametric tests or

distribution-free tests. By and large, if a test is nonparametric it is also distribution-

free, and in fact it is the distribution-free nature of the test that is most valuable to us.

Although the two names are often used interchangeably, the tests will be referred to

here as nonparametric tests because that term is somewhat more common.

There is another approach to statistical analysis, which is predominantly nonparametric

in nature, that has become considerably more popular in recent years due to the increased

computing power we now enjoy. These are called resampling procedures, which can fur-

ther be broken down into bootstrapping and randomization tests. I will discuss several of

these that do not require strict parametric assumptions. These techniques are useful either

when we are uncomfortable with the assumptions that a parametric test, such as t, would

require, or when we just don’t have good parametric procedures to do what we want—such

as forming a confidence interval on a median when we doubt that the distribution is nor-

mally distributed. I will discuss these procedures first because I believe that in a short time1

they will overtake what are now the more common nonparametric tests, and may eventu-

ally overtake the traditional parametric tests.

The major advantage generally attributed to nonparametric tests is also the most

obvious—they do not rely on any very seriously restrictive assumptions concerning the

shape of the sampled population(s). This is not to say that nonparametric tests do not make

any distribution assumptions, but only that the assumptions they do require are far more

general than those required for the parametric tests. The exact null hypothesis being tested

may depend, for example, on whether or not two populations are symmetric or have a sim-

ilar shape. None of these tests, however, makes an a priori assumption about the specific

shape of the distribution; that is, the validity of the test is not affected by whether or not the

variable is normally distributed in the population. A parametric test, on the other hand, usu-

ally includes some type of normality assumption, and, if that assumption is false, the con-

clusions drawn from that test may be inaccurate. In addition, some violations of parametric

test assumptions may cause that test to be less powerful for a specific set of data than the

corresponding nonparametric test. Perhaps the most articulate spokesperson for nonpara-

metric/distribution free tests has been Bradley (1968), who still has one of the clearest de-

scriptions of the underlying assumptions and their role.

Another characteristic of nonparametric tests that often acts as an advantage is the

fact that many of them, especially the ones discussed in this chapter, are more sensitive

to medians than to means. Thus, if the nature of your data is such that you are interested

primarily in medians, the tests presented here may be particularly useful to you.

Those who argue in favor of using parametric tests in almost every case do not deny

that nonparametric tests are more liberal in the assumptions they require. They argue, how-

ever, that the assumptions normally cited as being required of parametric tests are overly

restrictive in practice and that the parametric tests are remarkably unaffected by violations

s2
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of distribution assumptions. See Rasmussen (1987) for an example where parametric tests

win out even with their assumptions violated.

The major disadvantage generally attributed to nonparametric tests is their (reputed)

lower power relative to the corresponding parametric test. In general, when the assumptions

of the parametric test are met, the nonparametric test requires somewhat more observations

than does the comparable parametric test for the same level of power. Thus, for a given set of

data, the parametric test is more likely to lead to rejection of a false null hypothesis than

is the corresponding nonparametric test. Moreover, even when the distribution assumptions

are violated to a moderate degree, the parametric tests are thought to maintain their advantage.

A number of studies, however, have shown that for perfectly reasonable data sets nonpara-

metric tests may have greater power than the corresponding parametric test. The problem is

that we generally do not know when the nonparametric test will be more powerful.

Some nonparametric tests have an additional advantage. Since many of them rank the

raw scores and operate on those ranks, they offer a test of differences in central tendency

that are not affected by one or a few very extreme scores (outliers). An extreme score in a

set of data actually can make the parametric test less powerful, because it inflates the vari-

ance, and hence the error term, as well as biasing the mean by shifting it toward the outlier

(the latter may increase or decrease the mean difference).

Nonparametric tests can be divided into several different approaches. One group of

tests, which we will discuss in the second half of the chapter, depends on ranking the data

and carrying out the statistical test on the ranks. These are the most commonly known non-

parametric procedures, and are particularly useful when the ranking procedure reduces

problems with outliers. A second group of tests are broadly known under the title of

“resampling statistics,” and these tests rely on drawing repeated samples from some popu-

lation and evaluating the distribution of the resulting test statistic. Within the resampling

statistics, the bootstrapping procedures, to be discussed next, rely on random sampling

with replacement, from a population whose characteristics reflect the characteristics of the

sample. Bootstrapping procedures are particularly important in those situations where we

are interested in statistics, such as the median, whose sampling distribution and standard

error cannot be derived analytically (i.e., from a standard formula, such as the formula for

the standard error of the mean) unless we are willing to assume a normally distributed pop-

ulation.2 The next section will be an introduction to bootstrapping.

After looking at the bootstrap, we will move on to other resampling procedures that do

not rely on drawing repeated samples, with replacement, from some population. Instead,

we will consider all possible permutations, or rearrangements, of the data. These are often

called permutation or randomization tests, and they are covered in Sections 18.2–18.4.

Whereas bootstrapping involves sampling with replacement, permutation tests involve

sampling without replacement.

18.1 Bootstrapping as a General Approach

Think for the moment about the standard t test on the difference between two population

means. (Everything that I am about to say would apply, with only the obvious changes, if

I had chosen any other parametric test, but the t test is a good example.) To carry out our

t test we first assumed that we drew our samples from two normal populations and that the

populations had the same variance ( ). We then assume that the null hypothesis was true,s2
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and ask what kinds of differences between means (or what values of t) we would expect if

we drew an infinite number of pairs of samples from these normal populations, calculated

the means, and then took their differences. Notice in all of this that we ask about sampling

from normal populations with equal variances. To go one step further, if we actually com-

puted all of these samples from the specified population, the resulting sampling distribu-

tion of t would be the same as the tabled sampling distribution that we normally use to

compute the probability of t under the null hypothesis.

But suppose that we are not willing to assume that our data came from normal popula-

tions, or that we are not willing to assume that these populations had equal variances. Per-

haps if we knew enough statistics, which neither you nor I do, and we were willing to assume

that the populations have some other specified distribution (e.g., an exponential distribution),

we could derive something comparable to our t test, and use that for our purposes. Of course

that test, if we could derive one, would still only apply when data come from that particular

kind of distribution. But suppose that we think that our populations are not distributed

according to any of the common distributions. Then what do we do? Bootstrapping gives us a

way to solve this problem. Before I talk about how we would perform a bootstrapped hypothe-

sis test, however, let’s look at another problem that we can deal with using the bootstrap.

If I asked you to calculate a confidence interval on a mean, and I told you that the pop-

ulation from which the data came was normal, you could solve the problem. In particular,

you know that the standard error of the mean is equal to the population standard deviation

(perhaps estimated by the sample standard deviation) divided by the square root of n. You

could then measure off the appropriate number of standard errors from the mean using the

normal (or t) distribution, and you would have your answer. But, suppose that I asked you

for the confidence limit on the median instead of the mean. Now you are stuck, because

you don’t have a nice simple formula to calculate the standard error of the median. So what

do you do? Again, you use the bootstrap.

Macauley (1999, personal communication) collected mental status information on

older adults. One of her dependent variables was a memory score on the Neurobehavioral

Cognitive Status Examination for the 20 participants who were 80–84 years old. As you

might expect, these data were negatively skewed, because some, but certainly not all, of her

participants had lost some cognitive functioning. Her actual data are shown in Figure 18.1.
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Macauley wanted to establish confidence limits on the population median for this age group.

Here she was faced with both problems outlined above. It does not seem reasonable to base

that confidence interval on the assumption that the population is normally distributed (it

most clearly is not), and we want confidence limits on a median, but don’t have a conven-

ient formula for the standard error of the median. What’s a body to do?

What we will do is to assume that the population is distributed exactly as our sample.

In other words, we will assume that the shape of the parent population is as shown in

Figure 18.1.

It might seem like a substantial undertaking to create an infinitely large population of

numbers such as that seen in Figure 18.1, but, in fact, it is trivially easy. All that we have to

do is to take the sample on which it is based, as represented in Figure 18.1, and draw as

many observations as we need, with replacement, from that sample. This is the way that all

bootstrapping programs work, as you will see. In other words, 20 individual observations

from an infinite population shaped as in Figure 18.1 is exactly the same as 20 individual

observations drawn with replacement from the sample distribution. In the future when I

speak of a population created to exactly mirror the shape of the sample data, I will refer to

this as a pseudo-population.

18.2 Bootstrapping with One Sample

Macauley was interested in defining a 95% confidence interval on the median of memory

scores of older participants. As I said above, she had reason to doubt that the population of

scores was normally distributed, and there is no general formula defining the standard

error of the median. But neither of those considerations interferes with computing the con-

fidence interval she sought. All that she had to do was to assume that the shape of the pop-

ulation was accurately reflected in the distribution of her sample, then draw a large number

of new samples (each of n 5 20) from that population. For each of these samples she com-

puted the median, and when she was through she examined the distribution of these medi-

ans. She could then empirically determine those values that encompassed 95% of the

sample medians.

It is quite easy to solve Macauley’s problem using a program named Resampling Stats
by Simon and Bruce (1999). The syntax and the results are shown in Figure 18.2, and a

histogram of the results is presented in Figure 18.3. There is no particular reason for you

to learn the sequence of commands that are required for Resampling Stats, but a cursory

look at the program is enlightening. The first two lines of the program describe the prob-

lem and set aside sufficient space to store 10,000 sample medians. Then the data are read

in to create a pseudo-population from which we can sample with replacement. The next

two lines calculate and print the median of the original sample. At this point the program

goes into a loop that repeats 10,000 times, each time drawing a sample of 20 observations

from our pseudo-population, computing its median, and labeling that median as “bme-

dian.” After 10,000 medians have been drawn and stored in an array called “medians,” the

program prints a frequency distribution and histogram of the results, calculates the stan-

dard deviation of these medians, which is the standard error of the median, and prints that.

The amazing thing is that it probably took me 5 minutes to compose, type, and revise this

paragraph, while it took the program 7.8 seconds to draw those 10,000 samples and print

the results.

The results in Figures 18.2 and 18.3 are interesting for several reasons. In the first

place, they show you what happens when you try to calculate medians of a large number of

relatively small samples. The distribution in Figure 18.3 is quite discrete, because the

median is going to be the middle value in a limited set of numbers. You couldn’t get a
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median of 9.63, for example, no matter how many samples you drew. For this particular

population the medians must be an integer (or the average of two integers in the ordered

array) between 5 and 11. There are no other possibilities.

Ideally, to calculate a 95% confidence interval we would like to find those outcomes

that cut off 2.5% of the observations at each end of the distribution.3 With the very dis-

crete distribution we have with medians, there is no point that cuts off the lowest 2.5%

of the distribution. At the extreme, 4/10,000 5 .04% lie at or below a median of 5, and

(496 1 4)/10,000 5 5.00% lie at or below a median of 6. At the other end of the distri-

bution, 4006/10,000 5 40.6% lie at or below 9, and 9997/10,000 5 99.97% lie at or

below 10. To be conservative we would choose the extremes of each of these sets, and

put the confidence interval at 5–10, which includes virtually all of the distribution. We

really have a 99.97% confidence interval, which is probably close enough for any pur-

pose to which we would be likely to put these data. If we were willing to let the lower

bound represent the 5% point, we would have an interval at 6–10. What is important
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3 This is the simplest approach to obtaining confidence limits, and relies on the 2.5 and 97.5 percentiles of the
sampling distribution of the median. There are a number of more sophisticated estimators, but the one given here
best illustrates the approach.



here, and the reason why Macauley wanted these limits in the first place, is that for this

memory test, the lower bound of what is classed as “normal functioning” is a score of 10.

The confidence interval does include 10 as its upper limit, and so we cannot reject the

null hypothesis that people in this age group, on average, fall in the normal range. An

examination of the sampling distribution reinforces this view, and perhaps gives us a

more complete understanding of the performance of this age cohort. The fact that there

are a number of individuals whose scores are well below 10 might lead us to seek a dif-

ferent confidence interval, that being limits on the proportion of people in that age

group who fall below 10. While that would be a perfectly legitimate use of bootstrap-

ping for these data, we will not pursue that question here.

This may not seem like the most inspiring example of bootstrapping, because it makes

bootstrapping look rather imprecise. It is a good example nonetheless, because it reflects

the sometimes awkward nature of real data. As we will see, however, not all data lead to

such discrete distributions. In addition, the discreteness of the result is inherent in the data,

not merely in the process itself. If we drew 10,000 samples from this population and calcu-

lated t values, the resulting t distribution would be almost as discrete. The problem comes

from drawing samples from a distribution with a limited number of different values, in-

stead of modeling the results of drawing from continuous (e.g., normal) distributions. If it

is not reasonable to assume normality, it is not reasonable to draw from normal distribu-

tions just to get a prettier graph.

18.3 Resampling with Two Paired Samples

We will now move from the bootstrap, where we drew large numbers of samples from a

pseudo-population using sampling with replacement, to randomization, or permutation,

procedures that involve taking the full set of observations and randomly shuffling them and

assigning them to conditions randomly.
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Hoaglin, Mosteller, and Tukey (1983) looked at the role of beta-endorphins in re-

sponse to stress. They were interested in testing whether beta-endorphin levels rose in

stressful situations. They recorded beta-endorphin levels in 19 patients 12 hours before

surgery and again, for the same patients, 10 minutes before surgery. The data4 follow in

fmol/ml.

12 hours 10.0 6.5 8.0 12.0 5.0 11.5 5.0 3.5 7.5 5.8 4.7

10 min. 20.0 14.0 13.5 18.0 14.5 9.0 18.0 6.5 7.4 6.0 25.0

Difference 10.0 7.5 5.5 6.0 9.5 22.5 13.0 3.0 20.1 0.2 20.3

12 hours 8.0 7.0 17.0 8.8 17.0 15.0 4.4 2.0

10 min. 12.0 15.0 42.0 16.0 52.0 11.5 2.5 2.1

Difference 4.0 8.0 25.0 7.2 35.0 23.5 21.9 0.1

Because these are paired scores, we are primarily interested in the difference scores.

We want to test the null hypothesis that the average difference score was 0.0, which would

indicate that there was no change in endorphin levels on average. The difference scores are

shown in the bottom line of the table, where it is clear that most differences are positive,

and those that are negative are relatively small. If you were to plot the differences in this

example, you would find that they are very positively skewed, which might discourage us

from using a standard parametric t test. Moreover, if we were particularly interested in the

median of the differences, a t test would not be appropriate. We will solve our problem by

drawing on resampling statistics.

Our resampling procedure is based on the idea that if the null hypothesis is true, a

patient’s 10-minute score was just as likely to be larger than his 12-hour score as it was

to be smaller. If a patient has scores of 8.0 and 13.5, and if the null hypothesis is true, the

13.5 could just as likely come from the 12-hour measurement as from the 10-minute

measurement. Under H
0

each difference had an equal chance of being positive or nega-

tive. This tells us how to model what the data would look like under H
0
. We will simply

draw a very large number of samples of 19 difference scores each, in such a way that the

difference score has a 50:50 chance of being positive or negative. For each sample we

will calculate the median of the differences, and then plot the sampling distribution of

these differences. Remember, this is the sampling distribution of the differences when

H
0

is true. We can compare our obtained median difference against this distribution to

test H
0
.

The way that we will conduct this test using Simon and Bruce’s Resampling Stats is to

take all 19 difference scores and randomly attach the sign of the difference. (Assigning the
sign at random is exactly equivalent to randomly assigning one score to the 12-hour condi-
tion and the other to the 10-minute condition.) We will then calculate the median differ-

ence and store that. This procedure will be repeated many times (in this case, 10,000

times). The program and results are shown in Figure 18.4, with the resulting histogram in

Figure 18.5.

From Figure 18.4 we can see that the obtained median difference score was 6. From

either the frequency distribution in Figure 18.4 or the histogram in Figure 18.5 we see the

results of drawing 10,000 samples from a model in which the null hypothesis is true.
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Figure 18.4 Resampling program and results for beta-endorphin data
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Figure 18.5 is reassuring because it shows us that when the null is true, the resampled

medians are distributed symmetrically about 0, which is what we would expect. From that

figure we can also see that our obtained median of 6 is certainly extreme under H
0
. Going

back to Figure 18.4 we see that there were 10 resampled medians as large as 6, and 13

resampled values as low as –6. If we want a two-tailed test, the probability of a median as

extreme as the one we obtained is (10 1 13)/10,000 5 .0023, which is certainly a small

probability. These results, thus, tell us that if we were sampling from a model where H
0

is

true, the probability is very small that we would obtain a sample median as extreme as the

one we obtained. Therefore we will reject the null hypothesis and conclude that beta-

endorphin levels do increase as the time for surgery approaches. This is really a very good

thing, because endorphins act as the body’s pain pills.

18.4 Resampling with Two Independent Samples

Now we will move on to the resampling equivalent of the t test for two independent sam-

ples. The example we will use involves data collected by Epping-Jordan, Compas, and

Howell (1994) on the effect of avoidance on women’s recovery from breast cancer. Epping-

Jordon was interested in examining the question of whether people who try to actively

avoid thinking about their cancer have a poorer prognosis over a one-year period than those

who do not report high levels of avoidance behavior. She collected data on the incidence of

avoidance shortly after patients had been diagnosed with breast cancer. At the end of one

year she sorted patients into those who were in remission (49 cases) and those who were

no better or who had died (28 cases). These groups were labeled Success and Fail, respec-

tively. The data are shown in Table 18.1. Epping-Jordan then compared the earlier reported

level of avoidance for the two groups.

For this example we will compare the medians of the two groups, although we could

just as easily compare their means.

If the null hypothesis is true in Epping-Jordan’s case, the two samples (Success and Fail)

can be thought of as having been drawn from one population. Any particular Avoidance
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score would be as likely to belong to the Success group as to belong to the Fail group. We

could model this null situation by assigning a random sample of 49 of the scores to the Suc-

cess group and the remaining 18 scores to the Fail group. (Notice here that we are sampling

without replacement.) The difference between those two groups’ medians would be an ex-

ample of a median difference that we might reasonably obtain under H
0
. We could repeat

this procedure (randomly assigning 49 scores to the Success group and 18 scores to the Fail

group) many times, and look at the median differences we obtain. Finally, we could com-

pare the difference we actually found with those we obtained when we modeled the null

hypothesis.

The above procedure is quite easy to do, because we simply shuffle the complete data

set, split the result into the first 49 cases and the last 18 cases, compute and record the

medians and the median differences, shuffle the data again, and repeat this process 10,000

times. The result of such a procedure is shown in Figures 18.6 and 18.7. I have omitted the

program syntax because it would not add to the presentation.
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Table 18.1 Data on avoidance from Epping-Jordon et al. (1994)

Success Fail

19 14 17 10 18 17 17 21

23 12 10 14 17 15 8 12

20 21 8 12 16 11 27 18

8 11 13 23 13 22 18 18

11 9 8 20 22 16

13 15 18 15 

13 8 16 15 

16 14 11 19

10 12 12 15 

8 12 12 17 

20 18 25 12 

9 23 11 21 

13 

Median 14 17

n 49 18

MEDSUCC 5 13

MEDFAIL 5 17

MEDDIFF 5 4

GREATER 5 222

LESS 5 264

MOREEXT 5 486

Median for Success group

Median for Fail group

Number of difference $ 4

Number of differences , 24

486/10,000 5 .0486 5
Probability of this difference
under the null hypothesis

Difference in Medians

Figure 18.6 Summary results of resampling from Epping-Jordan et al. data



From Figure 18.6 we can see that the median Avoidance score for the Success group

was 13, and the median for the Fail group was 17. The group who failed to improve exhib-

ited more avoidance behavior early in treatment. The difference in median avoidance is 24.

From the output you can also see that when we model the null hypothesis, 222 of the

resamples were greater than a difference of 4, 264 results were less than a difference of 24,

and 486 results were greater than 64. Out of 10,000 samples, this represents 486/10,000 5

4.86% of the cases. Thus only 4.9% of the resampling statistics were more extreme than

our result, and we can reject the null hypothesis at a 5 .05. We can conclude that those in

the Fail group experienced significantly more avoidance behavior early in treatment than

those who later were classed as successes.5

18.5 Bootstrapping Confidence Limits 
on a Correlation Coefficient

The standard approach to correlation problems is to calculate a correlation coefficient and

then to apply a hypothesis test with the hope of showing that the correlation is significantly

different from 0.00. However, there are a lot of significant correlations that are so low that

they are not particularly important, even if they are significantly different from 0.00. Along

with the recent emphasis on effect, size measures should be an increase in the use of confi-

dence limits.

As we saw in Chapter 9, Fisher’s arcsine transformation

provides one way to adjust for the skewed sampling distribution of r when r 0. An

attractive alternative is to draw bootstrapped samples on the assumption that the bivariate

±

r¿ = (0.5) loge
2 1 1 r

1 2 r
2
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Figure 18.7 Frequency distribution of median differences from Epping-Jordan 

et al. (1994)

5 If we had run a standard t test on the means of these data, that probability would have been .0397.



data reflect the relationship in the population, and then to obtain confidence limits simply

by taking the cutoffs for the a/2 percent of each end of the distribution.

As an example, we can look at the data from Macauley on the mental status scores of

older adults. Macauley’s data included 123 adults between the ages of 60 and 97, and we

can look at the relationship between memory performance and age. We would probably

expect to see a negative correlation between the two variables, but the significance of the

correlation is not as useful as confidence limits on this correlation, which give us a better

sense of how strong the relationship really is.

The bootstrap approach to obtaining these confidence limits would involve sampling

123 cases, with replacement, from the XY pairs in the sample, computing the correlation

between the variables, and repeating this a large number of times. We then find the 2.5 and

97.5 percentile of the sampling distribution, and that gives us our 95% confidence limits.

I have written a Windows program, which is available at www.uvm.edu/~dhowell/

StatPages/ that will carry out this procedure. (It will also calculate a number of other

resampling procedures.) The results of drawing 2000 resamples with replacement from the

pseudo-population of pairs of scores are shown in Figure 18.8.
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Figure 18.8 Sampling distribution and confidence limits on correlation between age and memory 

performance in older adults



In the center of this figure you can see the sampling distribution of r. To the left is the

obtained correlation (–.268) and upper and lower confidence limits. These are –.43 and –.11.

Because they are both on the same side of 0.00, we also know that our correlation is signif-

icant. The confidence interval may strike you as surprisingly wide, but confidence intervals

on correlation coefficients often are.

The example from Macauley involved a fairly low correlation coefficient that, because it

was only –.268, was nearly symmetrically distributed around 0.00. If we run the same analy-

sis on the beta-endorphin data that we used earlier, we can easily see the skewed nature of the

sampling distribution for large correlations. This result is shown in Figure 18.9.

Figure 18.9 presents two interesting results. In the first place, notice that, because the

correlation is fairly large (r 5 .699), the sampling distribution is very negatively skewed.

In addition, notice how asymmetrical the confidence limits are. The upper limit is .91,

which is a bit more than 20 points higher than r. However, the lower limit is .11, which is

approximately 59 points lower. Whenever we have large correlations the sampling distribu-

tion will be skewed and our confidence limits will be asymmetrical.
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Figure 18.9 Sampling distribution of r for beta-endorphin data for 10,000 resamples



An excellent discussion of bootstrapped estimates of confidence limits can be found in

Mooney and Duval (1983). They discuss corrections for bias that are relatively easy to

apply. Excellent sources on both bootstrapping and randomization tests can be found in

Edgington (1995), Manly (1997), and Efron and Tibshirani (1993). Efron has probably

been the most influential developer of the bootstrap approach, and his book with Tibshirani

is an important source. Good (2000) has a presentation of permutation tests, and Lunnenborg

(2000) addresses resampling methods at a sophisticated, but very readable, level.

Additional information on resampling and bootstrapping is available from the website

that I maintain at http://www.uvm.edu/~dhowell/StatPages/StatHomePage.html. These par-

ticular pages cover the whole philosophy behind resampling procedures and the ways in

which they differ from parametric procedures. This is a rapidly expanding field, and a

wealth of new results are being published on a regular basis.

Although I happen to like my own programs best, for obvious personal reasons, the R
programming environment, which is free and can be downloaded at www.r-project.org, and

its commercial application S-Plus, do an excellent job of handling resampling procedures

because of their flexibility and the way they implement repetitive sampling. However the

language is not easy to learn.

18.6 Wilcoxon’s Rank-Sum Test

We will now move away from bootstrapping and randomization to the more traditional

non-parametric tests. One of the most common and best-known of these tests is the

Wilcoxon rank-sum test for two independent samples. This test is often thought of as the

nonparametric analogue of the t test for two independent samples, although it tests a

slightly different, and broader, null hypothesis. Its null hypothesis is the hypothesis that the

two samples were drawn at random from identical populations (not just populations with

the same mean), but it is especially sensitive to population differences in central tendency.

Thus, rejection of is generally interpreted to mean that the two distributions had differ-

ent central tendencies, but it is possible that rejection actually resulted from some other dif-

ference between the populations. Notice that when we gain one thing (freedom from

assumptions) we pay for it with something else (loss of specificity).

The logical basis of Wilcoxon’s rank-sum test is particularly easy to understand.

Assume that we have two independent treatment groups, with observations in group 1

and observations in group 2. Further assume that the null hypothesis is false to a very

substantial degree and that the population from which group 1 scores have been sampled

contains values generally lower than the population from which group 2 scores were

drawn. Then, if we were to rank all scores from lowest to highest without

regard to group membership, we would expect that the lower ranks would fall primarily to

group 1 scores and the higher ranks to group 2 scores. Going one step further, if we were

to sum the ranks assigned to each group, the sum of the ranks in group 1 would be expected

to be appreciably smaller than the sum of the ranks in group 2.

Now consider the opposite case, in which the null hypothesis is true and the scores for

the two groups were sampled from identical populations. In this situation if we were to

rank all N scores without regard to group membership, we would expect some low ranks

and some high ranks in each group, and the sum of the ranks assigned to group 1 would be

roughly equal to the sum of the ranks assigned to group 2. These situations are illustrated

in Table 18.2.

Wilcoxon based his test on the logic just described, using the sum of the ranks in one

of the groups as his test statistic. If that sum is too small relative to the other sum, we will

reject the null hypothesis. More specifically, we will take as our test statistic the sum of the

n1 1 n2 = N

n2

n1

H0
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ranks assigned to the smaller group, or, if , the smaller of the two sums.6 Given this

value, we can use tables of the Wilcoxon statistic ( ) to test the null hypothesis.

To take a specific example, consider the following hypothetical data on the number of

recent stressful life events reported by a group of Cardiac Patients in a local hospital and a

control group of Orthopedic Patients in the same hospital. It is well known that stressful

life events (marriage, new job, death of spouse, and so on) are associated with illness, and

it is reasonable to expect that, on average, many cardiac patients would have experienced

more recent stressful events than would orthopedic patients (who just happened to break an

ankle while tearing down a building or a leg while playing touch football). It would appear

from the data that this expectation is borne out. Since we have some reason to suspect that

life stress scores probably are not symmetrically distributed in the population (especially

for cardiac patients, if our research hypothesis is true), we will choose to use a nonpara-

metric test. In this case, we will use the Wilcoxon rank-sum test because we have two inde-

pendent groups.

Cardiac Patients Orthopedic Patients

Raw Data 32 8 7 29 5 0 1 2 2 3 6

Ranks 11 9 8 10 6 1 2 3.5 3.5 5 7

To apply Wilcoxon’s test we first rank all 11 scores from lowest to highest, assigning tied

ranks to tied scores (see the discussion on ranking in Chapter 10). The orthopedic group is

the smaller of the two and, if those patients generally have had fewer recent stressful life

events, then the sum of the ranks assigned to that group should be relatively low. Letting 

stand for the sum of the ranks in the smaller group (the orthopedic group), we find

5 2 1 3.5 1 3.5 1 5 1 7 5 21

We can evaluate the obtained value of by using Wilcoxon’s table (Appendix ),

which gives the smallest value of that we would expect to obtain by chance if the null

hypothesis were true. From Appendix we find that for 5 5 subjects in the smaller

group and 5 6 subjects in the larger group ( is always the number of subjects in the

smaller group if group sizes are unequal), the entry for a 5 .025 (one-tailed) is 18. This

means that for a difference between groups to be significant at the one-tailed .025 level, or

the two-tailed .05 level, must be less than or equal to 18. Since we found to be equal

to 21, we cannot reject . (By way of comparison, if we ran a t test on these data, ignoringH0

WSWS

n1n2

n1WS

WS

WSWS

WS

WS

WS

n1 = n2
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Table 18.2 Illustration of typical results to be expected under H
0

false and H
0

true

H
0

False

Raw Data 10 12 17 13 19 20 30 26 25 33 18 27

Ranks (Ri) 1 2 4 3 6 7 11 9 8 12 5 10

23 55

H
0
True

Raw Data 22 28 32 19 24 33 18 25 29 20 23 34

Ranks (Ri) 4 8 10 2 6 11 1 7 9 3 5 12

41 37g(Rt)

g(Rt)

6 Because the sum of the ranks in the smaller group and the sum of the ranks in the larger group sum
to a constant, we only need to use one of those sums.    



the fact that one sample variance is almost 50 times the other and that the data suggest that

our prediction of the shape of the distribution of cardiac scores may be correct, t would be

1.92 on 9 df, a nonsignificant result with p 5 .110. Using a resampling program on the

means of the raw data, the probability of an outcome this extreme would be .059. A similar

test on medians would yield p 5 .059.)

The entries in Appendix are for a one-tailed test and will lead to rejection of the null

hypothesis only if the sum of the ranks for the smaller group is sufficiently small. It is pos-

sible, however, that the larger ranks could be congregated in the smaller group, in which

case if is false, the sum of the ranks would be larger than chance expectation rather than

smaller. One rather awkward way around this problem would be to rank the data all over

again, this time ranking from high to low. If we did this, then the smaller ranks would now

appear in the smaller group and we could proceed as before. We do not have to go through

the process of reranking data, however. We can accomplish the same thing by using the

symmetric properties of the distribution of the rank sum by calculating a statistic called .

The statistic is the sum of the ranks for the smaller group that we would have found if

we had reversed our ranking and ranked from highest to lowest:

where and is shown in the table in Appendix . We can then eval-

uate against the tabled value and have a one-tailed test on the upper tail of the distribu-

tion. For a two-tailed test of (which is what we normally want), we calculate and ,

enter the table with whichever is smaller, and double the listed value of a.

To illustrate and , consider the two sets of data in Table 18.3. Notice that the two

data sets exhibit the same degree of extremeness, in the sense that for the first set four of

the five lowest ranks are in group 1, and in the second set four of the five highest ranks are

in group 1. Moreover, for set 1 is equal to for set 2, and vice versa. Thus, if we

establish the rule that we will calculate both and for the smaller group and refer the

smaller of and to the tables, we will come to the same conclusion with respect to

the two data sets.

The Normal Approximation

Appendix is suitable for all cases in which and are less than or equal to 25. For

larger values of and/or , we can make use of the fact that the distribution of 

approaches a normal distribution as sample sizes increase. This distribution has

Mean =
n1(n1 1 n2 1 1)

2

WSn2n1

n2n1WS

W¿SWS

W¿SWS

W¿SWS

W¿SWS

W¿SWSH0

W¿S

WS2W = n1(n1 1 n2 1 1)

W¿S = 2W 2 WS

W¿S

W¿S

H0

WS
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Table 18.3 Sample data for Wilcoxon’s rank-sum test 

Set 1 Group 1 Group 2

X 2 15 16 19 18 23 25 37 82

Ranks 1 2 3 5 4 6 7 8 9

Set 2 Group 1 Group 2

X 60 40 24 21 23 18 15 14 4

Ranks 9 8 7 5 6 4 3 2 1

W¿S = 11

WS = 29

W¿S = 29

WS = 11



and

Since the distribution is normal and we know its mean and standard deviation (the standard

error), we can calculate

and obtain from the tables of the normal distribution an approximation of the true probability

of a value of at least as low as the one obtained. (It is immaterial whether we use or

in this situation, since they will produce equal values of z, differing only in sign.)

To illustrate the computations for the case in which the larger ranks fall in the smaller

groups and to illustrate the use of the normal approximation (although we do not really need

to use an approximation for such small sample sizes), consider the data in Table 18.4. These

W¿S

WSWS

z =
Statistic 2 Mean

Standard deviation
=

WS 2
n11n1 1 n2 1 12

2

Bn1n21n1 1 n2 1 12
12

Standard error = Bn1n21n1 1 n2 1 12
12
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Table 18.4 Hypothetical data on birthweight of infants born to 

mothers with different levels of prenatal care

Beginning of Care

Third  Trimester First  Trimester

Birthweight Rank Birthweight Rank

1680 2 2940 10

3830 17 3380 16

3110 14 4900 18

2760 5 2810 9

1700 3 2800 8

2790 7 3210 15

3050 12 3080 13

2660 4 2950 11

1400 1

2775 6

=
100 2 762126.6667

= 2.13

=

100 2
818 1 10 1 12

2

B8110218 1 10 1 12
12

z =

WS 2
n11n1 1 n2 1 12

2

Bn1n21n1 1 n2 1 12
12

W¿S = 2W 2 WS = 152 2 100 = 52

WS = a 1Ranks in Group 22 = 100



data are hypothetical (but not particularly unreasonable) data on the birthweight (in grams)

of children born to mothers who did not seek prenatal care until the third trimester and those

born to mothers who received prenatal care starting in the first trimester.

For the data in Table 18.4 the sum of the ranks in the smaller group equals 100. From

Appendix we find , and thus . Since 52 is smaller than

100, we enter Appendix with , , and . ( is defined as the

smaller sample size.) Since we want a two-tailed test, we will double the tabled value of a.

The critical value of (or ) for a two-tailed test at a 5 .05 is 53, meaning that only 5%

of the time would we expect a value of or less than or equal to 53 if is true. Our

obtained value of is 52, which thus falls in the rejection region, and we will reject . We

will conclude that mothers who do not receive prenatal care until the third trimester tend to

give birth to smaller babies. This probably does not mean that not having care until the third

trimester causes smaller babies, but only that variables associated with delayed care

(e.g., young mothers, poor nutrition, or poverty) are also associated with lower birthweight.

The use of the normal approximation for evaluating is illustrated in the bottom part

of Table 18.3. Here we find that z 5 2.13. From Appendix z we find that the probability of

as large as 100 or as small as 52 (a z as extreme as 62.13) is 2(.0166) 5 .033. Since

this value is smaller than our traditional cutoff of a 5 .05, we will reject and again

conclude that there is sufficient evidence to say that failing to seek early prenatal care is re-

lated to lower birthweight. Note that both the exact solution and the normal approximation

lead to the same conclusion with respect to . However, a resampling test on the means

using randomization would yield p 5 .059 (two-tailed). (It would be instructive for you to

calculate t for the same set of data.)

The Treatment of Ties

When the data contain tied scores, any test that relies on ranks is likely to be somewhat

distorted. Ties can be dealt with in several different ways. You can assign tied ranks to tied

scores (as we have been doing), you can flip a coin and assign consecutive ranks to tied

scores, or you can assign untied ranks in whatever way will make it hardest to reject . In

actual practice, most people simply assign tied ranks. Although that may not be the best

way to proceed statistically, it is clearly the most common and is the method that we will

use here.

The Null Hypothesis

Wilcoxon’s rank-sum test evaluates the null hypothesis that the two sets of scores were

sampled from identical populations. This is broader than the null hypothesis tested by the

corresponding t test, which dealt specifically with means (primarily as a result of the

underlying assumptions that ruled out other sources of difference). If the two populations

are assumed to have the same shape and dispersion, then the null hypothesis tested by the

rank-sum test will actually deal with the central tendency (in this case the medians) of the

two populations, and if the populations are also symmetric, the test will be a test of means.

In any event, the rank-sum test is particularly sensitive to differences in central tendency.

Wilcoxon’s Test and Resampling Procedures

An interesting feature of Wilcoxon’s test is that it is actually not anything you haven’t seen

before. Wilcoxon derived his test as a permutation test on ranked data, and such tests are

often referred to as rank-randomization tests. In other words, if you took the data we had

earlier, converted them to ranks, and ran a standard permutation tests (which is really a

H0

H0

H0

WS

WS

H0W¿S

H0W¿SWS

W¿SWS

n1n2 = 10n1 = 8W¿S = 52WS

W¿S = 2W 2 WS = 522W = 152WS
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randomization test where we draw every possible permutation once and only once), you

would obtain the same result that Wilcoxon’s test produces. The reason that Wilcoxon was

able to derive his test many years before computers could reasonably do the calculations,

and why he could create tables for it, is that he uses ranks. We know a good many things

about ranks, such as their sum and mean, without having to do the calculations. If we have

five numbers, we know that their ranks will be the numbers 1 – 5, and the sum of the ranks

will be 15, regardless of what their individual values are. This allowed Wilcoxon to derive

the resulting sampling distributions once, and only once, and thus create his tables.

The Mann–Whitney U statistic

A common competitor to the Wilcoxon rank-sum test is the Mann–Whitney U test. We do

not need to discuss the Mann–Whitney test at any length, however, because the two are

equivalent tests, and there is a perfect linear relationship between and U. The only rea-

son for its inclusion here is that you may run across a reference to U, and therefore you

should know what it is. Very simply,

where n
1

is the smaller of the two sample sizes. From this formula we can see that for any

given set of sample sizes, U and differ by only a constant (as do their critical values).

Since we have this relationship between the two statistics, we can always convert U to 

and evaluate using Appendix .

18.7 Wilcoxon’s Matched-Pairs Signed-Ranks Test

Wilcoxon is credited with developing not only the most popular nonparametric test for

independent groups, but also the most popular test for matched groups (or paired scores).

This test is the nonparametric analogue of the t test for related samples, and it tests the null

hypothesis that two related (matched) samples were drawn either from identical popula-

tions or from symmetric populations with the same mean. More specifically, it tests the null

hypothesis that the distribution of difference scores (in the population) is symmetric about

zero. This is the same hypothesis tested by the corresponding t test when that test’s nor-

mality assumption is met.

The development of the logic behind the Wilcoxon matched-pairs signed-ranks test

is as straightforward as it was for his rank-sum test and can be illustrated with a simple

example. Assume that we want to test the often-stated hypothesis that a long-range

program of running will reduce blood pressure. To test this hypothesis, we measure the

blood pressure of a number of participants, ask them to engage in a systematic program of

running for 6 months, and again test their blood pressure at the end of that period. Our

dependent variable will be the change in blood pressure over the 6-month interval. If

running does reduce blood pressure, we would expect most of the participants to show a

lower reading the second time, and thus a positive pre–post difference. We also would

expect that those whose blood pressure actually went up (and thus have a negative pre–post

difference) would be only slightly higher. On the other hand, if running is worthless as a

method of controlling blood pressure, then about one-half of the difference scores will be

positive and one-half will be negative, and the positive differences will be about as large as

the negative ones. In other words, if is really true, we would no longer expect most

changes to be in the predicted direction with only small changes in the unpredicted direc-

tion. Notice that we have two expectations here: (1) Most of the changes will be in the same

H0

WSWS

WS

WS

U =
n1(n1 1 2n2 1 1)

2
2 WS

WS
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direction; (2) Those that are in the opposite direction will be small ones. We will relax that

second expectation when we shortly come to the Sign test, but with a concomitant loss in

power.

As is illustrated in the following numerical example, in carrying out the Wilcoxon

matched-pairs signed ranks test we first calculate the difference score for each pair of

measurements. We then rank all difference scores without regard to the sign of the differ-

ence, then assign the algebraic sign of the differences to the ranks themselves, and finally

sum the positive and negative ranks separately. The test statistic (T ) is taken as the smaller

of the absolute values (i.e., ignoring the sign) of the two sums, and is evaluated against the

tabled entries in Appendix T. (It is important to note that in calculating T we attach alge-

braic signs to the ranks only for convenience. We could just as easily, for example, circle

those ranks that went with improvement and underline those that went with deterioration.

We are merely trying to differentiate between the two cases.)

Assume that the study previously described produced the following data on systolic

blood pressure before and after the six-month training session:

Before: 130 170 125 170 130 130 145 160

After: 120 163 120 135 143 136 144 120

Difference (B 2 A): 10 7 5 35 213 26 1 40

Rank of Difference: 5 4 2 7 6 3 1 8

Signed Rank: 5 4 2 7 26 23 1 8

The first two rows contain the participants’ blood pressures as measured before and

after a six-month program of running. The third row contains the difference scores,

obtained by subtracting the “after” score from the “before.” Notice that only two partici-

pants showed a negative change—increased blood pressure. Since these difference scores

do not appear to reflect a population distribution that is anywhere near normal, we have

chosen to use a nonparametric test. In the fourth row, all the difference scores have been

ranked without regard to the direction of the change; in the fifth row, the appropriate sign

has been appended to the ranks to discriminate those participants whose blood pressure

decreased from those whose blood pressure increased. At the bottom of the table we see

the sum of the positive and negative ranks ( and ). Since T is defined as the smaller

absolute value of and , T 5 9.

To evaluate T we refer to Appendix T, a portion of which is shown in Table 18.5. This

table has a format somewhat different from that of the other tables we have seen. The

easiest way to understand what the entries in the table represent is by way of an analogy.

Suppose that to test the fairness of a coin you were going to flip it eight times and reject

the null hypothesis, at a 5 .05 (one-tailed), if there were too few heads. Out of eight

flips of a coin there is no set of outcomes that has a probability of exactly .05 under .

The probability of one or fewer heads is .0352, and the probability of two or fewer heads

is .1445. Thus, if we want to work at a 5 .05, we can either reject for one or fewer heads,

in which case the probability of a Type I error is actually .0352 (less than .05), or we can

reject for two or fewer heads, in which case the probability of a Type I error is actually

.1445 (very much greater than .05). The same kind of problem arises with T because it,

like the binomial distribution that gave us the probabilities of heads and tails, is a dis-

crete distribution.7

H0

T2T1

T2T1

T2 = a (negative ranks) = 29

T1 = a (positive ranks) = 27
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In Appendix T we find that for a one-tailed test at a 5 .025 (or a two-tailed test at

a 5 .05) with n 5 8, the entries are 3 (0.0195) and 4 (0.0273). This tells us that if we

want to work at a (one-tailed) a 5 .025, which is the equivalent of a two-tailed test at

a 5 .05, we can either reject for T 3 (in which case a actually equals .0195) or

we can reject for T 4 (in which case the true value of a is .0273). Since we want a

two-tailed test, the probabilities should be doubled to 3 (0.0390) and 4 (0.0546). Since

we obtained a T value of 9, we would not reject , whichever cutoff we chose. We will

conclude therefore that we have no reason to doubt that blood pressure is unaffected by

a short (6-month) period of daily running. It is going to take a lot more than six months

to make up for a lifetime of dissipated habits.

Ties

Ties can occur in the data in two different ways. One way would be for a participant to have

the same before and after scores, leading to a difference score of 0, which has no sign. In

this case, we normally eliminate that participant from consideration and reduce the sample

size accordingly, although this leads to some bias in the data.

In addition, we could have tied difference scores that lead to tied rankings. If both the

tied scores are of the same sign, we can break the ties in any way we wish (or assign tied

H0

…
…H0
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Table 18.5 Critical lower-tail values of T and their associated probabilities (Abbreviated

version of Appendix T )

Nominal a (One-Tailed)

0.05 0.025 0.01 0.005

N T T T T

5 0 0.0313

1 0.0625

6 2 0.0469 0 0.0156

3 0.0781 1 0.0313

7 3 0.0391 2 0.0234 0 0.0078

4 0.0547 3 0.0391 1 0.0156

8 5 0.0391 3 0.0195 1 0.0078 0 0.0039

6 0.0547 4 0.0273 2 0.0117 1 0.0078

9 8 0.0488 5 0.0195 3 0.0098 1 0.0039

9 0.0645 6 0.0273 4 0.0137 2 0.0059

10 10 0.0420 8 0.0244 5 0.0098 3 0.0049

11 0.0527 9 0.0322 6 0.0137 4 0.0068

11 13 0.0415 10 0.0210 7 0.0093 5 0.0049

14 0.0508 11 0.0269 8 0.0122 6 0.0068

ÁÁÁÁÁÁÁÁÁ

aaaa



ranks) without affecting the final outcome. If the scores are of opposite signs, we normally

assign tied ranks and proceed as usual.

The Normal Approximation

When the sample size is larger than 50, which is the limit for Appendix T, a normal approx-

imation is available to evaluate T. For larger sample sizes, we know that the sampling

distribution of T is approximately normally distributed with

and

Thus, we can calculate

and evaluate z using Appendix z. The procedure is directly analogous to that used with the

rank-sum test and will not be repeated here.

Another interesting example of the use of Wilcoxon’s signed-ranks matched-pairs test

is found in a study by Manning, Hall, and Gold (1990). These investigators were interested

in studying the role of glucose in memory, in particular its effects on performance of mem-

ory tasks for elderly people. There has been considerable suggestion in the literature that

participants with poor glucose regulation show poor memory and decreased performance

on other kinds of neuropsychological tests.

Manning et al. asked 17 elderly volunteers to perform a battery of tests early in the

morning after having drunk an 8-ounce lemon-flavored drink sweetened with either glu-

cose or saccharin. Saccharin would taste as sweet but would not elevate blood glucose lev-

els. Participants performed these tasks under both conditions, so we have matched sets of

data. On one of these tasks, for which they had data on only 16 people, participants were

read a narrative passage and were asked for recall of that passage 5 minutes later. The

dependent variable was not explicitly defined, but we will assume that it was the number

of specific propositions recalled from the passage.

The data given in Table 18.6 were generated to produce roughly the same means, stan-

dard deviations, and test results as the data found by Manning et al. From Appendix T with

N 5 16 and a two-tailed test at a 5 .05, we find that the critical value of T is 35 or 36,

depending on whether you prefer to err on the liberal or conservative side. Our value of

5 14.5 is less than either and is therefore significant. This is the same conclusion that

Manning et al. came to when they reported improved recall in the Glucose condition.

As an example of using the normal approximation, we can solve for the normal variate

(z score) associated with a T of 14.5 for N 5 16. In this case,

which has a two-tailed probability under of .0056. A resampling procedure on the

means would produce p 5 .002 (two-tailed).

H0

z =

T 2
n(n 1 1)

4

Bn(n 1 1)(2n 1 1)

24

=

14.5 2
(16)(17)

4

B(16)(17)(33)

24

= 22.77

Tobt

z =

T 2  
n(n 1 1)

4

Bn(n 1 1)(2n 1 1)

24

Standard error = Bn(n 1 1)(2n 1 1)

24
Mean =

n(n 1 1)

4
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18.8 The Sign Test

The Wilcoxon matched-pairs signed-ranks test is an excellent distribution-free test for

differences with matched samples. Unlike Student’s t test, it makes less than maximum use

of the data, in that it substitutes ranks for raw score differences, thus losing some of the

subtle differences among the data points. When the assumptions of Student’s t hold, it also

has somewhat less power. When those assumptions do not hold, however, it may have

greater power. A test that goes even further in the direction of gaining freedom from

assumptions at the cost of power is the sign test. This test loses even more information by

ignoring the values altogether and looking only at the sign of the differences. As a result, it

loses even more power. We discussed the test briefly in Chapter 6 but will give a second

example here for completeness.

We can use the example from Manning et al. (1990) in the preceding section. It might

be argued that this is a good candidate for such a test because the Wilcoxon test was forced

to rely on a large number of tied ranks. This argument is not all that persuasive because the

results would have been the same no matter how you had broken the tied ranks, but it

would be comforting to know that Manning et al.’s results are sufficiently solid that a sign

test would also reveal their statistical significance.

The data from Manning et al. are repeated in Table 18.7. From these data you can see

that 13 out of 16 participants showed higher recall under the Glucose condition, whereas

only 3 of the 16 showed higher recall under the Saccharin condition. The sign test consists

simply of asking the question of whether a 3-to-13 split would be likely to occur if recall

under the two conditions were equally good.

This test could be set up in several ways. We could solve for the binomial probability

of 13 or more successes out of 16 trials given p 5 .50. From standard tables, or the bino-

mial formula, we would find

p(13) 5 .0085

p(14) 5 .0018

p(15) 5 .0002

p(16) 5 .0000

Sum .0105
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Table 18.6 Recall scores for elderly participants after drinking a glucose or saccharin solution

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Glucose 0 10 9 4 8 6 9 3 12 10 15 9 5 6 10 6

Saccharin 1 9 6 2 5 5 7 2 8 8 11 3 6 8 8 4

Difference 21 1 3 2 3 1 2 1 4 2 4 6 21 22 2 2

Positive

ranks 3 12.5 8.5 12.5 3 8.5 3 14.5 8.5 14.5 16 8.5 8.5

Negative 

ranks 23 23 28.5

T
1

5 (positive ranks) 5 121.5

T
2

5 (negative ranks) 5 14.5 g

g

sign test



Since the binomial distribution is symmetric for p 5 .50, we would then double this proba-

bility to obtain the two-tailed probability, which in this case is .021. Since this probability

is less than .05, we would reject the null hypothesis and conclude that recall is greater in

the Glucose condition.

We could also solve for this probability by using the normal approximation given in

Chapter 5. We would again come to essentially the same result, differing only by the accu-

racy of the approximation.

Yet a third possibility, which is logically equivalent to the others, is to use a goodness

of fit test. In this case we would take 8 as our expected frequency for each cell, since if

the two conditions lead to equal recall we would expect half of our 16 participants to do

better by chance under each condition. We would then set up the table

Glucose Saccharin

Observed 13 3

Expected 8 8

The critical value of on 1 df is 3.84, so we can reject and again conclude that the dif-

ference is significant. (The probability of 6.25 is .0124, which agrees well enough,

given the small sample size, with the exact binomial probability.) All three of these tests

are more or less equivalent, and you can use whichever is most convenient.

18.9 Kruskal–Wallis One-Way Analysis of Variance

The Kruskal–Wallis one-way analysis of variance is a direct generalization of the

Wilcoxon rank-sum test to the case in which we have three or more independent groups.

As such, it is the nonparametric analogue of the one-way analysis of variance discussed in

Chapter 11. It tests the hypothesis that all samples were drawn from identical populations

and is particularly sensitive to differences in central tendency.

To perform the Kruskal–Wallis test, we simply rank all scores without regard to group

membership and then compute the sum of the ranks for each group. The sums are denoted

by . If the null hypothesis is true, we would expect the s to be more or less equal (aside

from difference due to the size of the samples). A measure of the degree to which the 

differ from one another is provided by

H =
12

N1N 1 12a
k

i=1

R2
i

ni
2 31N 1 12

Ri

RiRi

Úx2
H0x2

x2 = a
1O 2 E22

E
=
113 2 822

8
1
13 2 822

8
= 6.25

x2
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Table 18.7 Data from Manning et al. (1990)

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Glucose 0 10 9 4 8 6 9 3 12 10 15 9 5 6 10 6

Saccharin 1 9 6 2 5 5 7 2 8 8 11 3 6 8 8 4

Difference 21 1 3 2 3 1 2 1 4 2 4 6 21 22 2 2

Sign 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1

Kruskal–Wallis

one-way

analysis of

variance



where

H is then evaluated against the distribution k 2 1 df.

As an example, assume that the data in Table 18.8 represent the number of simple arith-

metic problems (out of 85) solved (correctly or incorrectly) in 1 hour by participants given a

depressant drug, a stimulant drug, or a placebo. Notice that in the Depressant group three of

the participants were too depressed to do much of anything, and in the Stimulant group three

of the participants ran up against the limit of 85 available problems. These data are decidedly

nonnormal, and we will use the Kruskal–Wallis test. The calculations are shown in the lower

part of the table. The obtained value of H is 10.36, which can be treated as on 3 2 1 5 2 df.

The critical value of is found in Appendix to be 5.99. Since 10.36 . 5.99, we can

reject and conclude that the three drugs lead to different rates of performance.

18.10 Friedman’s Rank Test for 
k Correlated Samples

The last test to be discussed in this chapter is the nonparametric analogue of the one-way

repeated-measures analysis of variance, Friedman’s rank test for k correlated samples.

It was developed by the well-known economist Milton Friedman—in the days before he

H0

x2x2
.05122

x2

x2

N = a ni = total sample size

Ri = the sum of the ranks in groupi

ni = the number of observations in groupi

k = the number of groups
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Table 18.8 Kruskal–Wallis test applied to data on problem solving

Depressant Stimulant Placebo

Score Rank Score Rank Score Rank

55 9 73 15 61 11

0 1.5 85 18 54 8

1 3 51 7 80 16

0 1.5 63 12 47 5

50 6 85 18

60 10 85 18

44 4 66 13

69 14

R
i

35 115 40

x2
0.05(2) = 5.99

= 10.36

= 70.36 2 60

=

12

380
(2228.125) 2 60

=

12

19(20)
¢352

7
1

1152

8
1

402

4
≤ 2 3(19 1 1)

H =

12

N(N 1 1)a
k

i=1

R2
i

ni
2 3(N 1 1)

Friedman’s rank

test for k

correlated

samples



was a well-known economist. This test is closely related to a standard repeated-measures

analysis of variance applied to ranks instead of raw scores. It is a test on the null hypothe-

sis that the scores for each treatment were drawn from identical populations, and it is espe-

cially sensitive to population differences in central tendency.

Assume that we want to test the hypothesis that the judged quality of a lecture is re-

lated to the number of visual aids used. The experimenter obtains 17 people who frequently

give lectures to local business groups on a variety of topics. Each lecturer delivers the same

lecture to three different, but equivalent, audiences—once with no visual aids, once with a

few transparencies to illustrate major points, and once with transparencies and flip charts

to illustrate every point made. At the end of each lecture, the audience is asked to rate the

lecture on a 75-point scale, and the mean rating across all members of the audience is taken

as the dependent variable. Since the same lecturers serve under all three conditions, we

would expect the data to be correlated. Terrible lecturers are terrible no matter how many

visual aids they use. Hypothetical data are presented in Table 18.9, in which a higher score

represents a more favorable rating. The ranking of the raw scores within each participant
are shown in parentheses.
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Table 18.9 Hypothetical data on rated quality of lectures

Number of Visual Aids

Lecturer None Few Many

1 50 (1) 58 (3) 54 (2)

2 32 (2) 37 (3) 25 (1)

3 60 (1) 70 (3) 63 (2)

4 58 (2) 60 (3) 55 (1)

5 41 (1) 66 (3) 59 (2)

6 36 (2) 40 (3) 28 (1)

7 26 (3) 25 (2) 20 (1)

8 49 (1) 60 (3) 50 (2)

9 72 (1) 73 (2) 75 (3)

10 49 (2) 54 (3) 42 (1)

11 52 (2) 57 (3) 47 (1)

12 36 (2) 42 (3) 29 (1)

13 37 (3) 34 (2) 31 (1)

14 58 (3) 50 (1) 56 (2)

15 39 (1) 48 (3) 44 (2)

16 25 (2) 29 (3) 18 (1)

17 51 (1) 63 (2) 68 (3)

30 45 27

= 10.94

=
12

204
136542 2 204

=
12

171321421302 1 452 1 2722 2 31172142

x2
F =

12

Nk1k 1 12a
k

i=1

R2
i 2 3N1K 1 12



If the null hypothesis is true, we would expect the rankings to be randomly distributed

within each lecturer. Thus, one lecturer might do best with no visual aids, another might do

best with many aids, and so on. If this were the case, the sum of the rankings in each con-

dition (column) would be approximately equal. On the other hand, if a few visual aids were

to lead to the most popular lecture, then most lecturers would have their highest rating

under that condition, and the sum of the rankings for the three conditions would be decid-

edly unequal.

To apply Friedman’s test, we rank the raw scores for each lecturer separately and then sum

the rankings for each condition. We then evaluate the variability of the sums by computing

where

This value of can be evaluated with respect to the standard distribution on k 2 1 df.
For the data in Table 18.9, 5 10.94 on 2 df. Since , we will reject 

and conclude that the judged quality of a lecture differs as a function of the degree to which

visual aids are included. The data suggest that some visual aids are helpful, but that too

many of them can detract from what the lecturer is saying. (Note: The null hypothesis we

have just tested says nothing about differences among participants [lecturers], and in fact

participant differences are completely eliminated by the ranking procedure.)

H0x2
.05122 = 5.99x2

F

x2x2
F

k = the number of conditions

N = the number of subjects (lecturers)

Ri = the sum of the ranks for the ith condition

x2
F =

12

Nk1k 1 12a
k

i=1

R2
i 2 3N1k 1 12
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Key Terms

Parametric tests (Introduction)

Distribution-free tests (Introduction)

Resampling procedures (Introduction)

Sampling with replacement

(Introduction)

Permutation tests (Introduction)

Randomization tests (Introduction)

Sampling without replacement

(Introduction)

Wilcoxon rank-sum test (18.6)

Rank-randomization tests (18.6)

Mann–Whitney U test (18.6)

Wilcoxon matched-pairs signed-ranks

test (18.7)

Sign test (18.8)

Kruskal–Wallis one-way analysis of

variance (18.9)

Friedman’s rank test for k correlated

samples (18.10)

Exercises

18.1 McConaughy (1980) has argued that younger children organize stories in terms of simple

descriptive (“and then. . .”) models, whereas older children incorporate causal statements

and social inferences. Suppose that we asked two groups of children differing in age to sum-

marize a story they just read. We then counted the number of statements in the summary that

can be classed as inferences. The data follow:

Younger Children: 0 1 0 3 2 5 2

Older Children: 4 7 6 4 8 7



a. Analyze these data using the two-tailed rank-sum test.

b. What can you conclude?

c. How would you go about analyzing these data if you had access to a program that

would do resampling for you?

18.2 Kapp, Frysinger, Gallagher, and Hazelton (1979) have demonstrated that lesions in the

amygdala can reduce certain responses commonly associated with fear (e.g., decreases in

heart rate). If fear is really reduced, then it should be more difficult to train an avoidance

response in lesioned animals because the aversiveness of the stimulus will be reduced.

Assume two groups of rabbits: One group has lesions in the amygdala, and the other is an

untreated control group. The following data represent the number of trials to learn an avoid-

ance response for each animal:

Group with Lesions: 15 14 15 8 7 22 36 19 14 18 17

Control Group: 9 4 9 10 6 6 4 5 9

a. Analyze the data using the Wilcoxon rank-sum test (two-tailed).

b. What can you conclude?

18.3 Repeat the analysis in Exercise 18.2 using the normal approximation.

18.4 Repeat the analysis in Exercise 18.2 using the appropriate one-tailed test.

18.5 Nurcombe and Fitzhenry-Coor (1979) have argued that training in diagnostic techniques

should lead a clinician to generate (and test) more hypotheses in coming to a decision about

a case. Suppose we take 10 psychiatric residents who are just beginning their residency and

ask them to watch a videotape of an interview and to record their thoughts on the case every

few minutes. We then count the number of hypotheses each resident includes in his or her

written remarks. The experiment is repeated at the end of the residency with a comparable

videotape. The data follow:

Subject: 1 2 3 4 5 6 7 8 9 10

Before: 8 4 2 2 4 8 3 1 3 9

After: 7 9 3 6 3 10 6 7 8 7

a. Analyze the data using Wilcoxon’s matched-pairs signed-ranks test.

b. What can you conclude?

18.6 Refer to Exercise 18.5.

a. Repeat the analysis using the normal approximation.

b. How well do the two answers (18.5a and 18.6a) agree? Why do they not agree exactly?

18.7 How would you go about applying a resampling procedure to test the difference between

Before and After scores in Exercise 18.6?

18.8 It has been argued that first-born children tend to be more independent than later-born chil-

dren. Suppose we develop a 25-point scale of independence and rate each of 20 first-born

children and their second-born siblings using our scale. We do this when both siblings are

adults, thus eliminating obvious age effects. The data on independence are as follows (a

higher score means that the person is more independent):

Sibling Pair: 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

First Born: 12 18 13 17 8 15 16 5 8 12

13 5 14 20 19 17 2 5 15 18

Second Born: 10 12 15 13 9 12 13 8 10 8

8 9 8 10 14 11 7 7 13 12
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a. Analyze the data using Wilcoxon’s matched-pairs signed-ranks test.

b. What can you conclude?

18.9 Rerun the analysis in Exercise 18.8 using the normal approximation.

18.10 How would we run a standard resampling test for the data in Exercise 18.8?

18.11 The results in Exercise 18.8 are not quite as clear-cut as we might like. Plot the differences

as a function of the first-born’s score. What does this figure suggest?

18.12 What is the difference between the null hypothesis tested by Wilcoxon’s rank-sum test and

the corresponding t test?

18.13 What is the difference between the null hypothesis tested by Wilcoxon’s matched-pairs

signed-ranks test and the corresponding t test?

18.14 One of the arguments put forth in favor of nonparametric tests is that they are more appro-

priate for ordinal-scale data. This issue was addressed earlier in the book in a different con-

text. Give a reason why this argument is not a good one.

18.15 Why is rejection of the null hypothesis using a t test a more specific statement than rejec-

tion of the null hypothesis using the appropriate nonparametric test?

18.16 Three rival professors teaching English I all claim the honor of having the best students. To

settle the issue, eight students are randomly drawn from each class and are given the same

exam, which is graded by a neutral professor who does not know from which class the stu-

dents came.

The data follow:

Professor A: 82 71 56 58 63 64 62 53

Professor B: 55 88 85 83 71 70 68 72

Professor C: 65 54 66 68 72 78 65 73

Run the appropriate test and draw the appropriate conclusions.

18.17 A psychologist operating a group home for delinquent adolescents needs to show that it is

successful at reducing delinquency. He samples nine adolescents living in their parents’

home whom the police have identified as having problems, nine similar adolescents living

in foster homes, and nine adolescents living in the group home. As an indicator variable, he

uses truancy (number of days truant in the past semester), which is readily obtained from

school records. On the basis of the following data, draw the appropriate conclusions.

Natural Home: 15 18 19 14 5 8 12 13 7

Foster Home: 16 14 20 22 19 5 17 18 12

Group Home: 10 13 14 11 7 3 4 18 2

18.18 As an alternative method of evaluating a group home, suppose that we take 12 adolescents

who have been declared delinquent. We take the number of days truant (1) during the month

before they are placed in the home, (2) during the month they live in the home, and (3)

during the month after they leave the home.

The data follow:

Adolescent: 1 2 3 4 5 6 7 8 9 10 11 12 

Before: 10 12 12 19 5 13 20 8 12 10 8 18 

During: 5 8 13 10 10 8 16 4 14 3 3 16 

After: 8 7 10 12 8 7 12 5 9 5 3 2 

Apply Friedman’s test. What do you conclude?

18.19 I did not discuss randomization tests on the evaluation of data that are laid out like a one-

way analysis of variance (as in Exercise 18.17), but you should be able to suggest an analy-

sis that would be appropriate if we had the software to carry out the calculations. How

would you outline that test?
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18.20 The test referred to in Exercise 18.19 is available on my Web site. Run that program on the

data for Exercise 18.18 and report the results. (There is a “read-me” file on the disk that will

tell you how to run the resampling program.

18.21 What advantage does the study described in Exercise 18.18 have over the study described in

Exercise 18.17?

18.22 It would be possible to apply Friedman’s test to the data in Exercise 18.5. What would we

lose if we did?

18.23 For the data in Exercise 18.5, we could say that 3 out of 10 residents used fewer hypotheses

the second time and 7 used more. We could test this with . How would this differ from

Friedman’s test applied to those data?

18.24 The history of statistical hypothesis testing really began with a tea-tasting experiment

(Fisher, 1935), so it seems fitting for this book to end with one. The owner of a small tea-

room does not think that people really can tell the difference between the first cup made

with a given tea bag and the second and third cups made with the same bag (perhaps that is

why it is still a small tearoom). He chooses eight different brands of tea bags, makes three

cups of tea with each, reusing the same tea bag, and then has a group of customers rate each

cup on a 20-point scale (without knowing which cup is which). The data are shown here,

with higher ratings indicating better tea.

Tea Brands First Cup Second Cup Third Cup

1 8 3 2

2 15 14 4

3 16 17 12

4 7 5 4

5 9 3 6

6 8 9 4

7 10 3 4

8 12 10 2

Using Friedman’s test, draw the appropriate conclusions.

x2
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Appendix x2 Upper Percentage Points of the Distribution
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Appendix Polynomial Orthogonal Polynomial Coefficients
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Appendix: Data Set

Howell and Huessy (1985) reported on a study of 386 children who had, and had not, exhib-

ited symptoms of attention deficit disorder (ADD)—previously known as hyperkinesis or

minimal brain dysfunction—during childhood. In 1965, teachers of all second-grade school

children in a number of schools in northwestern Vermont were asked to complete a ques-

tionnaire for each of their students dealing with behaviors commonly associated with ADD.

Questionnaires on these same children were again completed when the children were in the

fourth and fifth grades and, for purposes of this data set only, those three scores were aver-

aged to produce a score labeled ADDSC. The higher the score, the more ADD-like behaviors

the child exhibited. At the end of ninth grade and again at the end of twelfth grade, informa-

tion on the performances of these children was obtained from school records. These data

offer the opportunity to examine questions about whether later behavior can be predicted

from earlier behavior and to examine academically related variables and their interrelation-

ships. The data are referred to in many of the exercises at the end of each chapter. A descrip-

tion of each variable follows.

ADDSC Average of the three ADD-like behavior scores obtained in

elementary school

GENDER 1 5 male; 2 5 female

REPEAT 1 5 repeated at least one grade; 0 5 did not repeat a grade

IQ IQ obtained from a group-administered IQ test

ENGL Level of English in ninth grade: 1 5 college prep; 2 5 general; 

3 5 remedial

ENGG Grade in English in ninth grade: 4 5 A; 3 5 B; and so on

GPA Grade point average in ninth grade

SOCPROB Social problems in ninth grade: 1 5 yes; 0 5 no

DROPOUT 1 5 dropped out before completing high school; 0 5 did not 

drop out

Appendix: Computer Data Sets

The website (www.uvm.edu/~dhowell/methods/) contains many data sets. The data sets rep-

resent a combination of data from actual studies, data that have been created to mimic the data

from actual studies, data from all examples and exercises at the end of each chapter. It also

contains two sets of random numbers that have been generated to illustrate certain points.

All of these data sets are standardASCII files, meaning that they can be read by virtually all

computer programs and can be edited if necessary with standard editors available on any com-

puter system (for example, Microsoft Wordpad). In addition, they can be edited by any word

processor that can produce an ASCII file (sometimes referred to as a text file or a DOS file).

The following, unusually complex, data sets are the focus of a number of homework

exercises in many different chapters. The descriptions that follow are intended to explain the

study from which the data were drawn and to describe how the data are arranged in the data

set. You should refer to these descriptions when working with these data sets. The data sets

drawn directly from tables and exercises are much simpler, and their structure can be inferred

from the text.

In addition, this Web site contains copies of data from most of the examples and exercises

in the book. Those data sets are described in a file on the Web site, and will not be described

further here.

Add.dat

The data in this file come from a study by Howell and Huessy (1985). The data are described

above.
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Variable Name Columns Description

ID 1–3 Subject identification number

ADDSC 5–6 ADD score averaged over 3 years

GENDER 8 1 5 male; 2 5 female

REPEAT 10 1 5 repeated a grade, 0 5 did not repeat

IQ 12–14 IQ obtained from group-administered IQ test

ENGL 16 Level of English: 1 5 college prep; 2 5 general; 

3 5 remedial

ENGG 18 Grade in English: 4 5 A, 3 5 B, and so on

GPA 20–23 Grade point average in ninth grade

SOCPROB 25 Social problems: 0 5 no, 1 5 yes

DROPOUT 27 1 5 Dropped out of school before finishing

0 5 Did not drop out

The first four lines of data are shown here:

1 45 1 0 111 2 3 2.60 0 0

2 50 1 0 102 2 3 2.75 0 0

3 49 1 0 108 2 4 4.00 0 0

4 55 1 0 109 2 2 2.25 0 0

Badcancr.dat

For a description of both the study behind these data and the data set, see the following sec-

tion on Cancer.dat. The data in this file differ from those in Cancer.dat only by the inclusion

of deliberate errors.

These data have been deliberately changed for purposes of an assignment. Errors have

been added, and at least one variable has been distorted. The correct data are in

Cancer.dat, which should be used for all future analyses. Virtually any program is likely to

fail at first until errors are found and corrected, and even when it runs, impossible values

will remain. The quickest way to find many of the errors is to print out the file and scan

the columns.

Cancer.dat

The data in this file come from a study by Compas (1990, personal communication) on the

effects of stress in cancer patients and their families. Only a small portion of the data that

were collected are shown here, primarily data related to behavior problems in children and

psychological symptoms in the patient and her or his spouse. The file contains data on 89

families, and many of the data points are missing because of the time in the study at which

these data were selected. This example does, however, offer a good opportunity to see pre-

liminary data on important psychological variables.

The codebook (the listing of variables, descriptions, location, and legitimate values) for

the data in Cancer.dat is shown following the sample data.

Missing observations are represented with a period. The first four lines of data are

shown here as an example.

101 2 62 50 52 39 52 1 42 44 41 40 42 . . . . . . .

104 1 56 65 55 40 57 2 53 73 68 67 71 1 11 12 28 58 57 60

105 1 56 57 67 65 61 2 41 67 63 66 65 2 7 7 15 47 48 45

106 2 41 61 64 53 57 1 60 60 59 67 62 1 6 10 15 49 52 48
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Variable Description Columns Legal Values

FamNum Family ID number 1–3 100–400

GSI Variables

Patient Variables

SexP Gender of patient 5 1 5 male; 

2 5 female

SomTP Somaticism T score 8–9 41–80

DepTP Depression T score 12–13 42–80

AnxTP Anxiety T score 16–17 38–80

HosTP Hostility T score 20–21 39–80

GSITP Global Symptom Index T score 24–25 33–80

Spouse Variables

SexS Gender of spouse 27 1 5 male; 

2 5 female

SomTS Somaticism T score 30–31 41–80

DepTS Depression T score 34–35 42–80

AnxTS Anxiety T score 38–39 38–80

HosTS Hostility T score 42–43 39–80

GSITS GSI T score 46–47 33–80

Child Behavior Checklist Variables

SexChild Gender of child 49 1 5 male; 

2 5 female

Intern Internalizing subscale 51–52 0–98

Extern Externalizing subscale 54–55 0–102

TotBP Total behavior problems 57–58 0–240

InternT Internalizing T score 60–61 33–100

ExternT Externalizing T score 63–64 30–100

TotBPT Total behavior problem T score 66–67 30–100

Epineq.dat, Epinuneq.dat

Introini-Collison and McGaugh (1986) examined the hypothesis that hormones normally

produced in the body can play a role in memory. Specifically, they looked at the effect of post-

training injections of epinephrine on retention of a previously learned discrimination. They

first trained mice to escape mild shock by choosing the left arm of a Y-maze. Immediately

after training, the researchers injected the mice with either 0.0, 0.3, or 1.0 mg/kg of epineph-

rine. They predicted that low doses of epinephrine would facilitate retention, whereas high

doses would inhibit it.

Either 1 day, 1 week, or 1 month after original training, each mouse was again placed in

the Y-maze. But this time, running to the right arm of the maze led to escape from shock.

Presumably, the stronger the memory of the original training, the more it would interfere

with the learning of this new task and the more errors the subjects would make.

This experiment has two data sets, named Epineq.dat and Epinuneq.dat. The original

study used 18 animals in the three dosage groups tested after 1 day, and 12 animals in each

group tested after intervals of 1 week and 1 month. Hypothetical data that closely reproduce

the original results are contained in Epinuneq.dat, although five subjects having a 1-month
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recall interval have been deleted from the 1.0 mg/kg condition. A second data set was cre-

ated with 12 observations in each of the 9 cells, and is called Epineq.dat. In both cases, the

need to create data that were integers led to results that are slightly conservative relative to

the actual data. But the conclusions with respect to H0 are the same.

For both data sets, there is a three-digit ID; dosage is coded (1, 2, or 3) in column 5; the

retention interval is coded (1, 2, or 3) in column 7; and the number of errors in learning the

second discrimination is coded in column 9. The first four lines of data follow:

001 1 1 0

002 1 1 3

003 1 1 4

004 1 1 2

Mireault.dat

Mireault (1990) collected data from 381 college students, some of whom had lost a parent

by death during their childhood. She had three groups of students. Group 1 was composed

of subjects who had lost a parent. Group 2 was composed of subjects whose parents were

still alive and married to each other. Group 3 consisted of students whose parents were

divorced.

Mireault was interested in observing the effects of parental loss on the person’s current

level of symptomatology (as measured by the Brief Symptom Inventory, Derogatis, 1983)

and on the individual’s self-perceived vulnerability to future loss. In the interest of space,

the data set includes only the total vulnerability measure, and not the subscales. There is

also a single measure for social support. For all measures, a higher score represents more of

the concept being measured.

The variables, and their location in the file, are listed following the sample data.

Missing data are represented by a period. The first three lines of data are shown below

as an example.

002 2 1 1 4 2 . . 42 53 59 57 49 57 47 51 46 51 112 24 66

007 1 2 1 2 . 1 18 65 80 64 71 72 73 63 67 67 72 100 23 73

008 2 2 1 1 4 . . 52 67 60 62 65 78 60 65 58 65 118 28 64

Variable Name Columns Description

ID 1–3 Subject identification number

Group 5 1 5 loss; 2 5 married; 3 5 divorced

Gender 7 1 5 male; 2 5 female

YearColl 9 1 5 first year; 2 5 sophomore; and so on

College 11 1 5 arts and sciences; 2 5 health; 

3 5 engineering; 4 5 business; 5 5 agriculture

GPA 13 4 5 A; 3 5 B; 2 5 C; 1 5 D; 0 5 F

LostPGen 15 Gender of lost parent

AgeAtLos 17–18 Age at parent’s death

SomT 20–21 Somatization T score

ObsessT 23–24 Obsessive-compulsive T score

SensitT 26–27 Interpersonal sensitivity T score

DepressT 29–30 Depression T score

AnxT 32–33 Anxiety T score

(continued)
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Variable Name Columns Description

HostT 35–36 Hostility T score

PhobT 38–39 Phobic anxiety T score

ParT 41–42 Paranoid ideation T score

PsyT 44–45 Psychoticism T score

GSIT 47–48 Global symptom index T score

PVTotal 50–52 Perceived vulnerability total score

PVLoss 54–56 Perceived vulnerability to loss

SuppTotl 58–60 Social support score

Stress.dat

The data in this file are a subset of data being collected by Compas and his colleagues on

stress and coping in cancer patients. The file contains the family number, the gender of the

respondent (1 5 Male; 2 5 Female), the role of the respondent (1 5 Patient; 2 5 Spouse),

and two stress measures (one obtained shortly after diagnosis and one 3 months later). The

variables are in the following order: FamNum, Gender, Role, Time1, Time2. The first six

cases follow:

101 2 1 2 .

101 1 2 2 .

104 1 1 4 .

104 2 2 5 .

105 1 1 3 4

105 2 2 5 4
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Appendix x2: Upper Percentage Points 
of the x2 Distribution

df

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

40

50

60

70

80

90

100

0.950

0.00

0.10

0.35

0.71

1.15

1.64

2.17

2.73

3.33

3.94

4.57

5.23

5.89

6.57

7.26

7.96

8.67

9.39

10.12

10.85

11.59

12.34

13.09

13.85

14.61

15.38

16.15

16.93

17.71

18.49

26.51

34.76

43.19

51.74

60.39

69.13

77.93

0.995

0.00

0.01

0.07

0.21

0.41

0.68

0.99

1.34

1.73

2.15

2.60

3.07

3.56

4.07

4.60

5.14

5.70

6.26

6.84

7.43

8.03

8.64

9.26

9.88

10.52

11.16

11.80

12.46

13.12

13.78

20.67

27.96

35.50

43.25

51.14

59.17

67.30

0.900

0.02

0.21

0.58

1.06

1.61

2.20

2.83

3.49

4.17

4.87

5.58

6.30

7.04

7.79

8.55

9.31

10.09

10.86

11.65

12.44

13.24

14.04

14.85

15.66

16.47

17.29

18.11

18.94

19.77

20.60

29.06

37.69

46.46

55.33

64.28

73.29

82.36

0.990

0.00

0.02

0.11

0.30

0.55

0.87

1.24

1.65

2.09

2.56

3.05

3.57

4.11

4.66

5.23

5.81

6.41

7.01

7.63

8.26

8.90

9.54

10.19

10.86

11.52

12.20

12.88

13.56

14.26

14.95

22.14

29.68

37.46

45.42

53.52

61.74

70.05

0.750

0.10

0.58

1.21

1.92

2.67

3.45

4.25

5.07

5.90

6.74

7.58

8.44

9.30

10.17

11.04

11.91

12.79

13.68

14.56

15.45

16.34

17.24

18.14

19.04

19.94

20.84

21.75

22.66

23.57

24.48

33.67

42.95

52.30

61.70

71.15

80.63

90.14

0.975

0.00

0.05

0.22

0.48

0.83

1.24

1.69

2.18

2.70

3.25

3.82

4.40

5.01

5.63

6.26

6.91

7.56

8.23

8.91

9.59

10.28

10.98

11.69

12.40

13.12

13.84

14.57

15.31

16.05

16.79

24.42

32.35

40.47

48.75

57.15

65.64

74.22

0.500

0.45

1.39

2.37

3.36

4.35

5.35

6.35

7.34

8.34

9.34

10.34

11.34

12.34

13.34

14.34

15.34

16.34

17.34

18.34

19.34

20.34

21.34

22.34

23.34

24.34

25.34

26.34

27.34

28.34

29.34

39.34

49.34

59.34

69.34

79.34

89.33

99.33

0.250

1.32

2.77

4.11

5.39

6.63

7.84

9.04

10.22

11.39

12.55

13.70

14.85

15.98

17.12

18.25

19.37

20.49

21.60

22.72

23.83

24.93

26.04

27.14

28.24

29.34

30.43

31.53

32.62

33.71

34.80

45.61

56.33

66.98

77.57

88.13

98.65

109.14

0.100

2.71

4.61

6.25

7.78

9.24

10.64

12.02

13.36

14.68

15.99

17.28

18.55

19.81

21.06

22.31

23.54

24.77

25.99

27.20

28.41

29.62

30.81

32.01

33.20

34.38

35.56

36.74

37.92

39.09

40.26

51.80

63.16

74.39

85.52

96.57

107.56

118.49

0.050

3.84

5.99

7.82

9.49

11.07

12.59

14.07

15.51

16.92

18.31

19.68

21.03

22.36

23.69

25.00

26.30

27.59

28.87

30.14

31.41

32.67

33.93

35.17

36.42

37.65

38.89

40.11

41.34

42.56

43.77

55.75

67.50

79.08

90.53

101.88

113.14

124.34

0.025

5.02

7.38

9.35

11.14

12.83

14.45

16.01

17.54

19.02

20.48

21.92

23.34

24.74

26.12

27.49

28.85

30.19

31.53

32.85

34.17

35.48

36.78

38.08

39.37

40.65

41.92

43.20

44.46

45.72

46.98

59.34

71.42

83.30

95.03

106.63

118.14

129.56

0.010

6.63

9.21

11.35

13.28

15.09

16.81

18.48

20.09

21.66

23.21

24.72

26.21

27.69

29.14

30.58

32.00

33.41

34.81

36.19

37.56

38.93

40.29

41.64

42.98

44.32

45.64

46.96

48.28

49.59

50.89

63.71

76.17

88.40

100.44

112.34

124.13

135.82

0.005

7.88

10.60

12.84

14.86

16.75

18.55

20.28

21.96

23.59

25.19

26.75

28.30

29.82

31.31

32.80

34.27

35.72

37.15

38.58

40.00

41.40

42.80

44.18

45.56

46.93

48.29

49.64

50.99

52.34

53.67

66.80

79.52

91.98

104.24

116.35

128.32

140.19

0 2

Source: The entries in this table were computed by the author.
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Table 1

Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

1 161.4 199.5 215.8 224.8 230.0 233.8 236.5 238.6 240.1 242.1 245.2 248.4 248.9 250.5 250.8 252.6

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.44 19.46 19.47 19.48 19.48

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.63 8.62 8.59 8.58

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.77 5.75 5.72 5.70

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.52 4.50 4.46 4.44

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.83 3.81 3.77 3.75

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.40 3.38 3.34 3.32

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.11 3.08 3.04 3.02

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.89 2.86 2.83 2.80

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.73 2.70 2.66 2.64

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.72 2.65 2.60 2.57 2.53 2.51

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.62 2.54 2.50 2.47 2.43 2.40

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.53 2.46 2.41 2.38 2.34 2.31

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.46 2.39 2.34 2.31 2.27 2.24

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.28 2.25 2.20 2.18

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.35 2.28 2.23 2.19 2.15 2.12

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.31 2.23 2.18 2.15 2.10 2.08

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.27 2.19 2.14 2.11 2.06 2.04

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.23 2.16 2.11 2.07 2.03 2.00

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.07 2.04 1.99 1.97

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.15 2.07 2.02 1.98 1.94 1.91

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.11 2.03 1.97 1.94 1.89 1.86

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.07 1.99 1.94 1.90 1.85 1.82

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.04 1.96 1.91 1.87 1.82 1.79

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.88 1.84 1.79 1.76

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.92 1.84 1.78 1.74 1.69 1.66

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.73 1.69 1.63 1.60

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.84 1.75 1.69 1.65 1.59 1.56

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.75 1.66 1.60 1.55 1.50 1.46

200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.72 1.62 1.56 1.52 1.46 1.41

500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.69 1.59 1.53 1.48 1.42 1.38

1000 3.85 3.01 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.68 1.58 1.52 1.47 1.41 1.36

a = 0.05

Appendix F: Critical Values
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Source: The entries in this table were computed by the author.
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Table 2

Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 984.9 993.1 998.1 1001 1006 1008

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.46 39.46 39.47 39.48

3 17.44 16.04 15.44 15.10 14.89 14.73 14.62 14.54 14.47 14.42 14.25 14.17 14.12 14.08 14.04 14.01

4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.66 8.56 8.50 8.46 8.41 8.38

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.43 6.33 6.27 6.23 6.18 6.14

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.27 5.17 5.11 5.07 5.01 4.98

7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.57 4.47 4.40 4.36 4.31 4.28

8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.10 4.00 3.94 3.89 3.84 3.81

9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.77 3.67 3.60 3.56 3.51 3.47

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.52 3.42 3.35 3.31 3.26 3.22

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.33 3.23 3.16 3.12 3.06 3.03

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.18 3.07 3.01 2.96 2.91 2.87

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.05 2.95 2.88 2.84 2.78 2.74

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 2.95 2.84 2.78 2.73 2.67 2.64

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.86 2.76 2.69 2.64 2.59 2.55

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.79 2.68 2.61 2.57 2.51 2.47

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.72 2.62 2.55 2.50 2.44 2.41

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.67 2.56 2.49 2.44 2.38 2.35

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.62 2.51 2.44 2.39 2.33 2.30

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.57 2.46 2.40 2.35 2.29 2.25

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.50 2.39 2.32 2.27 2.21 2.17

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.44 2.33 2.26 2.21 2.15 2.11

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.39 2.28 2.21 2.16 2.09 2.05

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.34 2.23 2.16 2.11 2.05 2.01

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.31 2.20 2.12 2.07 2.01 1.97

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.18 2.07 1.99 1.94 1.88 1.83

50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.11 1.99 1.92 1.87 1.80 1.75

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.06 1.94 1.87 1.82 1.74 1.70

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 1.94 1.82 1.75 1.69 1.61 1.56

200 5.10 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.18 2.11 1.90 1.78 1.70 1.64 1.56 1.51

500 5.05 3.72 3.14 2.81 2.59 2.43 2.31 2.22 2.14 2.07 1.86 1.74 1.65 1.60 1.52 1.46

1000 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13 2.06 1.85 1.72 1.64 1.58 1.50 1.45

a = 0.025
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Source: The entries in this table were computed by the author.
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Table 3

Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

1 4048 4993 5377 5577 5668 5924 5992 6096 6132 6168 6079 6168 6214 6355 6168 6213

2 98.50 99.01 99.15 99.23 99.30 99.33 99.35 99.39 99.40 99.43 99.38 99.48 99.43 99.37 99.44 99.59

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 26.87 26.69 26.58 26.51 26.41 26.36

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.20 14.02 13.91 13.84 13.75 13.69

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.72 9.55 9.45 9.38 9.29 9.24

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.30 7.23 7.14 7.09

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 6.06 5.99 5.91 5.86

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.52 5.36 5.26 5.20 5.12 5.07

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.71 4.65 4.57 4.52

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.31 4.25 4.17 4.12

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.25 4.10 4.01 3.94 3.86 3.81

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.01 3.86 3.76 3.70 3.62 3.57

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.82 3.66 3.57 3.51 3.43 3.38

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.66 3.51 3.41 3.35 3.27 3.22

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.28 3.21 3.13 3.08

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.41 3.26 3.16 3.10 3.02 2.97

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.31 3.16 3.07 3.00 2.92 2.87

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.23 3.08 2.98 2.92 2.84 2.78

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.15 3.00 2.91 2.84 2.76 2.71

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.84 2.78 2.69 2.64

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 2.98 2.83 2.73 2.67 2.58 2.53

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 2.89 2.74 2.64 2.58 2.49 2.44

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.81 2.66 2.57 2.50 2.42 2.36

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.75 2.60 2.51 2.44 2.35 2.30

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.45 2.39 2.30 2.25

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.52 2.37 2.27 2.20 2.11 2.06

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.42 2.27 2.17 2.10 2.01 1.95

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.35 2.20 2.10 2.03 1.94 1.88

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.19 2.03 1.93 1.86 1.76 1.70

200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.13 1.97 1.87 1.79 1.69 1.63

500 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.07 1.92 1.81 1.74 1.63 1.57

1000 6.67 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.06 1.90 1.79 1.72 1.61 1.54

Source: The entries in this table were computed by the author.
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0.50 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6 3.0

dfe a dft 5 1

2 0.05 0.93 0.86 0.83 0.78 0.74 0.69 0.64 0.59 0.49 0.40

0.01 0.99 0.97 0.96 0.95 0.94 0.93 0.91 0.90 0.87 0.83

4 0.05 0.91 0.80 0.74 0.67 0.59 0.51 0.43 0.35 0.22 0.12

0.01 0.98 0.95 0.93 0.90 0.87 0.83 0.78 0.73 0.62 0.50

6 0.05 0.91 0.78 0.70 0.62 0.52 0.43 0.34 0.26 0.14 0.06

0.01 0.98 0.93 0.90 0.86 0.81 0.75 0.69 0.61 0.46 0.31

8 0.05 0.90 0.76 0.68 0.59 0.49 0.39 0.30 0.22 0.11 0.04

0.01 0.98 0.92 0.89 0.84 0.78 0.70 0.62 0.54 0.37 0.22

10 0.05 0.90 0.75 0.66 0.57 0.47 0.37 0.28 0.20 0.09 0.03

0.01 0.98 0.92 0.87 0.82 0.75 0.67 0.58 0.49 0.31 0.17

12 0.05 0.90 0.74 0.65 0.56 0.45 0.35 0.26 0.19 0.08 0.03

0.01 0.97 0.91 0.87 0.81 0.73 0.65 0.55 0.46 0.28 0.14

16 0.05 0.90 0.74 0.64 0.54 0.43 0.33 0.24 0.17 0.07 0.02

0.01 0.97 0.90 0.85 0.79 0.71 0.61 0.52 0.42 0.24 0.11

20 0.05 0.90 0.73 0.63 0.53 0.42 0.32 0.23 0.16 0.06 0.02

0.01 0.97 0.90 0.85 0.78 0.69 0.59 0.49 0.39 0.21 0.10

30 0.05 0.89 0.72 0.62 0.52 0.40 0.31 0.22 0.15 0.06 0.02

0.01 0.97 0.89 0.83 0.76 0.67 0.57 0.46 0.36 0.19 0.08

0.05 0.89 0.71 0.60 0.49 0.38 0.28 0.19 0.12 0.04 0.01

0.01 0.97 0.88 0.81 0.72 0.62 0.51 0.40 0.30 0.14 0.05

dfe a dft 5 2

2 0.05 0.93 0.88 0.85 0.82 0.78 0.75 0.70 0.66 0.56 0.48

0.01 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.89 0.86

4 0.05 0.92 0.82 0.77 0.70 0.62 0.54 0.46 0.38 0.24 0.14

0.01 0.98 0.96 0.94 0.92 0.89 0.85 0.81 0.76 0.66 0.54

6 0.05 0.91 0.79 0.71 0.63 0.53 0.43 0.34 0.26 0.13 0.05

0.01 0.98 0.94 0.91 0.87 0.82 0.76 0.70 0.62 0.46 0.31

8 0.05 0.91 0.77 0.68 0.58 0.48 0.37 0.28 0.20 0.08 0.03

0.01 0.98 0.93 0.89 0.84 0.78 0.70 0.61 0.52 0.34 0.19

10 0.05 0.91 0.75 0.66 0.55 0.44 0.34 0.24 0.16 0.06 0.02

0.01 0.98 0.92 0.88 0.82 0.74 0.65 0.55 0.45 0.26 0.13

12 0.05 0.90 0.74 0.64 0.53 0.42 0.31 0.22 0.14 0.05 0.01

0.01 0.98 0.91 0.86 0.80 0.71 0.61 0.51 0.40 0.22 0.09

16 0.05 0.90 0.73 0.62 0.51 0.39 0.28 0.19 0.12 0.04 0.01

0.01 0.97 0.90 0.84 0.77 0.67 0.57 0.45 0.34 0.16 0.06

20 0.05 0.90 0.72 0.61 0.49 0.36 0.26 0.17 0.11 0.03 0.01

0.01 0.97 0.90 0.83 0.75 0.65 0.53 0.42 0.31 0.14 0.04

30 0.05 0.90 0.71 0.59 0.47 0.35 0.24 0.15 0.09 0.02 0.00

0.01 0.97 0.88 0.82 0.72 0.61 0.49 0.37 0.26 0.10 0.03

0.05 0.89 0.68 0.56 0.43 0.30 0.20 0.12 0.06 0.01 0.00

0.01 0.97 0.86 0.77 0.66 0.53 0.40 0.28 0.18 0.05 0.01

q

q

f

Appendix ncF: Critical Values of the
Noncentral F Distribution

Power 5 12 (Table Entry)

(continued)
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Appendix ncF (continued)

0.50 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6 3.0

dfe a dft 5 3

2 0.05 0.93 0.89 0.86 0.83 0.80 0.76 0.73 0.69 0.60 0.52

0.01 0.99 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.90 0.88

4 0.05 0.92 0.83 0.77 0.71 0.63 0.55 0.47 0.39 0.25 0.14

0.01 0.98 0.96 0.94 0.92 0.89 0.86 0.82 0.77 0.67 0.55

6 0.05 0.91 0.79 0.71 0.62 0.52 0.42 0.33 0.24 0.11 0.04

0.01 0.98 0.94 0.91 0.87 0.82 0.76 0.69 0.61 0.44 0.29

8 0.05 0.91 0.76 0.67 0.57 0.46 0.35 0.25 0.17 0.06 0.02

0.01 0.98 0.93 0.89 0.84 0.77 0.68 0.59 0.49 0.30 0.16

10 0.05 0.91 0.75 0.65 0.53 0.41 0.30 0.21 0.13 0.04 0.01

0.01 0.98 0.92 0.87 0.80 0.72 0.62 0.52 0.41 0.22 0.09

12 0.05 0.90 0.73 0.62 0.50 0.38 0.27 0.18 0.11 0.03 0.01

0.01 0.98 0.91 0.85 0.78 0.69 0.58 0.46 0.35 0.17 0.06

16 0.05 0.90 0.71 0.60 0.47 0.34 0.23 0.14 0.08 0.02 0.00

0.01 0.97 0.90 0.83 0.74 0.64 0.51 0.39 0.28 0.11 0.03

20 0.05 0.90 0.70 0.58 0.45 0.32 0.21 0.13 0.07 0.01 0.00

0.01 0.97 0.89 0.82 0.72 0.60 0.47 0.35 0.24 0.08 0.02

30 0.05 0.89 0.68 0.55 0.42 0.29 0.18 0.10 0.05 0.01 0.00

0.01 0.97 0.87 0.79 0.68 0.55 0.42 0.29 0.18 0.05 0.01

0.05 0.88 0.64 0.50 0.36 0.23 0.13 0.07 0.03 0.00 0.00

0.01 0.97 0.84 0.73 0.59 0.44 0.30 0.18 0.10 0.02 0.00

dfe a dft 5 4

2 0.05 0.94 0.89 0.87 0.84 0.81 0.77 0.74 0.70 0.62 0.54

0.01 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.93 0.91 0.88

4 0.05 0.92 0.83 0.78 0.71 0.64 0.55 0.47 0.39 0.25 0.14

0.01 0.98 0.96 0.94 0.92 0.89 0.86 0.82 0.78 0.67 0.56

6 0.05 0.92 0.79 0.71 0.62 0.52 0.41 0.31 0.23 0.10 0.04

0.01 0.98 0.94 0.91 0.87 0.82 0.76 0.68 0.60 0.43 0.28

8 0.05 0.91 0.76 0.66 0.55 0.44 0.33 0.23 0.15 0.05 0.01

0.01 0.98 0.93 0.89 0.83 0.76 0.67 0.57 0.47 0.28 0.14

10 0.05 0.91 0.74 0.63 0.51 0.39 0.27 0.18 0.11 0.03 0.01

0.01 0.98 0.92 0.86 0.79 0.70 0.60 0.49 0.37 0.19 0.07

12 0.05 0.90 0.72 0.61 0.48 0.35 0.24 0.15 0.08 0.02 0.00

0.01 0.98 0.91 0.85 0.76 0.66 0.55 0.42 0.31 0.13 0.04

16 0.05 0.90 0.70 0.57 0.44 0.31 0.19 0.11 0.06 0.01 0.00

0.01 0.97 0.89 0.82 0.72 0.60 0.47 0.34 0.23 0.08 0.02

20 0.05 0.89 0.68 0.55 0.41 0.28 0.17 0.09 0.04 0.01 0.00

0.01 0.97 0.88 0.80 0.69 0.56 0.42 0.29 0.18 0.05 0.01

30 0.05 0.89 0.66 0.52 0.37 0.24 0.14 0.07 0.03 0.00 0.00

0.01 0.97 0.86 0.77 0.64 0.50 0.35 0.22 0.13 0.03 0.00

0.05 0.88 0.60 0.45 0.29 0.17 0.08 0.04 0.01 0.00 0.00

0.01 0.96 0.81 0.68 0.53 0.36 0.22 0.11 0.05 0.01 0.00

Source: Abridged from M. L. Tiku (1967), Tables of the power of the F test, Journal of the American Statistical Association, 62, 525–539, with
the permission of the author and the editors.
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Appendix Polynomial: Orthogonal
Polynomial Coefficients

k Polynomial X 5 1 2 3 4 5 6 7 8 9 10 a2
i

3 Linear 21 0 1 2

Quadratic 1 22 1 6

4 Linear 23 21 1 3 20

Quadratic 1 21 21 1 4

Cubic 21 3 23 1 20

5 Linear 22 21 0 1 2 10

Quadratic 2 21 22 21 2 14

Cubic 21 2 0 22 1 10

Quartic 1 24 6 24 1 70

6 Linear 25 23 21 1 3 5 70

Quadratic 5 21 24 24 21 5 84

Cubic 25 7 4 24 27 5 180

Quartic 1 23 2 2 23 1 28

7 Linear 23 22 21 0 21 2 3 28

Quadratic 5 0 23 24 23 0 5 84

Cubic 21 1 1 0 1 21 1 6

Quartic 3 27 1 6 1 27 3 154

8 Linear 27 25 23 21 1 3 5 7 168

Quadratic 7 1 23 25 25 23 1 7 168

Cubic 27 5 7 3 23 27 25 7 264

Quartic 7 213 23 9 9 23 213 7 616

Quintic 27 23 217 215 15 17 223 7 2184

9 Linear 24 23 22 21 0 1 2 3 4 60

Quadratic 28 7 28 217 220 217 28 7 28 2772

Cubic 214 7 13 9 0 29 213 27 14 990

Quartic 14 221 211 9 18 9 211 221 14 2002

Quintic 24 11 24 29 0 9 4 211 4 468

10 Linear 29 27 25 23 21 1 3 5 7 9 330

Quadratic 6 2 21 23 24 24 23 21 2 6 132

Cubic 242 14 35 31 12 212 231 235 214 42 8580

Quartic 18 222 217 3 18 18 3 217 222 18 2860

Quintic 26 14 21 211 26 6 11 1 214 6 780

g

Source: The entries in this table were computed by the author.
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a for Two-Tailed Test

0.10 0.05 0.02 0.01

1.00 0.26 0.17 0.09 0.06

1.10 0.29 0.20 0.11 0.07

1.20 0.33 0.22 0.13 0.08

1.30 0.37 0.26 0.15 0.10

1.40 0.40 0.29 0.18 0.12

1.50 0.44 0.32 0.20 0.14

1.60 0.48 0.36 0.23 0.17

1.70 0.52 0.40 0.27 0.19

1.80 0.56 0.44 0.30 0.22

1.90 0.60 0.48 0.34 0.25

2.00 0.64 0.52 0.37 0.28

2.10 0.68 0.56 0.41 0.32

2.20 0.71 0.60 0.45 0.35

2.30 0.74 0.63 0.49 0.39

2.40 0.78 0.67 0.53 0.43

2.50 0.80 0.71 0.57 0.47

2.60 0.83 0.74 0.61 0.51

2.70 0.85 0.77 0.65 0.55

2.80 0.88 0.80 0.68 0.59

2.90 0.90 0.83 0.72 0.63

3.00 0.91 0.85 0.75 0.66

3.10 0.93 0.87 0.78 0.70

3.20 0.94 0.89 0.81 0.73

3.30 0.95 0.91 0.84 0.77

3.40 0.96 0.93 0.86 0.80

3.50 0.97 0.94 0.88 0.82

3.60 0.98 0.95 0.90 0.85

3.70 0.98 0.96 0.92 0.87

3.80 0.98 0.97 0.93 0.89

3.90 0.99 0.97 0.94 0.91

4.00 0.99 0.98 0.95 0.92

4.10 0.99 0.98 0.96 0.94

4.20 — 0.99 0.97 0.95

4.30 — 0.99 0.98 0.96

4.40 — 0.99 0.98 0.97

4.50 — 0.99 0.99 0.97

4.60 — — 0.99 0.98

4.70 — — 0.99 0.98

4.80 — — 0.99 0.99

4.90 — — — 0.99

5.00 — — — 0.99

Source: The entries in this table were computed by the author.

d

Appendix Power: Power as a Function
of d and Significance Level (a)



A
p

p
e

n
d

ix
 q

: 
C

r
it

ic
a

l 
V

a
lu

e
s
 o

f
 t

h
e

S
t
u
d

e
n
t
iz

e
d

 R
a

n
g

e
 S

t
a
t
is

t
ic

 (
q

)

T
a

b
le

 1

E
rr

o
r

r
5

N
u

m
b

e
r 

o
f 

S
te

p
s
 B

e
tw

e
e
n

 O
rd

e
re

d
 M

e
a
n

s

d
f

2
3

4
5

6
7

8
9

1
0

11
1
2

1
3

1
4

1
5

1
1
7
.9

7
2
6
.9

8
3
2
.8

2
3
7
.0

8
4
0
.4

1
4
3
.1

2
4
5
.4

0
4
7
.3

6
4
9
.0

7
5
0
.5

9
5
1
.9

6
5
3
.2

0
5
4
.3

3
5
5
.3

6

2
6
.0

8
8
.3

3
9
.8

0
1
0
.8

8
1
1
.7

4
1
2
.4

4
1
3
.0

3
1
3
.5

4
1
3
.9

9
1
4
.3

9
1
4
.7

5
1
5
.0

8
1
5
.3

8
1
5
.6

5

3
4
.5

0
5
.9

1
6
.8

2
7
.5

0
8
.0

4
8
.4

8
8
.8

5
9
.1

8
9
.4

6
9
.7

2
9
.9

5
1
0
.1

5
1
0
.3

5
1
0
.5

3

4
3
.9

3
5
.0

4
5
.7

6
6
.2

9
6
.7

1
7
.0

5
7
.3

5
7
.6

0
7
.3

3
8
.0

3
8
.2

1
8
.3

7
8
.5

2
8
.6

6

5
3
.6

4
4
.6

0
5
.2

2
5
.6

7
6
.0

3
6
.3

3
6
.5

8
6
.8

0
7
.0

0
7
.1

7
7
.3

2
7
.4

7
7
.6

0
7
.7

2

6
3
.4

6
4
.3

4
4
.9

0
5
.3

1
5
.6

3
5
.9

0
6
.1

2
6
.3

2
6
.4

9
6
.6

5
6
.7

9
6
.9

2
7
.0

3
7
.1

4

7
3
.3

4
4
.1

6
4
.6

8
5
.0

6
5
.3

6
5
.6

1
5
.8

2
6
.0

0
6
.1

6
6
.3

0
6
.4

3
6
.5

5
6
.6

6
6
.7

6

8
3
.2

6
4
.0

4
4
.5

3
4
.8

9
5
.1

7
5
.4

0
5
.6

0
5
.7

7
5
.9

2
6
.0

5
6
.1

8
6
.2

9
6
.3

9
6
.4

8

9
3
.2

0
3
.9

5
4
.4

2
4
.7

6
5
.0

2
5
.2

4
5
.4

3
5
.6

0
5
.7

4
5
.8

7
5
.9

8
6
.0

9
6
.1

9
6
.2

8

1
0

3
.1

5
3
.8

8
4
.3

3
4
.6

5
4
.9

1
5
.1

2
5
.3

0
5
.4

6
5
.6

0
5
.7

2
5
.8

3
5
.9

4
6
.0

3
6
.1

1

1
1

3
.1

1
3
.8

2
4
.2

6
4
.5

7
4
.8

2
5
.0

3
5
.2

0
5
.3

5
5
.4

9
5
.6

0
5
.7

1
5
.8

1
5
.9

0
5
.9

8

1
2

3
.0

8
3
.7

7
4
.2

0
4
.5

1
4
.7

5
4
.9

5
5
.1

2
5
.2

6
5
.4

0
5
.5

1
5
.6

2
5
.7

1
5
.7

9
5
.8

8

1
3

3
.0

6
3
.7

4
4
.1

5
4
.4

5
4
.6

9
4
.8

8
5
.0

5
5
.1

9
5
.3

2
5
.4

3
5
.5

3
5
.6

3
5
.7

1
5
.7

9

1
4

3
.0

3
3
.7

0
4
.1

1
4
.4

1
4
.6

4
4
.8

3
4
.9

9
5
.1

3
5
.2

5
5
.3

6
5
.4

6
5
.5

5
5
.6

4
5
.7

1

1
5

3
.0

1
3
.6

7
4
.0

8
4
.3

7
4
.6

0
4
.7

8
4
.9

4
5
.0

8
5
.2

0
5
.3

1
5
.4

0
5
.4

9
5
.5

7
5
.6

5

1
6

3
.0

0
3
.6

5
4
.0

5
4
.3

3
4
.5

6
4
.7

4
4
.9

0
5
.0

3
5
.1

5
5
.2

6
5
.3

5
5
.4

4
5
.5

2
5
.5

9

1
7

2
.9

8
3
.6

3
4
.0

2
4
.3

0
4
.5

2
4
.7

0
4
.8

6
4
.9

9
5
.1

1
5
.2

1
5
.3

1
5
.3

9
5
.4

7
5
.5

4

1
8

2
.9

7
3
.6

1
4
.0

0
4
.2

8
4
.5

0
4
.6

7
4
.8

2
4
.9

6
5
.0

7
5
.1

7
5
.2

7
5
.3

5
5
.4

3
5
.5

0

1
9

2
.9

6
3
.5

9
3
.9

8
4
.2

5
4
.4

7
4
.6

4
4
.7

9
4
.9

2
5
.0

4
5
.1

4
5
.2

3
5
.3

2
5
.3

9
5
.4

6

2
0

2
.9

5
3
.5

8
3
.9

6
4
.2

3
4
.4

4
4
.6

2
4
.7

7
4
.9

0
5
.0

1
5
.1

1
5
.2

0
5
.2

8
5
.3

6
5
.4

3

2
4

2
.9

2
3
.5

3
3
.9

0
4
.1

7
4
.3

7
4
.5

4
4
.6

8
4
.8

1
4
.9

2
5
.0

1
5
.1

0
5
.1

8
5
.2

5
5
.3

2

3
0

2
.8

9
3
.4

9
3
.8

4
4
.1

0
4
.3

0
4
.4

6
4
.6

0
4
.7

2
4
.8

2
4
.9

2
5
.0

0
5
.0

8
5
.1

5
5
.2

1

4
0

2
.8

6
3
.4

4
3
.7

9
4
.0

4
4
.2

3
4
.3

9
4
.5

2
4
.6

4
4
.7

4
4
.8

2
4
.9

0
4
.9

8
5
.0

4
5
.1

1

6
0

2
.8

3
3
.4

0
3
.7

4
3
.9

8
4
.1

6
4
.3

1
4
.4

4
4
.5

5
4
.6

5
4
.7

3
4
.8

1
4
.8

8
4
.9

4
5
.0

0

1
2
0

2
.8

0
3
.3

6
3
.6

9
3
.9

2
4
.1

0
4
.2

4
4
.3

6
4
.4

7
4
.5

6
4
.6

4
4
.7

1
4
.7

8
4
.8

4
4
.9

0

2
.7

7
3
.3

1
3
.6

3
3
.8

6
4
.0

3
4
.1

7
4
.2

9
4
.3

9
4
.4

7
4
.5

5
4
.6

2
4
.6

8
4
.7

4
4
.8

0
q

a
=

0
.0

5

So
ur

ce
:

A
b
ri

d
g
ed

 f
ro

m
 H

. 
L

. 
H

ar
te

r 
(1

9
6
0
),

 T
ab

le
s 

o
f 

ra
n
g
e 

an
d
 S

tu
d
en

ti
ze

d
 r

an
g
e,

 A
nn

al
s 

of
 M

at
he

m
at

ic
al

 S
ta

ti
st

ic
s,

 3
1,

1
1
2
2

–
1
1
4
7

, 
w

it
h
 p

er
m

is
si

o
n
 o

f 
th

e 
au

th
o
r 

an
d
 t

h
e 

p
u
b
li

sh
er

.



T
a

b
le

 2

E
rr

o
r

r
5

N
u

m
b

e
r 

o
f 

S
te

p
s
 B

e
tw

e
e
n

 O
rd

e
re

d
 M

e
a
n

s

d
f

2
3

4
5

6
7

8
9

1
0

11
1
2

1
3

1
4

1
5

1
9
0
.0

3
1
3
5
.0

1
6
4
.3

1
8
5
.6

2
0
2
.2

2
1
5
.8

2
2
7
.2

2
3
7
.0

2
4
5
.6

2
5
3
.2

2
6
0
.0

2
6
6
.2

2
7
1
.8

2
7
7
.0

2
1
4
.0

4
1
9
.0

2
2
2
.2

9
2
4
.7

2
2
6
.6

3
2
8
.2

0
2
9
.5

3
3
0
.6

8
3
1
.6

9
3
2
.5

9
3
3
.4

0
3
4
.1

3
3
4
.8

1
3
5
.4

3

3
8
.2

6
1
0
.6

2
1
2
.1

7
1
3
.3

3
1
4
.2

4
1
5
.0

0
1
5
.6

4
1
6
.2

0
1
6
.6

9
1
7
.1

3
1
7
.5

3
1
7
.8

9
1
8
.2

2
1
8
.5

2

4
6
.5

1
8
.1

2
9
.1

7
9
.9

6
1
0
.5

8
1
1
.1

0
1
1
.5

5
1
1
.9

3
1
2
.2

7
1
2
.5

7
1
2
.8

4
1
3
.0

9
1
3
.3

2
1
3
.5

3

5
5
.7

0
6
.9

8
7
.8

0
8
.4

2
8
.9

1
9
.3

2
9
.6

7
9
.9

7
1
0
.2

4
1
0
.4

8
1
0
.7

0
1
0
.8

9
1
1
.0

8
1
1
.2

4

6
5
.2

4
6
.3

3
7
.0

3
7
.5

6
7
.9

7
8
.3

2
8
.6

2
8
.8

7
9
.1

0
9
.3

0
9
.4

8
9
.6

5
9
.8

1
9
.9

5

7
4
.9

5
5
.9

2
6
.5

4
7
.0

0
7
.3

7
7
.6

8
7
.9

4
8
.1

7
8
.3

7
8
.5

5
8
.7

1
8
.8

6
9
.0

0
9
.1

2

8
4
.7

5
5
.6

4
6
.2

0
6
.6

2
6
.9

6
7
.2

4
7
.4

7
7
.6

8
7
.8

6
8
.0

3
8
.1

8
8
.3

1
8
.4

4
8
.5

5

9
4
.6

0
5
.4

3
5
.9

6
6
.3

5
6
.6

6
6
.9

2
7
.1

3
7
.3

2
7
.5

0
7
.6

5
7
.7

8
7
.9

1
8
.0

2
8
.1

3

1
0

4
.4

8
5
.2

7
5
.7

7
6
.1

4
6
.4

3
6
.6

7
6
.8

8
7
.0

6
7
.2

1
7
.3

6
7
.4

8
7
.6

0
7
.7

1
7
.8

1

1
1

4
.3

9
5
.1

5
5
.6

2
5
.9

7
6
.2

5
6
.4

8
6
.6

7
6
.8

4
6
.9

9
7
.1

3
7
.2

5
7
.3

6
7
.4

6
7
.5

6

1
2

4
.3

2
5
.0

5
5
.5

0
5
.8

4
6
.1

0
6
.3

2
6
.5

1
6
.6

7
6
.8

1
6
.9

4
7
.0

6
7
.1

7
7
.2

6
7
.3

6

1
3

4
.2

6
4
.9

6
5
.4

0
5
.7

3
5
.9

8
6
.1

9
6
.3

7
6
.5

3
6
.6

7
6
.7

9
6
.9

0
7
.0

1
7
.1

0
7
.1

9

1
4

4
.2

1
4
.9

0
5
.3

2
5
.6

3
5
.8

8
6
.0

8
6
.2

6
6
.4

1
6
.5

4
6
.6

6
6
.7

7
6
.8

7
6
.9

6
7
.0

5

1
5

4
.1

7
4
.8

4
5
.2

5
5
.5

6
5
.8

0
5
.9

9
6
.1

6
6
.3

1
6
.4

4
6
.5

6
6
.6

6
6
.7

6
6
.8

4
6
.9

3

1
6

4
.1

3
4
.7

9
5
.1

9
5
.4

9
5
.7

2
5
.9

2
6
.0

8
6
.2

2
6
.3

5
6
.4

6
6
.5

6
6
.6

6
6
.7

4
6
.8

2

1
7

4
.1

0
4
.7

4
5
.1

4
5
.4

3
5
.6

6
5
.8

5
6
.0

1
6
.1

5
6
.2

7
6
.3

8
6
.4

8
6
.5

7
6
.6

6
6
.7

3

1
8

4
.0

7
4
.7

0
5
.0

9
5
.3

8
5
.6

0
5
.7

9
5
.9

4
6
.0

8
6
.2

0
6
.3

1
6
.4

1
6
.5

0
6
.5

8
6
.6

6

1
9

4
.0

5
4
.6

7
5
.0

5
5
.3

3
5
.5

5
5
.7

4
5
.8

9
6
.0

2
6
.1

4
6
.2

5
6
.3

4
6
.4

3
6
.5

1
6
.5

8

2
0

4
.0

2
4
.6

4
5
.0

2
5
.2

9
5
.5

1
5
.6

9
5
.8

4
5
.9

7
6
.0

9
6
.1

9
6
.2

8
6
.3

7
6
.4

5
6
.5

2

2
4

3
.9

6
4
.5

5
4
.9

1
5
.1

7
5
.3

7
5
.5

4
5
.6

9
5
.8

1
5
.9

2
6
.0

2
6
.1

1
6
.1

9
6
.2

6
6
.3

3

3
0

3
.8

9
4
.4

6
4
.8

0
5
.0

5
5
.2

4
5
.4

0
5
.5

4
5
.6

5
5
.7

6
5
.8

5
5
.9

3
6
.0

1
6
.0

8
6
.1

4

4
0

3
.8

2
4
.3

7
4
.7

0
4
.9

3
5
.1

1
5
.2

6
5
.3

9
5
.5

0
5
.6

0
5
.6

9
5
.7

6
5
.8

4
5
.9

0
5
.9

6

6
0

3
.7

6
4
.2

8
4
.6

0
4
.8

2
4
.9

9
5
.1

3
5
.2

5
5
.3

6
5
.4

5
5
.5

3
5
.6

0
5
.6

7
5
.7

3
5
.7

8

1
2
0

3
.7

0
4
.2

0
4
.5

0
4
.7

1
4
.8

7
5
.0

1
5
.1

2
5
.2

1
5
.3

0
5
.3

8
5
.4

4
5
.5

1
5
.5

6
5
.6

1

3
.6

4
4
.1

2
4
.4

0
4
.6

0
4
.7

6
4
.8

8
4
.9

9
5
.0

8
5
.1

6
5
.2

3
5
.2

9
5
.3

5
5
.4

0
5
.4

5

So
ur

ce
:

A
b
ri

d
g
ed

 f
ro

m
 H

. 
L

. 
H

ar
te

r 
(1

9
6
0
),

 T
ab

le
s 

o
f 

ra
n
g
e 

an
d
 S

tu
d
en

ti
ze

d
 r

an
g
e,

 A
nn

al
s 

of
 M

at
he

m
at

ic
al

 S
ta

ti
st

ic
s,

 3
1,

1
1
2

2
–

1
1

4
7

, 
w

it
h
 p

er
m

is
si

o
n
 o

f 
th

e 
au

th
o
r 

an
d
 t

h
e 

p
u
b
li

sh
er

.

q

a
=

0
.0

1



Appendix r9: Table of Fisher’s Transformation of r to r9 707

Appendix r0: Table of Fisher’s
Transformation of r to r0

r r 0 r r 0 r r 0 r r 0 r r 0

0.000 0.000 0.200 0.203 0.400 0.424 0.600 0.693 0.800 1.099

0.005 0.005 0.205 0.208 0.405 0.430 0.605 0.701 0.805 1.113

0.010 0.010 0.210 0.213 0.410 0.436 0.610 0.709 0.810 1.127

0.015 0.015 0.215 0.218 0.415 0.442 0.615 0.717 0.815 1.142

0.020 0.020 0.220 0.224 0.420 0.448 0.620 0.725 0.820 1.157

0.025 0.025 0.225 0.229 0.425 0.454 0.625 0.733 0.825 1.172

0.030 0.030 0.230 0.234 0.430 0.460 0.630 0.741 0.830 1.188

0.035 0.035 0.235 0.239 0.435 0.466 0.635 0.750 0.835 1.204

0.040 0.040 0.240 0.245 0.440 0.472 0.640 0.758 0.840 1.221

0.045 0.045 0.245 0.250 0.445 0.478 0.645 0.767 0.845 1.238

0.050 0.050 0.250 0.255 0.450 0.485 0.650 0.775 0.850 1.256

0.055 0.055 0.255 0.261 0.455 0.491 0.655 0.784 0.855 1.274

0.060 0.060 0.260 0.266 0.460 0.497 0.660 0.793 0.860 1.293

0.065 0.065 0.265 0.271 0.465 0.504 0.665 0.802 0.865 1.313

0.070 0.070 0.270 0.277 0.470 0.510 0.670 0.811 0.870 1.333

0.075 0.075 0.275 0.282 0.475 0.517 0.675 0.820 0.875 1.354

0.080 0.080 0.280 0.288 0.480 0.523 0.680 0.829 0.880 1.376

0.085 0.085 0.285 0.293 0.485 0.530 0.685 0.838 0.885 1.398

0.090 0.090 0.290 0.299 0.490 0.536 0.690 0.848 0.890 1.422

0.095 0.095 0.295 0.304 0.495 0.543 0.695 0.858 0.895 1.447

0.100 0.100 0.300 0.310 0.500 0.549 0.700 0.867 0.900 1.472

0.105 0.105 0.305 0.315 0.505 0.556 0.705 0.877 0.905 1.499

0.110 0.110 0.310 0.321 0.510 0.563 0.710 0.887 0.910 1.528

0.115 0.116 0.315 0.326 0.515 0.570 0.715 0.897 0.915 1.557

0.120 0.121 0.320 0.332 0.520 0.576 0.720 0.908 0.920 1.589

0.125 0.126 0.325 0.337 0.525 0.583 0.725 0.918 0.925 1.623

0.130 0.131 0.330 0.343 0.530 0.590 0.730 0.929 0.930 1.658

0.135 0.136 0.335 0.348 0.535 0.597 0.735 0.940 0.935 1.697

0.140 0.141 0.340 0.354 0.540 0.604 0.740 0.950 0.940 1.738

0.145 0.146 0.345 0.360 0.545 0.611 0.745 0.962 0.945 1.783

0.150 0.151 0.350 0.365 0.550 0.618 0.750 0.973 0.950 1.832

0.155 0.156 0.355 0.371 0.555 0.626 0.755 0.984 0.955 1.886

0.160 0.161 0.360 0.377 0.560 0.633 0.760 0.996 0.960 1.946

0.165 0.167 0.365 0.383 0.565 0.640 0.765 1.008 0.965 2.014

0.170 0.172 0.370 0.388 0.570 0.648 0.770 1.020 0.970 2.092

0.175 0.177 0.375 0.394 0.575 0.655 0.775 1.033 0.975 2.185

0.180 0.182 0.380 0.400 0.580 0.662 0.780 1.045 0.980 2.298

0.185 0.187 0.385 0.406 0.585 0.670 0.785 1.058 0.985 2.443

0.190 0.192 0.390 0.412 0.590 0.678 0.790 1.071 0.990 2.647

0.195 0.198 0.395 0.418 0.595 0.685 0.795 1.085 0.995 2.994

Source: The entries in this table were computed by the author.
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Appendix t: Percentage Points
of the t Distribution

t0

/2 /2

One-tailed test

!t0

Two-tailed test

"t

Level of Significance for One-Tailed Test

0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.0005

Level of Significance for Two-Tailed Test

df 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.001

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.620

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.599

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 12.924

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.408

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 4.318

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 4.221

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.140

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 4.073

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 4.015

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.965

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.922

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.768

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.690

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.551

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 3.496

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.390

0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.291

Source: The entries in this table were computed by the author.
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Appendix T: Critical Lower-Tail Values of T
(and Their Associated Probabilities) for
Wilcoxon’s Matched-Pairs Signed-Ranks Test

Nominal a (One-Tailed)

0.05 0.025 0.01 0.005

N T T T T

5 0 0.0313

1 0.0625

6 2 0.0469 0 0.0156

3 0.0781 1 0.0313

7 3 0.0391 2 0.0234 0 0.0078

4 0.0547 3 0.0391 1 0.0156

8 5 0.0391 3 0.0195 1 0.0078 0 0.0039

6 0.0547 4 0.0273 2 0.0117 1 0.0078

9 8 0.0488 5 0.0195 3 0.0098 1 0.0039

9 0.0645 6 0.0273 4 0.0137 2 0.0059

10 10 0.0420 8 0.0244 5 0.0098 3 0.0049

11 0.0527 9 0.0322 6 0.0137 4 0.0068

11 13 0.0415 10 0.0210 7 0.0093 5 0.0049

14 0.0508 11 0.0269 8 0.0122 6 0.0068

12 17 0.0461 13 0.0212 9 0.0081 7 0.0046

18 0.0549 14 0.0261 10 0.0105 8 0.0061

13 21 0.0471 17 0.0239 12 0.0085 9 0.0040

22 0.0549 18 0.0287 13 0.0107 10 0.0052

14 25 0.0453 21 0.0247 15 0.0083 12 0.0043

26 0.0520 22 0.0290 16 0.0101 13 0.0054

15 30 0.0473 25 0.0240 19 0.0090 15 0.0042

31 0.0535 26 0.0277 20 0.0108 16 0.0051

16 35 0.0467 29 0.0222 23 0.0091 19 0.0046

36 0.0523 30 0.0253 24 0.0107 20 0.0055

17 41 0.0492 34 0.0224 27 0.0087 23 0.0047

42 0.0544 35 0.0253 28 0.0101 24 0.0055

18 47 0.0494 40 0.0241 32 0.0091 27 0.0045

48 0.0542 41 0.0269 33 0.0104 28 0.0052

19 53 0.0478 46 0.0247 37 0.0090 32 0.0047

54 0.0521 47 0.0273 38 0.0102 33 0.0054

20 60 0.0487 52 0.0242 43 0.0096 37 0.0047

61 0.0527 53 0.0266 44 0.0107 38 0.0053

21 67 0.0479 58 0.0230 49 0.0097 42 0.0045

68 0.0516 59 0.0251 50 0.0108 43 0.0051

aaaa

(continued)
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Nominal a (One-Tailed)

0.05 0.025 0.01 0.005

N T T T T

22 75 0.0492 65 0.0231 55 0.0095 48 0.0046

76 0.0527 66 0.0250 56 0.0104 49 0.0052

23 83 0.0490 73 0.0242 62 0.0098 54 0.0046

84 0.0523 74 0.0261 63 0.0107 55 0.0051

24 91 0.0475 81 0.0245 69 0.0097 61 0.0048

92 0.0505 82 0.0263 70 0.0106 62 0.0053

25 100 0.0479 89 0.0241 76 0.0094 68 0.0048

101 0.0507 90 0.0258 77 0.0101 69 0.0053

26 110 0.0497 98 0.0247 84 0.0095 75 0.0047

111 0.0524 99 0.0263 85 0.0102 76 0.0051

27 119 0.0477 107 0.0246 92 0.0093 83 0.0048

120 0.0502 108 0.0260 93 0.0100 84 0.0052

28 130 0.0496 116 0.0239 101 0.0096 91 0.0048

131 0.0521 117 0.0252 102 0.0102 92 0.0051

29 140 0.0482 126 0.0240 110 0.0095 100 0.0049

141 0.0504 127 0.0253 111 0.0101 101 0.0053

30 151 0.0481 137 0.0249 120 0.0098 109 0.0050

152 0.0502 138 0.0261 121 0.0104 110 0.0053

31 163 0.0491 147 0.0239 130 0.0099 118 0.0049

164 0.0512 148 0.0251 131 0.0105 119 0.0052

32 175 0.0492 159 0.0249 140 0.0097 128 0.0050

176 0.0512 160 0.0260 141 0.0103 129 0.0053

33 187 0.0485 170 0.0242 151 0.0099 138 0.0049

188 0.0503 171 0.0253 152 0.0104 139 0.0052

34 200 0.0488 182 0.0242 162 0.0098 148 0.0048

201 0.0506 183 0.0252 163 0.0103 149 0.0051

35 213 0.0484 195 0.0247 173 0.0096 159 0.0048

214 0.0501 196 0.0257 174 0.0100 160 0.0051

36 227 0.0489 208 0.0248 185 0.0096 171 0.0050

228 0.0505 209 0.0258 186 0.0100 172 0.0052

37 241 0.0487 221 0.0245 198 0.0099 182 0.0048

242 0.0503 222 0.0254 199 0.0103 183 0.0050

aaaa

Appendix T (continued)

Source: The entries in this table were computed by the author.
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Nominal a (One-Tailed)

0.05 0.025 0.01 0.005

N T T T T

38 256 0.0493 235 0.0247 211 0.0099 194 0.0048

257 0.0509 236 0.0256 212 0.0104 195 0.0050

39 271 0.0492 249 0.0246 224 0.0099 207 0.0049

272 0.0507 250 0.0254 225 0.0103 208 0.0051

40 286 0.0486 264 0.0249 238 0.0100 220 0.0049

287 0.0500 265 0.0257 239 0.0104 221 0.0051

41 302 0.0488 279 0.0248 252 0.0100 233 0.0048

303 0.0501 280 0.0256 253 0.0103 234 0.0050

42 319 0.0496 294 0.0245 266 0.0098 247 0.0049

320 0.0509 295 0.0252 267 0.0102 248 0.0051

43 336 0.0498 310 0.0245 281 0.0098 261 0.0048

337 0.0511 311 0.0252 282 0.0102 262 0.0050

44 353 0.0495 327 0.0250 296 0.0097 276 0.0049

354 0.0507 328 0.0257 297 0.0101 277 0.0051

45 371 0.0498 343 0.0244 312 0.0098 291 0.0049

372 0.0510 344 0.0251 313 0.0101 292 0.0051

46 389 0.0497 361 0.0249 328 0.0098 307 0.0050

390 0.0508 362 0.0256 329 0.0101 308 0.0052

47 407 0.0490 378 0.0245 345 0.0099 322 0.0048

408 0.0501 379 0.0251 346 0.0102 323 0.0050

48 426 0.0490 396 0.0244 362 0.0099 339 0.0050

427 0.0500 397 0.0251 363 0.0102 340 0.0051

49 446 0.0495 415 0.0247 379 0.0098 355 0.0049

447 0.0505 416 0.0253 380 0.0100 356 0.0050

50 466 0.0495 434 0.0247 397 0.0098 373 0.0050

467 0.0506 435 0.0253 398 0.0101 374 0.0051

Source: The entries in this table were computed by the author.
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Appendix td: Critical Values of Dunnett’s t Statistic (td)

Two-Tailed Comparisons
k 5 Number of Treatment Means, Including Control

Error

df a 2 3 4 5 6 7 8 9 10

5 0.05 2.57 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97

0.01 4.03 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89

6 0.05 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71

0.01 3.71 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28

7 0.05 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53

0.01 3.50 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89

8 0.05 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41

0.01 3.36 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62

9 0.05 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32

0.01 3.25 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43

10 0.05 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24

0.01 3.17 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28

11 0.05 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19

0.01 3.11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16

12 0.05 2.18 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14

0.01 3.05 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07

13 0.05 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10

0.01 3.01 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99

14 0.05 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07

0.01 2.98 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93

15 0.05 2.13 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04

0.01 2.95 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88

16 0.05 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02

0.01 2.92 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83

17 0.05 2.11 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00

0.01 2.90 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79

18 0.05 2.10 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98

0.01 2.88 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75

19 0.05 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96

0.01 2.86 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72

20 0.05 2.09 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95

0.01 2.85 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69

24 0.05 2.06 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90

0.01 2.80 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61

30 0.05 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86

0.01 2.75 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52

40 0.05 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81

0.01 2.70 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44

60 0.05 2.00 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77

0.01 2.66 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37

120 0.05 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73

0.01 2.62 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29

` 0.05 1.96 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69

0.01 2.58 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22

Source: Reproduced from C. W. Dunnett (1964), New tables for multiple comparisons with a control, Biometrics 20, 482–491. With permission
of The Biometric Society.



Appendix WS: Critical Lower-Tail Values of WS for Rank-Sum Test for Two Independent Samples (N1 # N2) 715

Appendix WS: Critical Lower-Tail Values of WS for Rank-Sum
Test for Two Independent Samples (N1 # N2)

N1 5 1 N1 5 2

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

2 4 — 10 2

3 5 3 12 3

4 6 — 3 14 4

5 7 3 4 16 5

6 8 3 4 18 6

7 9 — 3 4 20 7

8 — 10 3 4 5 22 8

9 1 11 3 4 5 24 9

10 1 12 3 4 6 26 10

11 1 13 3 4 6 28 11

12 1 14 — 4 5 7 30 12

13 1 15 3 4 5 7 32 13

14 1 16 3 4 6 8 34 14

15 1 17 3 4 6 8 36 15

16 1 18 3 4 6 8 38 16

17 1 19 3 5 6 9 40 17

18 — 1 20 — 3 5 7 9 42 18

19 1 2 21 3 4 5 7 10 44 19

20 1 2 22 3 4 5 7 10 46 20

21 1 2 23 3 4 6 8 11 48 21

22 1 2 24 3 4 6 8 11 50 22

23 1 2 25 3 4 6 8 12 52 23

24 1 2 26 3 4 6 9 12 54 24

25 — — — — 1 2 27 — 3 4 6 9 12 56 25

N1 5 3 N1 5 4

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

3 6 7 21

4 — 6 7 24 — 10 11 13 36 4

5 6 7 8 27 — 10 11 12 14 40 5

6 — 7 8 9 30 10 11 12 13 15 44 6

7 6 7 8 10 33 10 11 13 14 16 48 7

8 — 6 8 9 11 36 11 12 14 15 17 52 8

9 6 7 8 10 11 39 — 11 13 14 16 19 56 9

10 6 7 9 10 12 42 10 12 13 15 17 20 60 10

11 6 7 9 11 13 45 10 12 14 16 18 21 64 11

12 7 8 10 11 14 48 10 13 15 17 19 22 68 12

13 7 8 10 12 15 51 11 13 15 18 20 23 72 13

14 7 8 11 13 16 54 11 14 16 19 21 25 76 14

15 8 9 11 13 16 57 11 15 17 20 22 26 80 15

(continued)
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Appendix WS (continued)

N1 5 3 N1 5 4

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

16 — 8 9 12 14 17 60 12 15 17 21 24 27 84 16

17 6 8 10 12 15 18 63 12 16 18 21 25 28 88 17

18 6 8 10 13 15 19 66 13 16 19 22 26 30 92 18

19 6 9 10 13 16 20 69 13 17 19 23 27 31 96 19

20 6 9 11 14 17 21 72 13 18 20 24 28 32 100 20

21 7 9 11 14 17 21 75 14 18 21 25 29 33 104 21

22 7 10 12 15 18 22 78 14 19 21 26 30 35 108 22

23 7 10 12 15 19 23 81 14 19 22 27 31 36 112 23

24 7 10 12 16 19 24 84 15 20 23 27 32 38 116 24

25 7 11 13 16 20 25 87 15 20 23 28 33 38 120 25

N1 5 5 N1 5 6

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

5 15 16 17 19 20 55

6 16 17 18 20 22 60 — 23 24 26 28 30 78 6

7 — 16 18 20 21 23 65 21 24 25 27 29 32 84 7

8 15 17 19 21 23 25 70 22 25 27 29 31 34 90 8

9 16 18 20 22 24 27 75 23 26 28 31 33 36 96 9

10 16 19 21 23 26 28 80 24 27 29 32 35 38 102 10

11 17 20 22 24 27 30 85 25 28 30 34 37 40 108 11

12 17 21 23 26 28 32 90 25 30 32 35 38 42 114 12

13 18 22 24 27 30 33 95 26 31 33 37 40 44 120 13

14 18 22 25 28 31 35 100 27 32 34 38 42 46 126 14

15 19 23 26 29 33 37 105 28 33 36 40 44 48 132 15

16 20 24 27 30 34 38 110 29 34 37 42 46 50 138 16

17 20 25 28 32 35 40 115 30 36 39 43 47 52 144 17

18 21 26 29 33 37 42 120 31 37 40 45 49 55 150 18

19 22 27 30 34 38 43 125 32 38 41 46 51 57 156 19

20 22 28 31 35 40 45 130 33 39 43 48 53 59 162 20

21 23 29 32 37 41 47 135 33 40 44 50 55 61 168 21

22 23 29 33 38 43 48 140 34 42 45 51 57 63 174 22

23 24 30 34 39 44 50 145 35 43 47 53 58 65 180 23

24 25 31 35 40 45 51 150 36 44 48 54 60 67 186 24

25 25 32 36 42 47 53 155 37 45 50 56 62 69 192 25
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Appendix WS (continued)

N1 5 7 N1 5 8

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

7 29 32 34 36 39 41 105

8 30 34 35 38 41 44 112 40 43 45 49 51 55 136 8

9 31 35 37 40 43 46 119 41 45 47 51 54 58 144 9

10 33 37 39 42 45 49 126 42 47 49 53 56 60 152 10

11 34 38 40 44 47 51 133 44 49 51 55 59 63 160 11

12 35 40 42 46 49 54 140 45 51 53 58 62 66 168 12

13 36 41 44 48 52 56 147 47 53 56 60 64 69 176 13

14 37 43 45 50 54 59 154 48 54 58 62 67 72 184 14

15 38 44 47 52 56 61 161 50 56 60 65 69 75 192 15

16 39 46 49 54 58 64 168 51 58 62 67 72 78 200 16

17 41 47 51 56 61 66 175 53 60 64 70 75 81 208 17

18 42 49 52 58 63 69 182 54 62 66 72 77 84 216 18

19 43 50 54 60 65 71 189 56 64 68 74 80 87 224 19

20 44 52 56 62 67 74 196 57 66 70 77 83 90 232 20

21 46 53 58 64 69 76 203 59 68 72 79 85 92 240 21

22 47 55 59 66 72 79 210 60 70 74 81 88 95 248 22

23 48 57 61 68 74 81 217 62 71 76 84 90 98 256 23

24 49 58 63 70 76 84 224 64 73 78 86 93 101 264 24

25 50 60 64 72 78 86 231 65 75 81 89 96 104 272 25

N1 5 9 N1 5 10

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

9 52 56 59 62 66 70 171

10 53 58 61 65 69 73 180 65 71 74 78 82 87 210 10

11 55 61 63 68 72 76 189 67 73 77 81 86 91 220 11

12 57 63 66 71 75 80 198 69 76 79 84 89 94 230 12

13 59 65 68 73 78 83 207 72 79 82 88 92 98 240 13

14 60 67 71 76 81 86 216 74 81 85 91 96 102 250 14

15 62 69 73 79 84 90 225 76 84 88 94 99 106 260 15

16 64 72 76 82 87 93 234 78 86 91 97 103 109 270 16

17 66 74 78 84 90 97 243 80 89 93 100 106 113 280 17

18 68 76 81 87 93 100 252 82 92 96 103 110 117 290 18

19 70 78 83 90 96 103 261 84 94 99 107 113 121 300 19

20 71 81 85 93 99 107 270 87 97 102 110 117 125 310 20

21 73 83 88 95 102 110 279 89 99 105 113 120 128 320 21

22 75 85 90 98 105 113 288 91 102 108 116 123 132 330 22

23 77 88 93 101 108 117 297 93 105 110 119 127 136 340 23

24 79 90 95 104 111 120 306 95 107 113 122 130 140 350 24

25 81 92 98 107 114 123 315 98 110 116 126 134 144 360 25

(continued)
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Appendix WS (continued)

N1 5 11 N1 5 12

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

11 81 87 91 96 100 106 253

12 83 90 94 99 104 110 264 98 105 109 115 120 127 300 12

13 86 93 97 103 108 114 275 101 109 113 119 125 131 312 13

14 88 96 100 106 112 118 286 103 112 116 123 129 136 324 14

15 90 99 103 110 116 123 297 106 115 120 127 133 141 336 15

16 93 102 107 113 120 127 308 109 119 124 131 138 145 348 16

17 95 105 110 117 123 131 319 112 122 127 135 142 150 360 17

18 98 108 113 121 127 135 330 115 125 131 139 146 155 372 18

19 100 111 116 124 131 139 341 118 129 134 143 150 159 384 19

20 103 114 119 128 135 144 352 120 132 138 147 155 164 396 20

21 106 117 123 131 139 148 363 123 136 142 151 159 169 408 21

22 108 120 126 135 143 152 374 126 139 145 155 163 173 420 22

23 111 123 129 139 147 156 385 129 142 149 159 168 178 432 23

24 113 126 132 142 151 161 396 132 146 153 163 172 183 444 24

25 116 129 136 146 155 165 407 135 149 156 167 176 187 456 25

N1 5 13 N1 5 14

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

13 117 125 130 136 142 149 351

14 120 129 134 141 147 154 364 137 147 152 160 166 174 406 14

15 123 133 138 145 152 159 377 141 151 156 164 171 179 420 15

16 126 136 142 150 156 165 390 144 155 161 169 176 185 434 16

17 129 140 146 154 161 170 403 148 159 165 174 182 190 448 17

18 133 144 150 158 166 175 416 151 163 170 179 187 196 462 18

19 136 148 154 163 171 180 429 155 168 174 183 192 202 476 19

20 139 151 158 167 175 185 442 159 172 178 188 197 207 490 20

21 142 155 162 171 180 190 455 162 176 183 193 202 213 504 21

22 145 159 166 176 185 195 468 166 180 187 198 207 218 518 22

23 149 163 170 180 189 200 481 169 184 192 203 212 224 532 23

24 152 166 174 185 194 205 494 173 188 196 207 218 229 546 24

25 155 170 178 189 199 211 507 177 192 200 212 223 235 560 25

N1 5 15 N1 5 16

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

15 160 171 176 184 192 200 465

16 163 175 181 190 197 206 480 184 196 202 211 219 229 528 16

17 167 180 186 195 203 212 495 188 201 207 217 225 235 544 17

18 171 184 190 200 208 218 510 192 206 212 222 231 242 560 18

19 175 189 195 205 214 224 525 196 210 218 228 237 248 576 19

20 179 193 200 210 220 230 540 201 215 223 234 243 255 592 20

21 183 198 205 216 225 236 555 205 220 228 239 249 261 608 21

22 187 202 210 221 231 242 570 209 225 233 245 255 267 624 22

23 191 207 214 226 236 248 585 214 230 238 251 261 274 640 23

24 195 211 219 231 242 254 600 218 235 244 256 267 280 656 24

25 199 216 224 237 248 260 615 222 240 249 262 273 287 672 25
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Appendix WS (continued)

N1 5 17 N1 5 18

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

17 210 223 230 240 249 259 595

18 214 228 235 246 255 266 612 237 252 259 270 280 291 666 18

19 219 234 241 252 262 273 629 242 258 265 277 287 299 684 19

20 223 239 246 258 268 280 646 247 263 271 283 294 306 702 20

21 228 244 252 264 274 287 663 252 269 277 290 301 313 720 21

22 233 249 258 270 281 294 680 257 275 283 296 307 321 738 22

23 238 255 263 276 287 300 697 262 280 289 303 314 328 756 23

24 242 260 269 282 294 307 714 267 286 295 309 321 335 774 24

25 247 265 275 288 300 314 731 273 292 301 316 328 343 792 25

N1 5 19 N1 5 20

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

19 267 283 291 303 313 325 741

20 272 289 297 309 320 333 760 298 315 324 337 348 361 820 20

21 277 295 303 316 328 341 779 304 322 331 344 356 370 840 21

22 283 301 310 323 335 349 798 309 328 337 351 364 378 860 22

23 288 307 316 330 342 357 817 315 335 344 359 371 386 880 23

24 294 313 323 337 350 364 836 321 341 351 366 379 394 900 24

25 299 319 329 344 357 372 855 327 348 358 373 387 403 920 25

N1 5 21 N1 5 22

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

21 331 349 359 373 385 399 903

22 337 356 366 381 393 408 924 365 386 396 411 424 439 990 22

23 343 363 373 388 401 417 945 372 393 403 419 432 448 1012 23

24 349 370 381 396 410 425 966 379 400 411 427 441 457 1034 24

25 356 377 388 404 418 434 987 385 408 419 435 450 467 1056 25

N1 5 23 N1 5 24

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

0.001 0.005 0.010 0.025 0.05 0.10 2W
——

N2

23 402 424 434 451 465 481 1081

24 409 431 443 459 474 491 1104 440 464 475 492 507 525 1176 24

25 416 439 451 468 483 500 1127 448 472 484 501 517 535 1200 25

N1 5 25

N2 0.001 0.005 0.010 0.025 0.05 0.10 2W
——

25 480 505 517 536 552 570 1275

Source: Table 1 in L. R. Verdooren (1963), Extended tables of critical values for Wilcoxon’s test statistic, Biometrika, 50, 177–186, with
permission of the author and the editor.
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Appendix z: The Normal Distribution (z)

0 z

Smaller
portion

Larger
portion

Mean Larger Smaller Mean Larger Smaller

z to z Portion Portion y z to z Portion Portion y

0.00 0.0000 0.5000 0.5000 0.3989 0.36 0.1406 0.6406 0.3594 0.3739

0.01 0.0040 0.5040 0.4960 0.3989 0.37 0.1443 0.6443 0.3557 0.3725

0.02 0.0080 0.5080 0.4920 0.3989 0.38 0.1480 0.6480 0.3520 0.3712

0.03 0.0120 0.5120 0.4880 0.3988 0.39 0.1517 0.6517 0.3483 0.3697

0.04 0.0160 0.5160 0.4840 0.3986 0.40 0.1554 0.6554 0.3446 0.3683

0.05 0.0199 0.5199 0.4801 0.3984 0.41 0.1591 0.6591 0.3409 0.3668

0.06 0.0239 0.5239 0.4761 0.3982 0.42 0.1628 0.6628 0.3372 0.3653

0.07 0.0279 0.5279 0.4721 0.3980 0.43 0.1664 0.6664 0.3336 0.3637

0.08 0.0319 0.5319 0.4681 0.3977 0.44 0.1700 0.6700 0.3300 0.3621

0.09 0.0359 0.5359 0.4641 0.3973 0.45 0.1736 0.6736 0.3264 0.3605

0.10 0.0398 0.5398 0.4602 0.3970 0.46 0.1772 0.6772 0.3228 0.3589

0.11 0.0438 0.5438 0.4562 0.3965 0.47 0.1808 0.6808 0.3192 0.3572

0.12 0.0478 0.5478 0.4522 0.3961 0.48 0.1844 0.6844 0.3156 0.3555

0.13 0.0517 0.5517 0.4483 0.3956 0.49 0.1879 0.6879 0.3121 0.3538

0.14 0.0557 0.5557 0.4443 0.3951 0.50 0.1915 0.6915 0.3085 0.3521

0.15 0.0596 0.5596 0.4404 0.3945 0.51 0.1950 0.6950 0.3050 0.3503

0.16 0.0636 0.5636 0.4364 0.3939 0.52 0.1985 0.6985 0.3015 0.3485

0.17 0.0675 0.5675 0.4325 0.3932 0.53 0.2019 0.7019 0.2981 0.3467

0.18 0.0714 0.5714 0.4286 0.3925 0.54 0.2054 0.7054 0.2946 0.3448

0.19 0.0753 0.5753 0.4247 0.3918 0.55 0.2088 0.7088 0.2912 0.3429

0.20 0.0793 0.5793 0.4207 0.3910 0.56 0.2123 0.7123 0.2877 0.3410

0.21 0.0832 0.5832 0.4168 0.3902 0.57 0.2157 0.7157 0.2843 0.3391

0.22 0.0871 0.5871 0.4129 0.3894 0.58 0.2190 0.7190 0.2810 0.3372

0.23 0.0910 0.5910 0.4090 0.3885 0.59 0.2224 0.7224 0.2776 0.3352

0.24 0.0948 0.5948 0.4052 0.3876 0.60 0.2257 0.7257 0.2743 0.3332

0.25 0.0987 0.5987 0.4013 0.3867 0.61 0.2291 0.7291 0.2709 0.3312

0.26 0.1026 0.6026 0.3974 0.3857 0.62 0.2324 0.7324 0.2676 0.3292

0.27 0.1064 0.6064 0.3936 0.3847 0.63 0.2357 0.7357 0.2643 0.3271

0.28 0.1103 0.6103 0.3897 0.3836 0.64 0.2389 0.7389 0.2611 0.3251

0.29 0.1141 0.6141 0.3859 0.3825 0.65 0.2422 0.7422 0.2578 0.3230

0.30 0.1179 0.6179 0.3821 0.3814 0.66 0.2454 0.7454 0.2546 0.3209

0.31 0.1217 0.6217 0.3783 0.3802 0.67 0.2486 0.7486 0.2514 0.3187

0.32 0.1255 0.6255 0.3745 0.3790 0.68 0.2517 0.7517 0.2483 0.3166

0.33 0.1293 0.6293 0.3707 0.3778 0.69 0.2549 0.7549 0.2451 0.3144

0.34 0.1331 0.6331 0.3669 0.3765 0.70 0.2580 0.7580 0.2420 0.3123

0.35 0.1368 0.6368 0.3632 0.3752 0.71 0.2611 0.7611 0.2389 0.3101
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Appendix z (continued)

Mean Larger Smaller Mean Larger Smaller

z to z Portion Portion y z to z Portion Portion y

0.72 0.2642 0.7642 0.2358 0.3079 1.14 0.3729 0.8729 0.1271 0.2083

0.73 0.2673 0.7673 0.2327 0.3056 1.15 0.3749 0.8749 0.1251 0.2059

0.74 0.2704 0.7704 0.2296 0.3034 1.16 0.3770 0.8770 0.1230 0.2036

0.75 0.2734 0.7734 0.2266 0.3011 1.17 0.3790 0.8790 0.1210 0.2012

0.76 0.2764 0.7764 0.2236 0.2989 1.18 0.3810 0.8810 0.1190 0.1989

0.77 0.2794 0.7794 0.2206 0.2966 1.19 0.3830 0.8830 0.1170 0.1965

0.78 0.2823 0.7823 0.2177 0.2943 1.20 0.3849 0.8849 0.1151 0.1942

0.79 0.2852 0.7852 0.2148 0.2920 1.21 0.3869 0.8869 0.1131 0.1919

0.80 0.2881 0.7881 0.2119 0.2897 1.22 0.3888 0.8888 0.1112 0.1895

0.81 0.2910 0.7910 0.2090 0.2874 1.23 0.3907 0.8907 0.1093 0.1872

0.82 0.2939 0.7939 0.2061 0.2850 1.24 0.3925 0.8925 0.1075 0.1849

0.83 0.2967 0.7967 0.2033 0.2827 1.25 0.3944 0.8944 0.1056 0.1826

0.84 0.2995 0.7995 0.2005 0.2803 1.26 0.3962 0.8962 0.1038 0.1804

0.85 0.3023 0.8023 0.1977 0.2780 1.27 0.3980 0.8980 0.1020 0.1781

0.86 0.3051 0.8051 0.1949 0.2756 1.28 0.3997 0.8997 0.1003 0.1758

0.87 0.3078 0.8078 0.1922 0.2732 1.29 0.4015 0.9015 0.0985 0.1736

0.88 0.3106 0.8106 0.1894 0.2709 1.30 0.4032 0.9032 0.0968 0.1714

0.89 0.3133 0.8133 0.1867 0.2685 1.31 0.4049 0.9049 0.0951 0.1691

0.90 0.3159 0.8159 0.1841 0.2661 1.32 0.4066 0.9066 0.0934 0.1669

0.91 0.3186 0.8186 0.1814 0.2637 1.33 0.4082 0.9082 0.0918 0.1647

0.92 0.3212 0.8212 0.1788 0.2613 1.34 0.4099 0.9099 0.0901 0.1626

0.93 0.3238 0.8238 0.1762 0.2589 1.35 0.4115 0.9115 0.0885 0.1604

0.94 0.3264 0.8264 0.1736 0.2565 1.36 0.4131 0.9131 0.0869 0.1582

0.95 0.3289 0.8289 0.1711 0.2541 1.37 0.4147 0.9147 0.0853 0.1561

0.96 0.3315 0.8315 0.1685 0.2516 1.38 0.4162 0.9162 0.0838 0.1539

0.97 0.3340 0.8340 0.1660 0.2492 1.39 0.4177 0.9177 0.0823 0.1518

0.98 0.3365 0.8365 0.1635 0.2468 1.40 0.4192 0.9192 0.0808 0.1497

0.99 0.3389 0.8389 0.1611 0.2444 1.41 0.4207 0.9207 0.0793 0.1476

1.00 0.3413 0.8413 0.1587 0.2420 1.42 0.4222 0.9222 0.0778 0.1456

1.01 0.3438 0.8438 0.1562 0.2396 1.43 0.4236 0.9236 0.0764 0.1435

1.02 0.3461 0.8461 0.1539 0.2371 1.44 0.4251 0.9251 0.0749 0.1415

1.03 0.3485 0.8485 0.1515 0.2347 1.45 0.4265 0.9265 0.0735 0.1394

1.04 0.3508 0.8508 0.1492 0.2323 1.46 0.4279 0.9279 0.0721 0.1374

1.05 0.3531 0.8531 0.1469 0.2299 1.47 0.4292 0.9292 0.0708 0.1354

1.06 0.3554 0.8554 0.1446 0.2275 1.48 0.4306 0.9306 0.0694 0.1334

1.07 0.3577 0.8577 0.1423 0.2251 1.49 0.4319 0.9319 0.0681 0.1315

1.08 0.3599 0.8599 0.1401 0.2227 1.50 0.4332 0.9332 0.0668 0.1295

1.09 0.3621 0.8621 0.1379 0.2203 1.51 0.4345 0.9345 0.0655 0.1276

1.10 0.3643 0.8643 0.1357 0.2179 1.52 0.4357 0.9357 0.0643 0.1257

1.11 0.3665 0.8665 0.1335 0.2155 1.53 0.4370 0.9370 0.0630 0.1238

1.12 0.3686 0.8686 0.1314 0.2131 1.54 0.4382 0.9382 0.0618 0.1219

1.13 0.3708 0.8708 0.1292 0.2107 1.55 0.4394 0.9394 0.0606 0.1200

(continued)
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Appendix z (continued)

Mean Larger Smaller Mean Larger Smaller

z to z Portion Portion y z to z Portion Portion y

1.56 0.4406 0.9406 0.0594 0.1182 1.98 0.4761 0.9761 0.0239 0.0562

1.57 0.4418 0.9418 0.0582 0.1163 1.99 0.4767 0.9767 0.0233 0.0551

1.58 0.4429 0.9429 0.0571 0.1145 2.00 0.4772 0.9772 0.0228 0.0540

1.59 0.4441 0.9441 0.0559 0.1127 2.01 0.4778 0.9778 0.0222 0.0529

1.60 0.4452 0.9452 0.0548 0.1109 2.02 0.4783 0.9783 0.0217 0.0519

1.61 0.4463 0.9463 0.0537 0.1092 2.03 0.4788 0.9788 0.0212 0.0508

1.62 0.4474 0.9474 0.0526 0.1074 2.04 0.4793 0.9793 0.0207 0.0498

1.63 0.4484 0.9484 0.0516 0.1057 2.05 0.4798 0.9798 0.0202 0.0488

1.64 0.4495 0.9495 0.0505 0.1040 2.06 0.4803 0.9803 0.0197 0.0478

1.65 0.4505 0.9505 0.0495 0.1023 2.07 0.4808 0.9808 0.0192 0.0468

1.66 0.4515 0.9515 0.0485 0.1006 2.08 0.4812 0.9812 0.0188 0.0459

1.67 0.4525 0.9525 0.0475 0.0989 2.09 0.4817 0.9817 0.0183 0.0449

1.68 0.4535 0.9535 0.0465 0.0973 2.10 0.4821 0.9821 0.0179 0.0440

1.69 0.4545 0.9545 0.0455 0.0957 2.11 0.4826 0.9826 0.0174 0.0431

1.70 0.4554 0.9554 0.0446 0.0940 2.12 0.4830 0.9830 0.0170 0.0422

1.71 0.4564 0.9564 0.0436 0.0925 2.13 0.4834 0.9834 0.0166 0.0413

1.72 0.4573 0.9573 0.0427 0.0909 2.14 0.4838 0.9838 0.0162 0.0404

1.73 0.4582 0.9582 0.0418 0.0893 2.15 0.4842 0.9842 0.0158 0.0396

1.74 0.4591 0.9591 0.0409 0.0878 2.16 0.4846 0.9846 0.0154 0.0387

1.75 0.4599 0.9599 0.0401 0.0863 2.17 0.4850 0.9850 0.0150 0.0379

1.76 0.4608 0.9608 0.0392 0.0848 2.18 0.4854 0.9854 0.0146 0.0371

1.77 0.4616 0.9616 0.0384 0.0833 2.19 0.4857 0.9857 0.0143 0.0363

1.78 0.4625 0.9625 0.0375 0.0818 2.20 0.4861 0.9861 0.0139 0.0355

1.79 0.4633 0.9633 0.0367 0.0804 2.21 0.4864 0.9864 0.0136 0.0347

1.80 0.4641 0.9641 0.0359 0.0790 2.22 0.4868 0.9868 0.0132 0.0339

1.81 0.4649 0.9649 0.0351 0.0775 2.23 0.4871 0.9871 0.0129 0.0332

1.82 0.4656 0.9656 0.0344 0.0761 2.24 0.4875 0.9875 0.0125 0.0325

1.83 0.4664 0.9664 0.0336 0.0748 2.25 0.4878 0.9878 0.0122 0.0317

1.84 0.4671 0.9671 0.0329 0.0734 2.26 0.4881 0.9881 0.0119 0.0310

1.85 0.4678 0.9678 0.0322 0.0721 2.27 0.4884 0.9884 0.0116 0.0303

1.86 0.4686 0.9686 0.0314 0.0707 2.28 0.4887 0.9887 0.0113 0.0297

1.87 0.4693 0.9693 0.0307 0.0694 2.29 0.4890 0.9890 0.0110 0.0290

1.88 0.4699 0.9699 0.0301 0.0681 2.30 0.4893 0.9893 0.0107 0.0283

1.89 0.4706 0.9706 0.0294 0.0669 2.31 0.4896 0.9896 0.0104 0.0277

1.90 0.4713 0.9713 0.0287 0.0656 2.32 0.4898 0.9898 0.0102 0.0270

1.91 0.4719 0.9719 0.0281 0.0644 2.33 0.4901 0.9901 0.0099 0.0264

1.92 0.4726 0.9726 0.0274 0.0632 2.34 0.4904 0.9904 0.0096 0.0258

1.93 0.4732 0.9732 0.0268 0.0620 2.35 0.4906 0.9906 0.0094 0.0252

1.94 0.4738 0.9738 0.0262 0.0608 2.36 0.4909 0.9909 0.0091 0.0246

1.95 0.4744 0.9744 0.0256 0.0596 2.37 0.4911 0.9911 0.0089 0.0241

1.96 0.4750 0.9750 0.0250 0.0584 2.38 0.4913 0.9913 0.0087 0.0235

1.97 0.4756 0.9756 0.0244 0.0573 2.39 0.4916 0.9916 0.0084 0.0229
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Appendix z (continued)

Mean Larger Smaller Mean Larger Smaller

z to z Portion Portion y z to z Portion Portion y

2.40 0.4918 0.9918 0.0082 0.0224 2.75 0.4970 0.9970 0.0030 0.0091

2.41 0.4920 0.9920 0.0080 0.0219 2.76 0.4971 0.9971 0.0029 0.0088

2.42 0.4922 0.9922 0.0078 0.0213 2.77 0.4972 0.9972 0.0028 0.0086

2.43 0.4925 0.9925 0.0075 0.0208 2.78 0.4973 0.9973 0.0027 0.0084

2.44 0.4927 0.9927 0.0073 0.0203 2.79 0.4974 0.9974 0.0026 0.0081

2.45 0.4929 0.9929 0.0071 0.0198 2.80 0.4974 0.9974 0.0026 0.0079

2.46 0.4931 0.9931 0.0069 0.0194 2.81 0.4975 0.9975 0.0025 0.0077

2.47 0.4932 0.9932 0.0068 0.0189 2.82 0.4976 0.9976 0.0024 0.0075

2.48 0.4934 0.9934 0.0066 0.0184 2.83 0.4977 0.9977 0.0023 0.0073

2.49 0.4936 0.9936 0.0064 0.0180 2.84 0.4977 0.9977 0.0023 0.0071

2.50 0.4938 0.9938 0.0062 0.0175 2.85 0.4978 0.9978 0.0022 0.0069

2.51 0.4940 0.9940 0.0060 0.0171 2.86 0.4979 0.9979 0.0021 0.0067

2.52 0.4941 0.9941 0.0059 0.0167 2.87 0.4979 0.9979 0.0021 0.0065

2.53 0.4943 0.9943 0.0057 0.0163 2.88 0.4980 0.9980 0.0020 0.0063

2.54 0.4945 0.9945 0.0055 0.0158 2.89 0.4981 0.9981 0.0019 0.0061

2.55 0.4946 0.9946 0.0054 0.0154 2.90 0.4981 0.9981 0.0019 0.0060

2.56 0.4948 0.9948 0.0052 0.0151 2.91 0.4982 0.9982 0.0018 0.0058

2.57 0.4949 0.9949 0.0051 0.0147 2.92 0.4982 0.9982 0.0018 0.0056

2.58 0.4951 0.9951 0.0049 0.0143 2.93 0.4983 0.9983 0.0017 0.0055

2.59 0.4952 0.9952 0.0048 0.0139 2.94 0.4984 0.9984 0.0016 0.0053

2.60 0.4953 0.9953 0.0047 0.0136 2.95 0.4984 0.9984 0.0016 0.0051

2.61 0.4955 0.9955 0.0045 0.0132 2.96 0.4985 0.9985 0.0015 0.0050

2.62 0.4956 0.9956 0.0044 0.0129 2.97 0.4985 0.9985 0.0015 0.0048

2.63 0.4957 0.9957 0.0043 0.0126 2.98 0.4986 0.9986 0.0014 0.0047

2.64 0.4959 0.9959 0.0041 0.0122 2.99 0.4986 0.9986 0.0014 0.0046

2.65 0.4960 0.9960 0.0040 0.0119 3.00 0.4987 0.9987 0.0013 0.0044

2.66 0.4961 0.9961 0.0039 0.0116 . . . . . . . . . . . . . . .

2.67 0.4962 0.9962 0.0038 0.0113 3.25 0.4994 0.9994 0.0006 0.0020

2.68 0.4963 0.9963 0.0037 0.0110 . . . . . . . . . . . . . . .

2.69 0.4964 0.9964 0.0036 0.0107 3.50 0.4998 0.9998 0.0002 0.0009

2.70 0.4965 0.9965 0.0035 0.0104 . . . . . . . . . . . . . . .

2.71 0.4966 0.9966 0.0034 0.0101 3.75 0.4999 0.9999 0.0001 0.0004

2.72 0.4967 0.9967 0.0033 0.0099 . . . . . . . . . . . . . . .

2.73 0.4968 0.9968 0.0032 0.0096 4.00 0.5000 1.0000 0.0000 0.0001

2.74 0.4969 0.9969 0.0031 0.0093 . . . . . . . . . . . . . . .

Source: The entries in this table were computed by the author.
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Answers to Exercises

I am supplying the answers to most of the odd numbered exercises. (Answers to even-

numbered items are not given because many instructors want at least some questions with-

out answers.) Some odd-numbered answers have been omitted because the question asks

that you draw a figure or compare computer output to the results of hand calculation. Oth-

ers have been omitted when the question simply asks you to apply computer software to a

set of data. Either you will be able to do that, and will almost certainly get the correct an-

swer, or you won‘t be able to set up the problem in the first place (in which case the

numerical answer is of no help). You will sometimes be frustrated because I have often

omitted answers to the Discussion Questions. Very often there is no simple answer to these

questions. On other occasions there is a straightforward answer, but I want you to think

about the problem a while and see what you come up with. Frequently you will find much

more of interest than the simple answer that I might give. I recognize that it is frustrating

when you can’t figure out what the exercise is getting at; I, too, hate those situations. But

that’s the nature of discussion questions.

More complete solutions to the odd numbered questions can be found at the Web site

for this book by clicking on the Student Manual link.
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Chapter 1

1.1 The entire student body of your college or university

would be considered a population under any circum-

stances in which you want to generalize only to the stu-

dent body of your school.

1.3 The students of your college or university are a nonran-

dom sample of U.S. students, for example, because not

all U.S. students have an equal chance of being included

in the sample.

1.5 Independent variables: first-grade students who attended

kindergarten versus those who did not; seniors, masters,

submasters, and juniors as categories of marathon run-

ners. Dependent variables: social-adjustment scores

assigned by first-grade teachers; time to run 26.2 miles.

1.7 Continuous variables: length of gestation; typing speed

in words minute; and number of books in the library

collection.

1.9 The planners of a marathon race would like to know the

average times of senior, master, submaster, and junior

runners so they can plan accordingly.

1.11 (a) The number of Brown University students in an

October 1984 referendum voting for, and the num-

ber voting against, the university’s stockpiling sui-

cide pills in case of nuclear disaster.

(b) The number of students in a small Midwestern col-

lege who are white, African-American, Hispanic-

American, Asian, or other. 

(c) One year after an experimental program to treat

alcoholism, the number of participants who are

“still on the wagon,” “drinking without having

sought treatment,” or “again under treatment.”

1.13 Children’s scores in an elementary school could be

reported numerically (a measurement variable), or the stu-

dents could be categorized as Bluebirds (Rating . 90),

Robins (Rating 5 70 2 90), or Cardinals (Rating , 70).

1.15 For adults of a given height and gender, weight is a 

ratio scale of body weight, but it is at best an ordinal

scale of physical health.

1.17 Speed is probably a much better index of motivation

than of learning.

1.19 (a) The final grade point average for low-achieving stu-

dents taking courses that interest them could be

compared with the averages of low-achieving stu-

dents taking courses that do not interest them. (b)

The frequency of sexual intercourse could be com-

pared for happily versus unhappily married couples.

1.21 An interesting study of the health effects of smoking in

China can be found at http://www.berkeley.edu/news/

media/releases/2005/09/04_smoking.shtml.

Chapter 2

2.1 (b) Unimodal and positively skewed.

2.3 The problem with making a stem-and-leaf display of

the data in Exercise 2.1 is that almost all of the values

>

fall on only two leaves if we use the usual tens’ digits

for stems. And things are not much better even if we

double the number of stems.

2.5 There is no specific answer other than a graph.

2.7 There is no specific answer.

2.9 The first quartile for males is approximately 77, whereas

for females it is about 80. The third quartiles are nearly

equal for males and females, with a value of 87.

2.11 The shape of the distribution of number of movies at-

tended per month for the next 200 people you met

would be positively skewed, with a peak at 0 movies per

month and a sharp dropoff to essentially the baseline by

about 5 movies per month.

2.13 This is a stem-and-leaf display. 

2.15 (a) Y
1

5 9, Y
10

5 2 

(b)

2.17 (a)

(b)

(c)

(d) The units of measurement were squared musicality

scores in part (b) and musicality scores in part (c).

2.19 (a)

(b)

(c)

(d)

2.21 The results in Exercise 2.20 support the sequential

processing hypothesis.

2.23 The data are not likely to be independent observations

because the subject is probably learning the task over

the early trials, and later getting tired as the task pro-

gresses. Thus responses closer in time are more likely to

be similar than responses further away in time.

2.25 The amount of shock that a subject delivers to a white

participant does not depend upon whether or not that

subject has been insulted by the experimenter. On the

other hand, black participants do suffer when the exper-

imenter insults the subject.

2.27 This question asks for a graphic.

2.29 One way to look at these data is to plot the percentage of

households headed by women and the family size sepa-

rately against years. There has been a dramatic increase

in the percentage of households headed by women over

(gX)2 = 772 = 5929

gX2 = 102 1 82 1 . . . 1 72 = 657

CgX = 3(77) = 231

= 231

gCX = g3X = 3(10) 1 3(8) 1 . . . 1 3(7)

gXgY = (77)(57) = 4389

gXY = 10(9) 1 3(8) 1 . . . 1 3(7) = 460

gX 1 gY = 77 1 57 = 134

1 . . . 1 (7 1 2) = 134

g (X 1 Y ) = (10 1 9) 1 (8 3 9)

15.789 = 2.406

gY2 2
(gY)2

N

N 2 1
=

377 2
3249

10

9
= 5.789

gY2 = 92 1 92 . . . 22 = 377

(gY)2 = (9 1 9 1 . . . 1 2)2 = 3249

gY = 9 1 9 1 . . . 1 2 = 57
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the past 10 years. There has also been a corresponding

decrease in family size, perhaps due to an increase in

single-parent families.

2.31 The mean falls above the median.

2.33 Mean 5 21.33; median 5 21.

2.35 If you multiple by 5, for example, the mean will go

from 4.83 to 24.15; the median and the mode will go

from 5 to 25.

2.37 These fit nicely with what the earlier exercises led me

to expect.

2.39 This is a computer question.

2.41 Range 5 16; variance 5 11.592; standard deviation 5

3.405.

2.43 The interval 5 9.908 to 27.892

2.45 The standard deviation remains at 2.23 regardless of

what constant you add or subtract.

2.47 The new values are 2.381 3.809 1.428 3.809 etc.

2.49 This asks that you create a graphic.

2.51 This asks that you create a graphic.

2.53 For Appendix Data Set the coefficient of variation for

GPA is 0.351.

2.55 The 10% trimmed mean would be 32.675. 

2.57 This question asks that you draw a graphic.

2.59 This is an Internet search.

Chapter 3

3.1 (b) 23, 22, 22, 21, 21, 21, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3

(c) 21.84, 21.23, 21.23, 20.61, 20.61, 20.61, 0, 0,

0, 0, 0.61, 0.61, 0.61, 1.23, 1.23, 1.84

3.3 (a) 68% (b) 50% (c) 84%

3.5 z 5 (950 2 975) 15 5 21.67; only 4.75% of the time

would we expect a count as low as 950, given what we

know about the distribution. The two-tailed probability

would be .095.

3.7 The answers to parts (b) and (c) of Exercise 3.6 will be

equal when the two distributions have the same stan-

dard deviation.

3.9 (a) $2512.68 (b) $1342.00

3.11 Multiply the raw scores by 10 7 to raise the standard

deviation to 10, and then add 11.43 points to each new

score to bring the mean up to 80.

3.13 z 5 (600 2 489) 126 5 0.88. Therefore 81% of the

scores fall below this, so 600 represents the 81st per-

centile.

3.15 z 5 0.79, p 5 .7852; X 5 586.591

For seniors and nonenrolled college graduates, a GRE

score of 600 is at the 79th percentile, and a score of 587

would correspond to the 75th percentile.

3.17 The 75th percentile for GPA is 3.04.

>

>

>

3.19 There is no meaningful discrimination to be made

among those scoring below the mean, and therefore all

people who score in that range are given a T score of 50.

3.21 The post intervention weights are reasonably normal,

but the weight gain and percentage gain are far from

normal. However, we have a very small sample.

3.23 You would probably do reasonably well if you treated

these as if they were normally distributed, especially if

you trimmed your samples. The extreme salaries may

well be people who worked in industry for many years

before coming to teaching or to those who were never

promoted above the rank of assistant professor but

stayed at the school for many years.

Chapter 4

4.1 (a) I set up the null hypothesis that last night’s game

was actually an NHL hockey game.

(b) On the basis of that hypothesis, I expected that

each team would earn somewhere between 0 and

6 points. I then looked at the actual points and

concluded that they were way out of line with

what I would expect if this were an NHL hockey

game. I therefore rejected the null hypothesis.

4.3 Concluding that I had been shortchanged when in fact I

had not.

4.5 The critical value would be that amount of change be-

low which I would decide that I had been shortchanged.

The rejection region would be all amounts of change

less than the critical value—that is, all amounts that

would lead to rejection of H
0
.

4.7 z 5 (490 2 650) 50 5 23.2. The probability that a stu-

dent drawn at random from those properly admitted

would have a GRE score as low as 490 is .0007. I sus-

pect that the fact that his mother was a member of the

board of trustees played a role in his admission.

4.9 The distribution would drop away smoothly to the right

for the same reason that it always does—there are few

high-scoring people. It would drop away steeply to the

left because fewer of the borderline students would be

admitted (no matter how high the borderline is set).

4.11 M is called a test statistic.

4.13 The alternative hypothesis is that this student was sam-

pled from a population of students whose mean is not

equal to 650.

4.15 The word “distribution” refers to the set of values ob-

tained for any set of observations. The phrase “sampling

distribution” is reserved for the distribution of outcomes

(either theoretical or empirical) of a sample statistic.

4.17 (a) Research hypothesis: Children who attend kinder-

garten adjust to first grade faster than those who

do not. Null hypothesis: First grade adjustment

rates are equal for children who did and did not

attend kindergarten.

>
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(b) Research hypothesis: Sex education in junior high

school decreases the rate of pregnancies among

students in high school. Null hypothesis: The rate

of pregnancies among unmarried mothers in high

school is the same regardless of the presence or

absence of sex education in junior high school.

4.19 For , z must be 22.327. The cutoff score is

therefore approximately 53.46. The corresponding

value for z when a cutoff score of 53.46 is applied to the

curve for H
1
, is . From Appendix Power we

find .

4.21 To determine whether there is a true relationship

between grades and course evaluations, I would find a

statistic that reflected the degree of relationship

between two variables. (You will see such a statistic (r)

in Chapter 9.) I would then calculate the sampling dis-

tribution of that statistic in a situation in which there is

no relationship between two variables. Finally, I would

calculate the statistic for a representative set of students

and classes, and compare my sample value with the

sampling distribution of that statistic.

4.23 (a) You could draw a large sample of boys and a large

sample of girls in the class and calculate the mean

allowance for each group. The null hypothesis

would be the hypothesis that the mean allowance,

in the population, for boys is the same as the mean

allowance, in the population, for girls.

(b) I would use a two-tailed test because I want to be

able to reject the null hypothesis whether girls re-

ceive significantly more allowance or significantly

less allowance than boys.

(c) I would reject the null hypothesis if the difference

between the two sample means were greater than

I could expect to find due to chance. Otherwise

I would not reject the null.

(d) The most important thing to do would be to have

some outside corroboration for the amount of

allowance reported by the children.

4.25 In the parking lot example, the traditional approach

to hypothesis testing would test the null hypothesis

that the mean time to leave a space is the same

whether someone is waiting or not. If their test failed

to reject the null hypothesis, they would simply fail

to reject the null hypothesis, and would do so at a

two-tailed level of . Jones and Tukey, on the

other hand, would not consider that the null hypothe-

sis of equal population means could possibly be true.

They would focus on making a conclusion about

which population mean is higher. A “nonsignificant

result” would only mean that they didn’t have enough

data to draw any conclusion. Jones and Tukey would

also be likely to work with a one-tailed , but

be actually making a two-tailed test because they

would not have to specify a hypothesized direction of

difference.

a = .025

a = .05

b = .9082

z = -1.33

a = .01

4.27 Proportion seeking help who are women

(a) It is quite unlikely that we would have 61% of our

sample being women if p 5 .50. In my particular

sampling distribution a score of 61 or higher was

obtained on 16 1000 5 1.6% of the time.

(b) I would repeat the same procedure again except

that I would draw from a binomial distribution

where p 5 .75.

Chapter 5

5.1 (a) Analytic: If two tennis players are exactly evenly

skillful—so that the outcome of their match is ran-

dom, the probability is .50 that Player A will win

their upcoming match.

(b) Relative frequency: If in past matches Player A has

beaten Player B on 13 of the 17 occasions on

which they played, then Player A has a probability

of 13 17 5 .76 of winning their upcoming match.

(c) Subjective: Player A’s coach feels that he has a

probability of .90 of winning his upcoming match

against Player B.

5.3 (a) p 5 1 9 5 .111 that you will win second prize

given that you do not win first prize. 

(b) p 5 (2 10)(1 9) 5 (.20)(.111) 5 .022 that he will

win first and you second.

(c) p 5 (1 10)(2 9) 5 (.10)(.22) 5 .022 that you will

win first and he second.

(d) p (you are first and he is second [5 .022]) 1 p(he

is the first and you second [5 .022]) 5 p(you and

he will be first and second) 5 .044.

5.5 Conditional probabilities were involved in Exercise 5.3a.

5.7 Conditional probabilities: What is the probability that

skiing conditions will be good on Wednesday, given that

they are good today?

5.9 p 5 (2 13)(3 13) 5 (.154)(.231) 5 .036.

5.11 A continuous distribution for which we care about the

probability of an observation’s falling within some

specified interval is exemplified by the probability that

your baby will be born on its due date.

5.13 Two examples of discrete variables: Variety of meat served

at dinner tonight; Brand of desktop computer owned.

5.15 (a) 20%, or 60 applicants, will fall at or above the

80th percentile, and 10 of these will be chosen.

Therefore p(that an applicant with the highest rat-

ing will be admitted) 5 10 60 5 .167.

(b) No one below the 80th percentile will be admitted;

therefore p(that an applicant with the lowest rating

will be admitted) 5 .00.

5.17 (a) z 5 2.33; p(larger portion) 5 .6293

(b) 29 55 5 53% . 50; 32 55 5 58% $ 50.

5.19 Compare the probability of dropping out of school, ig-

noring the ADDSC score, with the conditional probabil-

ity of dropping out given that ADDSC in elementary

school exceeded some value (e.g., 66).

>>

>

>>

>>

>>

>

>

>
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5.21 Probabilities of correct choices on trial 1 of a 5choice

task

p(0) 5 .1074 p(6) 5 .0055

p(1) 5 .2684 p(7) 5 .0008

p(2) 5 .3020 p(8) 5 .0001

p(3) 5 .2013 p(9) 5 .0000

p(4) 5 .0881 p(10) 5 .0000

p(5) 5 .0264

5.23 At , up to 4 correct choices indicate chance per-

formance, but 5 or more correct choices would lead me

to conclude that they are no longer performing at

chance levels.

5.25 If there is no housing discrimination, then a person’s

race and whether or not they are offered a particular unit

of housing are independent events. We could calculate

the probability that a particular unit (or a unit in a par-

ticular section of the city) will be offered to anyone in a

specific income group. We can also calculate the proba-

bility that the customer is a member of an ethnic minor-

ity. We can then calculate the probability of that person

being shown the unit assuming independence, and com-

pare that answer against the actual proportion of times a

member of an ethnic minority was offered such a unit.

5.27 The number of subjects needed for the verbal learning

experiment in Exercise 5.26 if each subject can see only

two of the four classes of words is the number of per-

mutations of 4 things taken 2 at a time 5 4! 2! 5 12.

5.29 The total number of ways of making ice cream cones 5

63. (You can’t have an ice cream cone without ice

cream, so exclude the combination of 6 things taken 0

at a time.)

5.31 Since the probability of 11 correct by chance is .16,

the probability of 11 or more correct must be greater

than .16. Therefore we cannot reject the hypothesis that

p 5 .50 (the student is guessing) at .

5.33 Driving test passed by 22 out of 30 drivers when 60%

expected to pass:

we cannot reject H
0

at

5.35 Students should come to understand that nature does

not have a responsibility to make things come out even

in the end, and that it has a terrible memory of what has

happened in the past. Any “law of averages” refers to

the results of a long-term series of events, and it de-

scribes what we would expect to see. It does not have

any self-correcting mechanism built into it. 

5.37 It is low because the probability of breast cancer is itself

very low. But don’t be too discouraged. Having col-

lected some data (a positive mammography) the proba-

bility is 7.8 times higher than it would otherwise have

been. (And if you are a woman, please don’t stop hav-

ing mammograms.)

a = .05.

z =
22 2 30(.60)230(.60)(.40)

= 1.49;

a = .05

>

a = .05

Chapter 6

6.1 on 2 df; reject H
0

and conclude that

students do not enroll at random.

6.3 on 4 df; do not reject H
0

that the child’s sort-

ing behavior is in line with the theory.

6.5 on 1 df; reject H
0

and conclude that the

children did not choose dolls at random (at least with

respect to color).

6.7 on 1 df; reject H
0

and conclude that the

distribution of choices between Black and White dolls

was different in the two studies. Choice is not independ-

ent of Study. We are no longer asking whether one color

of doll is preferred over the other color, but whether the

pattern of preference is constant across studies.

6.9 (a) Take a group of subjects at random and sort them

by gender and by lifestyle (categorized across 3
levels).

(b) Deliberately take an equal number of males and

females and ask them to specify a preference

among 3 types of lifestyles.

(c) Deliberately take 10 males and 10 females and

have them divide themselves into two teams of 10

players each.

6.11 (a)

(b) This demonstration shows that the obtained value

of is exactly doubled, while the critical value

remains the same. Thus the sample size plays a

very important role, with larger samples being

more likely to produce significant results—as is

also true with other tests.

6.13 . Reject H
0

and conclude that women voted

differently from men. The odds of women supporting

civil unions are much greater than the odds of men

supporting civil—the odds ratio is (35 9) (60 41) 5

3.89 1.46 5 2.66. The odds that women support civil

unions were 2.66 times the odds that men did. That is

a substantial difference, and likely reflects fundamen-

tal differences in attitude.

6.15 on 2 df; reject H
0

and conclude that the

number of bystanders influences whether or not sub-

jects seek help.

6.17 (a) on 2 df; reject H
0 

and conclude that

adolescent girls’ preferred weight varies with race.

(b) The number of girls desiring to lose weight was

far in excess of the number of girls who were re-

ally overweight.

6.19 Likelihood ratio on 7 df; do not reject H
0
.

6.21 (a)

(b) If watching Monday Night Football really changes

people’s opinions (in a negative direction), then of

those people who change, more should change

from positive to negative than vice versa, which is

what happened.

x2 = 9.0.

x2 = 12.753

x2 = 37.141

x2 = 7.908

>
>>>

x2 = 5.50

x2

x2 = 10.306.

x2 = 34.184

x2 = 29.35

x2 = 2.4

x2 = 11.33
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(c) The analysis does not take into account all of

those people who did not change. It only reflects

direction of change if a person changes.

6.23 (b) Row percents take entries as a percentage of row

totals, while column percents take entries as a per-

centage of column totals.

(c) These are the probabilities (to four decimal

places) of a , under H
0
.

(d) The correlation between the variables is approxi-

mately .25.

6.25 (a) Cramer’s 

(b) Odds Fatal | Placebo 5 18 10,845 5 .00166. Odds

Fatal | Aspirin 5 5 10,933 5 .000453. Odds Ratio 5

.00166 .000453 5 3.66. The odds that you will die

from a myocardial infarction if you do not take

aspirin are times 3.66 greater than if you do.

6.27 For Table 6.4 the odds ratio for a death sentence as a

function of race is (33 251) (33 508) 5 2.017. A per-

son has twice the odds of being sentenced to death if he

or she is nonwhite rather than white.

6.29 For the Dabbs and Morris (1990) study, on

1 df . We can reject H
0 

and conclude that antisocial

behavior in males is linked to testosterone levels.

6.31 (a) 15.57 on 1 df. Reject H
0
.

(b) There is a significant relationship between high

levels of testosterone in adult men and a history of

delinquent behaviors during childhood.

(c) This result shows that we can tie the two variables

(delinquency and testosterone) together historically.

6.33 9.79. Reject H
0
.

(b) Odds ratio 5 (43 457) (50 268) 5 0.094 .186 5

.505 Those who receive the program have about

half the odds of subsequently suffering abuse.

6.35 (a) 0.232, p 5 .630.

(b) There is no relationship between the gender of the

parent and the gender of the child.

(c) We would be unable to separate effects due to par-

ent’s gender from effects due to the child’s gender.

They would be completely confounded.

6.37 We could ask a series of similar questions, evenly split

between “right” and “wrong” answers. We could then

sort the replies into positive and negative categories and

ask whether faculty were more likely than students to

give negative responses.

6.39 If the scale points mean different things to men and

women, it is possible that the relationship could be dis-

torted by the closed-end nature of the scales.

6.41 9.698. This is a chi-square on 1 df and is signifi-

cant. Death sentence and race are related even after we

control for the seriousness of the crime.

6.43 Whereas only 9% of the occupants of cars were not

belted at the time of the accident, 22% of those who

M2 =

x2 =

>>>>
x2 =

x2 =

x2 = 64.08

>>>

>
>

>
fC = 126.903/22,071 = .0349.

x2 Ú x2
obs

were injured were unbelted and 74% of those who were

killed were unbelted. The chi-square statistics for these

two statements are 1738.00 and 363.2, and are signifi-

cant. A disproportionate number of those killed or in-

jured were not wearing seatbelts relative to the seatbelt

use of occupants in general.

Chapter 7

7.1 This is a graphic example.

7.3 The mean and standard deviation of the sample are 4.46

and 2.69. The mean and standard deviation are close to

the parameters of the population from which the sample

was drawn (4.5 and 2.6, respectively). The mean of the

distribution of means is 4.45, which is close to the pop-

ulation mean, and the standard deviation is 1.20.

(a) The Central Limit Theorem would predict a sam-

pling distribution of the mean with a mean of 4.5

and a standard deviation of 2.69 5 1.20.

(b) These values are very close to what we would

expect.

7.5 If you had drawn 50 samples of size 15, the mean of the

sampling distribution should still approximate the mean

of the population, but the standard error of that distribu-

tion would now be only 2.69 5 0.69.

7.7 I used a two-tailed test in the last problem, but a one-

tailed test could be justified on the grounds that we had

no interest in showing that these students thought that

they were below average, but only in showing that they

thought that they were above average.

7.9 While the group that was near the bottom certainly had

less room to underestimate their performance than to

overestimate it, the fact that they overestimated by

so much is significant. (If they were in the bottom

quartile the best that they could have scored was at

the 25th percentile, yet their mean estimate was at the

68th percentile.)

7.11 Mean gain 5 3.01, standard deviation 5 7.3. t 5 2.22.

With 28 df the critical value 5 2.048, so we will reject

the null hypothesis and conclude that the girls gained at

better than chance levels.

7.13 (a) t 5 20.70 on 27 df. We can reject the null

hypothesis.

(b) This does not mean that the SAT is not a valid

measure, but it does show that people who do well

at guessing at answers also do well on the SAT.

This is not very surprising.

7.15 . An interval formed as this

one was has a probability of .95 of encompassing

the mean of the population. Since this interval includes

the hypothesized population mean, it is consistent 

with the results in Exercise 7.14.

7.17 We used a matched-sample t test in Exercise 7.16

because the data were paired in the sense of coming

CI.95 = 3.51 … m … 5.27

115

15

740 Answers



from the same subject. Some subjects showed generally

more beta-endorphins at both times than others, and we

wanted to eliminate this subject-to-subject variability

that had nothing to do with stress. In fact, there isn’t

much of a relationship between the two measures, but

we can’t fairly ignore it after the fact.

7.19 The means for males and females were 2.73 and 2.79

respectively, producing a t 5 .485 on 90 df. We can-

not reject the null hypothesis that males and females are

equally satisfied. A matched-sample t is appropriate

because it would not seem reasonable to assume that the

sexual satisfaction of a husband is independent of that

of his wife.

7.21 The correlation between the scores of husbands and

wives was .334, which is significant, and which con-

firms the assumption that the scores would be related.

7.23 The important question is what would the sampling dis-

tribution of the mean (or differences between means)

look like, and with 91 pairs of scores that sampling

distribution would be substantially continuous with a

normal distribution of means.

7.25 t 5 2.545, p , .05, which tells us that the quality of life

was better for the intervention group.

7.27 

7.29 (a) Null hypothesis: there is not a significant differ-

ence in test scores between those who have read

the passage and those who have not.

(b) Alternative hypothesis: there is a significant differ-

ence between the two conditions.

(c) t 5 8.89 on 43 df if we pool the variances. This

difference is significant.

(d) We can conclude that students do better on this

test if they read the passage on which they are

going to answer questions.

7.31 Girls in the Control group lost an average of 0.45

pounds, while girls in the Cognitive Behavior Therapy

group gained 3.01 pounds. A t on two independent

groups 5 21.68 on 53 df, which is not significant. Cog-

nitive Behavior Therapy did not lead to significantly

greater weight gain. (Variances were homogeneous.)

7.33 If those means had actually come from independent

samples, we could not remove differences due to cou-

ples, and the resulting t would have been somewhat

smaller.

7.35 The correlation was fairly low.

7.37 (a) I would assume that the experimenters expected

that there would be more stories exhibiting posi-

tive parent-child relationships among the mothers

or children in the Normal group.

(b) The means were 3.55 and 2.1 for the normal and

schizophrenic groups, respectively, with t 5 2.66

on 38 df, which is significant. The experimental

hypothesis in (a) was supported.

CI.95 = 0.24 … m … 5.80.

-

7.39 It is just as likely that having a schizophrenic child

might lead to deterioration in parent-child relationships.

Because we can’t assign children to groups at random,

we cannot speak confidently about causation.

7.41 Confidence limits on Exercise 7.40: CI
.95

5 1.153 

(2.131)(1.965 5 23.04 , , 5.34. Because the confi-

dence limits include 0, these results are in agreement

with the previous nonsignificant result.

7.43 t 5 2.134. Because the variances are very dissimilar,

we could run a conservative test by using the smaller of

n
1

– 1 and n
2

– 1 df, which would produce a nonsignifi-

cant result. We would have a nonsignificant result even

if we used the full n
1

1 n
2

– 2 df.

7.45 If you take the absolute differences between the obser-

vations and their group means and run a t test compar-

ing the two groups on the absolute differences, you

obtain t 5 0.625. Squaring this you have F 5 0.391,

which makes it clear that Levene’s test in SPSS is oper-

ating on the absolute differences. (The t for squared dif-

ferences would equal 0.213, which would give an F of

0.045.)

7.47 Computer exercise

7.49 The effect size (d) was 0.62 using the standard deviation

of weights before therapy. This indicates a gain of

roughly 2 3 of a standard deviation over the course of

therapy.

7.51 (a) The scale of measurement is important because if

we rescaled the categories as 1, 2, 4, and 6, for ex-

ample, we would have quite different answers.

(b) The first exercise asks if there is a relationship

between the satisfaction of husbands and wives.

The second simply asks if males (husbands) are

more satisfied, on average, than females (wives).

(c) You could adapt the suggestion made in the text

about combining the t on independent groups and

the t on matched groups.

(d) I’m really not very comfortable with the t test

because I am not pleased with the scale of meas-

urement. An alternative would be a ranked test, but

the number of ties is huge, and that probably wor-

ries me even more.

Chapter 8

8.1 (a) 0.250 (b) 2.50 (c) .71

8.3 n 5 99, 126, and 169 (I have rounded up since N is al-

ways an integer.)

8.5 This is a graphic.

8.7 (a) For power 5 .50, 5 1.95 and n 5 15.21 16

(b) For power 5 .80, 5 2.80 and n 5 31.36 32

8.9 d 5 .50, 5 1.46, power 5 .31

8.11 t (5 21.98) is numerically equal to , although t is

calculated from statistics and is calculated fromd

d

d

Ld

Ld

>

m

6
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parameters. In other words, equals the t that you

would get if the data exactly match what you think are

the values of the parameters.

8.13 This is a graphic.

8.15 He should use the dropout group. Assuming equal stan-

dard deviations, the H.S. dropout group of 25 would re-

sult in a higher value of and therefore higher power.

(You can let be any value as long as it is the same for

both calculations. Then calculate for each situation.)

8.17 Power 5 .49.

8.19 When 5 104.935, power will equal .

8.21 (a) I would not be assigning subjects to groups at ran-

dom, and there might be differences between labs

that would confound the results.

(b) I should pool my subjects and randomly assign

them to conditions.

(c) Sex differences, if they exist, would confound the re-

sults. We would need to use a procedure (see Chap-

ter 13) that separates any sex differences and looks

for different patterns of results in males and females.

8.23 Both of these questions point to the need to design

studies carefully so that the results are clear and

interpretable.

Chapter 9

9.1 This is a graphic.

9.3 r 5 .35

9.5 This is a graphic.

9.7 r 5 .99, .71, and 2.99. Three arrangements will work: 

2 8 6 4 or 6 4 2 8 or 6 2 8 4 r 5 .14 for each

9.9 (a) d 5 .20, 5 .98, power 5 .17

(b) N 5 197

9.11 

9.13 If the high-risk fertility rate jumped to 70, we would

predict 8.36% of infants would be LBW.

sY.X = 0.580

d

bm

d

s

d

d 9.15 The predicted value for ln(symptoms) 5 4.37.

9.17

You can calculate for several different values

of X, and then plot the results.

9.19 When the data are standardized, the slope equals r.

Therefore the slope will be less than 1 for all but the

most trivial problems, and predicted deviations from the

mean will be less than actual parental deviations.

9.21 For power 5 .80, 5 2.80. Therefore N 5 50.

9.23 (a) z 5 0.797. The correlations are not significantly

different.

(b) We do not have reason to argue that the relation-

ship between performance and prior test scores is

affected by whether or not the student read the

passage.

9.25 It is difficult to tell whether the significant difference is

to be attributable to the larger sample sizes or the higher

(and thus more different) values of . It is likely to be

the former.

9.27 (a) r 5 .224, p 5 .509. Do not reject H
0
.

(b) The Irish are heavy smokers, but they certainly are

not heavy drinkers compared to other regions.

(c) The inclusion of Northern Ireland distorts the data.

If we leave them out, r 5 .784, p 5 .007, and there

is a strong relationship between smoking and

drinking.

9.29 (a) See table below.

(b) All of these correlations are significant, showing

that the symptoms are correlated with one another.

9.31 (a) This is a graphic.

r¿

d

NY and s¿Y.X

CI(Y) = NY 6 (ta>2)s¿Y.X

ta>2 = 1.984

s¿Y.X = 0.1726B1 1
1

107
1

(Xi 2 X)2

(N 2 1)s2
X
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SomT ObsessT SensitT DepressT AnxT HostT PhobT ParT PsyT

ObsessT 0.482
SensitT 0.377 0.539
DepressT 0.400 0.599 0.654
AnxT 0.569 0.621 0.550 0.590
HostT 0.420 0.470 0.451 0.508 0.475
PhobT 0.466 0.509 0.613 0.568 0.528 0.411
ParT 0.400 0.524 0.677 0.621 0.547 0.494 0.540
PsyT 0.334 0.503 0.625 0.725 0.509 0.404 0.529 0.651
GSIT 0.646 0.791 0.770 0.820 0.786 0.633 0.679 0.766 0.741



(b) For a one inch gain in height, we would expect a

4.356 pound gain in weight. Someone who is

0 inches tall would be expected to weigh –149.934

pounds. The unreasonable answer reflects curvi-

linearity of the relationship at the extremes. The

correlation is .904, and both the slope and the cor-

relation are significant.

9.33 As a 5 8 male, my predicted weight is 5

4.356(Height) 149.934 5 4.356 68 149.934 5

146.27 pounds.

(a) I weigh 146 pounds. (Well, I did a few years ago.)

Therefore the residual in the prediction is

146 2 146.27 5 20.27.

(b) If the students on which this equation is based

under- or over-estimated their own height or weight,

the prediction for my weight will be based on in-

valid data and will be systematically in error.

9.35 The male would be predicted to weigh 137.562 pounds,

while the female would be predicted to weigh 125.354

pounds. The predicted difference between them would

be 12.712 pounds.

9.37 Although the regression line has a slight positive slope,

the slope is not significantly different from zero. The

equation for the regression line is 5 0.429X 1

221.843.

Chapter 10

10.1 (b) rpb 5 2.540; t 5 22.72

(c) Performance in the morning is significantly related

to people’s perception of their peak periods.

10.3 It looks as though morning people vary their perform-

ance across time, but evening people are uniformly poor

performers.

10.5 t 5 2.725. This is equal to the t test on rpb.

10.7 0.202X 1 0.093; when 5

10.9 (b) . (c) t 5 1.27, not significant.

10.11 (a) . (b) 5 12.62, p , .05.

10.13 (a) . (b) z 5 4.60, p , .05.

10.15

10.17 An would correspond to The

closest you can come to this result is if the subjects

were split 61 39 in the first condition and 39 61 in the

second (rounding to integers).

10.19 (a) .

(c) This approach would be preferred over the ap-

proach used in Chapter 7 if you had reason to be-

lieve that differences in depression scores below

x2 = 2.815 [p = .245]; fC = .087

>>

x2 = 10.24.r2 = .0512

t = .733.

t = .886

x2f = .628

f = .256

0.608 = Y
 NYX = X = 2.903, NY =

NY

Y 2 NY =

-3-

NY–¿

the clinical cutoff were of no importance and

should be ignored.

10.21 (b) If a statistic is not significant, that means that we

have no reason to believe that it is reliably differ-

ent from 0 (or whatever the parameter is under

H
0
). Here we have no reason to believe that there

is a relationship between the variables. Therefore,

it cannot be important.

(c) With the exception of issues of power, sample size

will not make an effect more important than it is.

It will simply increase the level of significance.

Chapter 11

11.1 Source df SS MS F

Group 2 2100.00 1050.000 40.127*

Error 15 392.50 26.167

Total 17 2492.50

* p , .05 [F
.05 (2,15)

5 3.68]

11.3 (a)

Source df SS MS F

Group 3 1059.80 353.267 53.301*

Error 36 238.60 6.628

Total 39 1298.40

* p , .05 [F
.05 (3,36)

5 2.89]

(b)

Source df SS MS F

Group 1 792.10 792.10 59.451*

Error 38 506.30 13.324

Total 39 1298.40

* p , .05 [F
.05 (1,38)

5 4.10]

(c) The results are difficult to interpret because the er-

ror term now includes variance between younger

and older participants, Moreover, we don’t know

if the levels of processing effect applies to both

age groups.

11.5 (a)

Source df SS MS F

Group 1 224.583 224.583 18.8*

Error 20 238.917 11.946

Total 21 463.500

* p , .05 [F
.05 (1,20)

5 4.35]

(b) The t without pooled variance 5 4.27; t2 5 18.2.

(c) t with pooled variance 5 4.34; t2 5 18.8.
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(d) The t with pooled variances is equivalent to the F
in (a).

11.7 

11.9 Eta-squared tells us that ap-

proximately 18% of the variability in the severity of

symptoms can be accounted for by differences in treat-

ment, whereas omega-squared tells us that a less biased

estimate would be 12%. Since the F was significant,

both of these estimates are at better than chance levels.

11.11 The results are essentially the same as ours.

11.13 where is the grand mean, is the

effect for the jth treatment, and is the unit of error for

the ith subject in treatment j.

11.15 where is the grand mean, is the

effect for the jth treatment, and is the unit of error for

the ith subject in treatment j.

11.17 Source df SS MS F

Group 7 44.557 6.365 7.27*

Error 264 231.282 0.876

Total 271 275.839

* p , .05 [F
.05 (7,264)

5 2.06]

11.19 There is nothing that I can write out here.

11.21 

11.23 Transforming time to speed involves a reciprocal trans-

formation. The effect of the transformation is to decrease

the relative distance between large values.

h2 = .16; v2 = .14.

eij

tjmXij = m 1 tj 1 eij

eij

tjmXij = m 1 tj 1 eij

h2 = .182; v2 = .120.

h2 = .816; v2 = .796.

11.25 Parts of speech are a fixed variable, because we de-

liberately chose which parts of speech to use. Words

within the noun category are most likely random,

because we would probably choose our nouns at ran-

dom (within certain constraints, such as the number

of letters in the word). We would choose nouns at

random because we care how people respond to

nouns in general, not specifically to “house,” “car,”

“tree,” etc.

11.27 The F 5 4.88, and we can reject the null hypothesis.

This question addresses differences among all three

groups, rather than simply pairwise differences.

11.29 Analysis of Epinuneq.dat ignoring Interval (see below).

11.31 The three error terms are 2.40, 1.83, and 2.26, for an

average of 2.162, which is, within rounding error, the

average of the 9 cell variances.

11.33 Gouzoulis-Mayfrank et al. (2000) study

(b) The pairwise differences are 3.678, 3.464, and

0.214, and the square root of MS
error

is 4.105. This

gives d values of 0.896, 0.844, and 0.05.

(c) It is reasonable to tentatively conclude that Ec-

stasy produces lower scores than either the Con-

trol condition or the Cannibis condition, which

don’t differ.

11.35 There should be no effect on the magnitude of the effect

size measure because h2 is not dependent on the under-

lying metric of the independent variable.
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Results for Exercise 11.29

ANOVA

ERRORS

Sum of Squares df Mean Square F Sig.

Between Groups 147.970 2 73.985 36.197 .000

Within Groups 241.187 118 2.044

Total 389.157 120

Results for Exercise 11.33

ANOVA

PERFORMANCE

Sum of Squares df Mean Square F Sig.

Between Groups 238.738 2 119.369 7.082 .001

Within Groups 1365.214 81 16.854

Total 1603.952 83



Chapter 12

12.1 (a)

Source df SS MS F

Treatments 4 816.00 204.00 36.43**

1,2 vs. 3,4,5 1 682.67 682.67 121.90**

1 vs. 2 1 90.00 90.00 16.07**

3,4 vs. 5 1 3.33 3.33 ,1

3 vs. 4 1 40.00 40.00 7.14*

Error 20 112.00 5.60

Total 24 928.00

*p , .05 [F
.05 (1,20)

5 4.35; F
.05 (4,20)

5 2.87]
*p , .01 [F

.01 (1,20)
5 8.10; F

.01 (4,20)
5 4.43]

(b) Orthogonality of contrasts:

Cross-products of coefficients:

(c) 682.67 1 90.00 1 3.33 1 40.00 5 816.00

12.3 for a 5 .05; PC 5 a; FW 5 1 2 (1 2 a)2 5 .0975

12.5 q 5 7.101; t? 2 5 7.101

12.7 5 25.861 reject H
0
. 5 26.77; reject H

0

12.9

Source F t c t9
.05

(20, c) Signif

1,2 vs. 3,4,5 121.905 11.04 4 2.74 *

1 vs. 2 16.071 4.01 3 2.61 *

3 vs. 4 7.143 2.67 2 2.42 *

3,4 vs. 5 ,1 ,1 1 2.09

t¿2t¿1

1 (.5)(-1) 1 (1)(0) = 0

a cjdj = (0)(0) 1 (0)(0) 1 (.5)(1)

1 (0)(.5) 1 (0)(-1) = 0

abjcj = (1)(0) 1 (-1)(0) 1 (0)(.5)

1 (.333)(-1) 1 (.333)(0) = 0

aajdj = (.5)(0) 1 (.5)(0) 1 (.333)(1)

1 (.333)(.5) 1 (.333)(-1) = 0

aajcj = (.5)(0) 1 (.5)(0) 1 (.333)(.5)

1 (.333)(0) 1 (.333)(0) = 0

aajbj = (.5)(1) 1 (.5)(-1) 1 (.333)(0)

12.11 Tukey: W
5

5 W
4

5 W
3

5 W
2

5 3.973. For this analy-

sis, we have the same pattern of differences we had in

Exercise 12.10. In other words, Treatments 1 and 2 are

equal and Treatments 3, 4, and 5 are equal.

12.13 Group 1 is different from all other groups. Groups 2, 3,

and 4 are different from Group 5.

12.15 The variances are approximately equal, and so are the

sample sizes, so we will use the harmonic mean of the

n, which is 9.3264.

The 0.5 mg group is different from the control and the

2 mg group. No other differences are significant. The

maximum familywise error rate is .05 (see below).

12.17 Simply run the tests as standard t tests. Almost all soft-

ware will give you the actual p value. Reject H
0

for each

p value less than a c.

12.19 SS
linear

5 0.0088; F 5 0.145; no significant linear

trend. SS
quad

5 1.149; F 5 18.99; significant quadratic

trend.

12.21 This is a computer exercise. 

12.23 Trend analysis for Epineq.dat separately at each interval.

One Day: F
Linear

5 9.44 (p 5 .0042);

F
Quad

5 20.43 (p 5 .0001)

One Week: F
Linear

5 4.33 (p 5 .0453);

F
Quad

5 13.23 (p 5 .0009)

One Month: F
Linear

5 6.91 (p 5 .0129);

F
Quad

5 8.60 (p 5 .0061)

12.25 Using actual dose, F
Linear

5 0.548; Using 1, 2, . . . 6,

F
Linear

5 11.03.

(d) When we use the group number coding in our trend

analysis we find a significant linear trend. As the

dose of sucrose increases, memory increases

accordingly.

(e) The choice of coding system in not always obvi-

ous. Using 1, 2, . . . , 6 actually ranks the dose lev-

els and ignores the fact that dose increases in an

extreme way. (In other words, the difference

between the first 2 doses is 1 mg kg, while the dif-

ference between the last two doses is 250 mg kg.>
>

>

Wr = qrBMSerror

nh

= qrB240.35

9.3264
= qr(5.0765)
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Results for Exercise 12.15

Control 2 mg 1 mg 0.1 mg 0.5 mg

34.00 38.10 48.50 50.80 60.33 r q
r

W
r

34.00 . . . 4.1 14.5 16.8 26.33* 5 4.04 20.51

38.10 . . . 10.4 12.7 22.23* 4 4.04 20.51

48.50 . . . 2.3 11.83 3 4.04 20.51

50.80 . . . 9.53 2 4.04 20.51



Using 1, 2, . . . , 6 deliberately ignores this

relationship. Apparently the human body responds

in a nonlinear way to the increase in actual dose

levels.

12.27 Effect sizes for Exercise 12.1 

c
1 

5 10.667 c
2

5 26 c
3

5 21 c
4

5 24

MS
error

5 5.60 4.51 22.54

20.42 21.69

12.29 The contrast between the Positive and Negative

mood conditions was significant (t(27) 5 3.045, p , .05).

This leads to an effect size of  d 5 c/ 5

. The two groups dif-

fer by over 1 1 3 standard deviations. It is evident that

inducing a negative mood leads to more checking behav-

ior than introducing a positive mood. (If we had com-

pared the Positive and No mood conditions, the

difference would not have been significant. However, I

had not planned to make that comparison.

12.31 This requires students to make up their own example.

Chapter 13

13.1 Source df SS MSN F

Parity 1 13.067 13.067 3.354

Size Age 2 97.733 48.867 12.541*

P 3 S 2 17.733 8.867 2.276

Error 54 210.400 3.896

Total 59 338.933

*p , .05 [F
.05(2,54)

5 3.17]

13.3 The mean for these primiparous mothers is not expected

to be a good estimate of the mean for the population of

all primiparous mothers because the sample is not rep-

resentative of the population. For example, 50% of the

population of primiparous mothers would not be

expected to give birth to LBW infants.

13.5 Exercise 11.3 as a factorial

Source df SS MS F

Delay 2 188.578 94.289 3.22

Area 2 356.044 178.022 6.07*

D 3 A 4 371.956 92.989 3.17*

Error 36 1055.200 29.311

Total 44 1971.778

* [F
.05(2,36)  

5 3.27; F
.05(4,36)  

5 2.64]

13.7 In Exercise 13.5, if A refers to Area:

the treatment effect for the Neutral site 5

13.9 Group N vs. Group A: t 5 3.03. Group N vs. Group B t 5

3.00. With two t tests, each on 36 df (for MS
error

) with 

a 5 .05 2 5 .025 (two-tailed), the critical value is 

2.339. We would reject H
0

in each case.6

>

24.222 2 28.2 = 3.978

X.1 2 X..aN  1 =

p 6 0.5 

>

>
5.6>116.907 = 5.6>4.11 = 1.36

1MSerror

d4 =d3 =

d2 =d1 =

13.11 Source df SS MS F

Age 1 115.60 115.60 17.44*

Level 1 792.10 792.10 119.51*

Age 3 Level 1 152.10 152.10 22.95*

Error 36 238.60 6.6278

Total 39 1298.40

* p , .05 [F
.05 (1,36) 

5 4.12]

13.13 Made-up data with main effects but no interaction:

Cell means: 8 12

4 6

13.15 The interaction was of primary interest in an experiment

by Nisbett in which he showed that obese people varied

the amount of food they consumed depending on

whether a lot or a little food was visible, while normal

weight subjects ate approximately the same amount un-

der the two conditions.

13.17 Source df SS MS F

Age 1 11.704 11.704 20.02*

Daycare 1 2.639 2.639 4.51*

A 3 D 1 0.038 0.038 ,1

Error 36 21.050 0.585

Total 39

*

13.19

13.21 Magnitude of effect for avoidance learning data in

Exercise 13.5:

hD
2 =

SSdelay

SStotal

=
188.578

1971.778
= .10

=
17.733 2 11212213.8962

338.933 1 3.896
= .03

vPS
2 =

SSPS 2 1p 2 121s 2 12MSerror

SStotal 1 MSerror

=
97.733 2 12213.8962

338.933 1 3.896
= .26

vS
2 =

SSsize 2 1S 2 12MSerror

SStotal 1 MSerror

=
13.067 2 11213.8962

338.933 1 3.896
= .03

vP
2 =

SSparity 2 1p 2 12MSerror

SStotal 1 MSerror

hPS
2 =

SSPS

SStotal

=
17.733

338.933
= .05

hS
2 =

SSsize

SStotal

=
97.733

338.933
= .29

hP
2 =

SSparity

SStotal

=
13.067

338.933
= .04

p 6 .05 3F.05,(1,36) = 4.114
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13.23 Three-way on early experience:

Source df SS MS F

Experience 3 2931.667 977.222 3.544*

Intensity 2 2326.250 1163.125 4.218*

Cond Stim 1 4563.333 4563.333 16.550*

E 3 I 6 67.083 11.181 ,1

E 3 C 3 4615.000 1538.333 5.579*

E 3 C 2 55.417 27.708 ,1

E 3 I 3 C 6 121.250 20.208 ,1

Error 96 26,471.000 275.740

Total 119 41,151.000

* p , .05 [F
.05(1,96) 

5 3.94; F
.05(2,96) 

5 3.09;

F
.05(3,96) 

5 2.70; F
.05(6,96) 

5 2.19]

=
371.956 2 122122129.3112

1971.778 1 29.311
= .13

vDA
2 =

SSDA 2 1d 2 121a 2 12MSerror

SStotal 1 MSerror

=
356.044 2 122129.3112

1971.778 1 29.311
= .15

vA
2 =

SSarea 2 1a 2 12MSerror

SStotal 1 MSerror

=
188.578 2 122129.3112

1971.778 1 29.311
= .06

vD
2 =

SSdelay 2 1d 2 12MSerror

SStotal 1 MSerror

hDA
2 =

SSDA

SStotal

=
371.956

1971.778
= .19

hA
2 =

SSArea

SStotal

=
356.044

1971.778
= .18

All of these groups differed from each other at p # .05.

13.29 Simple effects on data in Exercise 13.28:

Source df SS MS F

Condition 1 918.750 918.75 34.42*

Cond @ Inexp. 1 1014.00 1014.00 37.99*

Cond @ Exp. 1 121.50 121.50 4.55*

Cond 3 Exper 1 216.750 216.75 8.12*

Other Effects 9 2631.417

Error 36 961.000 26.694

Total 47 4727.917

*p , .05 [F
.05(1.36)

5 4.12]
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Results for Exercise 13.25

Tests of Between-Subjects Effects

Dependent Variable: Trials to reversal

Type III Sum 

Source of Squares df Mean Square F Sig.

Corrected Model 141.130a 8 17.641 8.158 .000

Intercept 1153.787 1 1153.787 533.554 .000

DOSE 133.130 2 66.565 30.782 .000

DELAY 2.296 2 1.148 .531 .590

DOSE 3 DELAY 5.704 4 1.426 .659 .622

Error 214.083 99 2.162

Total 1509.000 108

Corrected Total 355.213 107

a R Squared 5 .397 (Adjusted R Squared 5 .349)

Multiple Comparisons

Dependent Variable: Trials to reversal

Tukey HSD

Mean

(I) dosage of (J) dosage of Difference Std. 

epinephrine epinephrine (I 2 J) Error Sig.

0.0 mg/kg 0.3 mg/kg 21.67* .35 .000

1.0 mg/kg 1.03* .35 .010

0.3 mg/kg 0.0 mg/kg 1.67* .35 .000

1.0 mg/kg 2.69* .35 .000

1.0 mg/kg 0.0 mg/kg 21.03* .35 .010

0.3 mg/kg 22.69* .35 .000

Based on observed means. 

* The mean difference is significant at the .05 level.

There are significant main effects for all variables with

a significant Experience 3 Conditioned Stimulus inter-

action.

13.25 Analysis of Epineq.dat (see below).

13.27 Tukey on Dosage data from Exercise 13.25:



13.31 Dress codes and performance:

Source df SS MS F

Code 1 494.290 494.290 2.166

Error
1

12 2737.280 228.107

School(Code) 12 2737.280 288.107 2.784*

Error
2

126 10323.08 81.931

Total 39 13554.65

* p , .05

The F for Code is not significant, but the F for the

nested effect is. Notice that the two F values are not all

that far apart, but their p values are very different. The

reason for this is that we only have 12 df for error to test

Code, but 126 df for error to test School(Code).

13.33 Analysis of Seligman et al. (1990)

If we think that males are generally more optimistic

than females, then the sample sizes themselves are part

of the “treatment” effect. We probably would not want

to ignore that if we are looking at sex as an independent

variable. In fact, the lack of independence between sam-

ple size and the effect under study is an important prob-

lem when it occurs.

13.35 This question does not have a fixed answer.

Chapter 14

14.1 (a) or 

(b)

Source df SS MS F

Subjects 7 189,666.66

Within subj 16 5266.67

Test session 2 1808.33 904.17 3.66 ns

Error 14 3458.33 247.02

Total 23 194,933.33

(c) There is no significant difference among the session

means—scores don’t increase as a function of

experience.

14.3

Source df SS MS F

Between subj 19 106.475

Groups 1 1.125 1.125 0.19

Ss w in Grps 18 105.250 5.847

Within subj 20 83.500

Phase 1 38.025 38.025 15.26*

P 3 G 1 0.625 0.625 0.25

P 3 Ss 

w in Grps 18 44.850 2.492

Total 39 189.975

*p , .05 [F
.05(1, 18)

5 4.41]

>

>

Xij = m 1 pi 1 tj 1 eij

Xij = m 1 pi 1 tj 1 ptij 1 eij

There is a significant change from baseline to training,

but it does not occur differentially between the two

groups, and there are no overall differences between the

groups.

14.5

Source df SS MS F

Between subj 29 159.7333

Groups 2 11.4333 5.7166 1.04

Ss w in Grps 27 148.3000 5.4926

Within subj 30 95.0000

Phase 1 19.2667 19.2667 9.44*

P 3 G 2 20.6333 10.3165 5.06*

P 3 Ss w in Grps 27 55.1000 2.0407

Total 59 254.733

(b) SS
items at adult good

5 4.133; F 5 3.52*

14.7 For the data in Exercise 14.6:

(a) Variance-covariance matrices:

(b) 

=
1.863

2.406
= 0.771

=
911.833 2 1.37822

2318.75 2 615.7722 1 911.378224

eN =
b21sjj 2 s22

1b 2 1)Aa s2
jk 2 2ba s2

j 1 b2s2B

a s 2
j = 1.5502 1 1.16721.4172 = 18.750

a s 2
jk = 2.002 1 Á 1 2.152 = 18.750

s =
2.00 1 Á 1 2.15

9
= 1.378

sjj =
2.00 1 1.35 1 2.15

3
= 1.833

eN

a
N

between
= C0.18 0.36 1.38

0.36 0.72 2.76

1.38 2.76 10.58

Sa
N

pooled
= C2.00 1.35 1.30

1.35 1.35 0.80

1.30 0.80 2.15

S  1.550

 1.167

 1.417

 sj

a
N

non-owners
= C2.70 1.20 1.85

1.20 0.70 0.60

1.85 0.60 3.30

Sa
N

owners = C1.30 1.50 0.75

1.50 2.00 1.00

0.75 1.00 1.00

S
>

>
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14.9 Simple effects for data in Exercise 14.6:

14.11 (a) SS
reading at child

5 50.7; F 5 11.655*

(b) SS
items at adult good

5 4.133; F 5 3.647.

14.13 There would be a very decided lack of independence

among items because an increase in one category would

necessitate a decrease in another—that is, the subject

would have less opportunity to draw from all categories.

14.15 This is a graphic.

14.17 (b) The F for MEAN is a test on H
0
: m 5 0.

(c) MS
within cell

is the average of the cell variances.

14.19 Source column of summary table for a 4-way ANOVA

with repeated measures on A & B:

Source

Between Ss

C

D

CD

Ss w/in groups

Within Ss

A

AC

AD

ACD

A 3 Ss w in groups

B

BC

BD

BCD

B 3 Ss w in groups

AB

ABC

ABD

ABCD

AB3 Ss w in groups

Total

14.21 Using the mixed models procedure.

The covariance matrix shows a decreasing pattern in co-

variances as you move to the right. Therefore I re-

quested that the solution include a covariance matrix

that was AR1. The results follow:

>

>

>

F = 5.51*SSprob at noncalc = 11.20 

F = 112.19*SSprob at calc = 78.53 

F = 28.86*SSgroup at mult = 52.9 

F = 1.96 SSgroup at subt = 3.6 

 F 6 1 SSgroup at add = 0.9
Fixed Effects

Type II Tests of Fixed Effectsa

Numerator Denominator

Source df df F Sig.

Intercept 1 43.256 422.680 .000

Group 2 43.256 3.521 .038

Time 3 81.710 71.356 .000

Group 3 Time 4 81.710 5.578 .001

a Dependent Variable: dv.

14.23 

Fixed Effects

Type II Tests of Fixed Effectsa

Numerator Denominator

Source df df F Sig.

Intercept 1 41.724 393.118 .000

Group 2 41.724 2.877 .068

Time 3 70.480 640760 .000

Group 3 Time 4 70.459 5.266 .001

a Dependent Variable: dv.

14.25 (a) SPSS printout on gain scores (see next page).

(b) SPSS printout using pretest and posttest (see next

page).

(c) The F comparing groups on gain scores is exactly

the same as the F for the interaction in the re-

peated measures design.

(e) t 5 20.287. This group did not gain significantly

over the course of the study. This suggests that any

gain we see in the other groups can not be attrib-

uted to normal gains seen as a function of age. f.

Without the control group we could not separate

gains due to therapy from gains due to maturation.

14.27 (a) t 5 20.555. There is no difference in Time 1

scores between those who did, and did not, have a

score at Time 2.

(b) If there had been differences, I would have wor-

ried that people did not drop out at random.

14.29 Differences due to judges play an important role.

14.31 If I was particularly interested in differences between

subjects, and recognized that judges probably didn’t

have a good anchoring point, and if this lack was not

meaningful, I would not be interested in considering

differences among judges.

14.33 Strayer et al. (2006) (see next page).

t
1–2 

5 0.07; t
1–3

5 2.52*; t
2–3

5 2.45* Both the Baseline

and Alcohol conditions show poorer performance than

the cell phone condition, but they do not differ from

each other.
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Results for Exercise 14.25b

Tests of Within-Subjects Effects

Measure: MEASURE_1

Sphericity Assumed

Type III Sum 

Source of Squares df Mean Square F Sig.

TIME 366.037a 2 366.037 12.917 .001

TIME 3 TREAT 307.322 1 153.661 5.422 .006

Error(TIME) 1955.371 69 28.339

a R Squared 5 .136 (Adjusted R Squared 5 .111)

Results for Exercise 14.33

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Type III Sum 

Source of Squares df Mean Square F Sig.

Intercept 7.711E7 1 7.711E7 724.691 .000

Error 4149966.533 39 106409.398

Results for Exercise 14.25

Tests of Between-Subjects Effects

Dependent Variable: GAIN

Type III Sum 

Source of Squares df Mean Square F Sig.

Corrected Model 614.644a 2 307.322 5.422 .006

Intercept 732.075 1 732.075 12.917 .001

TREAT 614.644 2 307.322

Error 3910.742 69 56.677

Total 5075.400 72

Corrected Total 4525.386 71

a R Squared 5 .136 (Adjusted R Squared 5 .111)



Chapter 15

15.1 Predicting Quality of Life:

(a) All other variables held constant, a difference of

11 degree in Temperature is associated with a dif-

ference of –.01 in perceived Quality of Life. A dif-

ference of $1000 in median Income, again all other

variables held constant, is associated with a 1.05

difference in perceived Quality of Life. A similar

interpretation applies to b
3

and b
4
. Since values of

0.00 cannot reasonably occur for all predictors, the

intercept has no meaningful interpretation.

(b)

(c)

15.3 I would thus delete Temperature, since it has the small-

est t (t 5 21.104), and therefore the smallest semi-

partial correlation with the dependent variable.

15.5 (a) Environment has the largest semi-partial correla-

tion with the criterion, because it has the largest

value of t.
(b) The gain in prediction (from r 5 .58 to R 5 .697)

which we obtain by using all the predictors is

more than offset by the loss of power we sustain as

p becomes large relative to N.

15.7 As the correlation between two variables decreases, the

amount of variance in a third variable that they share

decreases. Thus the higher will be the possible squared

semi-partial correlation of each variable with the crite-

rion. They each can account for more previously unex-

plained variation.

15.9 Numsup and Respon are fairly well correlated with the

other predictors, whereas YRS is nearly independent of

them.

1 .003(100) 2 .01(200) = 3.72

YN = 5.37 2 .01(55) 1 .05(12)

1 .003(500) 2 .01(200) = 4.92

YN = 5.37 2 .01(55) 1 .05(12)

15.11 MS
residual

5 4.232.

15.13 R2
adj

5 est R2* 5 2.158. Since a squared value cannot

be negative, we will declare it undefined. This is all the

more reasonable in light of the fact that we cannot reject

H
0
: R* 5 0.

15.15 5 0.4067Respon 1 0.1845NumSup 1 2.3542.

15.17 It has no meaning in that we have the data for the popu-

lation of interest (the 10 districts).

15.19 It plays an important role through its correlation with

the residual components of the other variables.

15.21 Within the context of a multiple-regression equation,

we cannot look at one variable alone. The slope for one

variable is only the slope for that variable when all other

variables are held constant.

15.23 There is no fixed answer to this question.

15.25 (b) The value of R2 was virtually unaffected. How-

ever, the standard error of the regression coeffi-

cient for PVLoss increased from 0.105 to 0.178.

Tolerance for PVLoss decreased from .981 to .345,

whereas VIF increased from 1.019 to 2.900. c.

PVTotal should not be included in the model be-

cause it is redundant with the other variables.

15.27

YN
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Results for Exercise 14.33

Tests of Within-Subjects Effects

Measure:  Measure_1

Type III Sum

Source of Squares df Mean Square F Sig.

Condition Sphericity Assumed 134696.067 2 67348.033 4.131 .020

Greenhouse-Geisser 134696.067 1.992 67619.134 4.131 .020

Huynh-Feldt 134696.067 2.000 67348.033 4.131 .020

Lower-bound 134696.067 1.000 134696.067 4.131 .049

Error(Condition) Sphericity Assumed 1271689.267 78 16303.709 5.422 .006

Greenhouse-Geisser 1271689.267 77.687 16369.337

Huynh-Feldt 1271689.267 78.000 16303.709

Lower-bound 1271689.267 39.000 32607.417   

SuppTotl

PVLoss

–0.2361

–0.0524

0.0837

0.1099

0.4490

AgeAtLoss

DepressT



15.29 Case # 104 has the largest value of Cook’s D (.137) but

not a very large Studentized residual (t 5 –1.88). When

we delete this case the squared multiple correlation is

increased slightly. More importantly, the standard error

of regression and the standard error of one of the pre-

dictors (PVLoss) also decrease slightly. This case is not

sufficiently extreme to have a major impact on the data.

15.31 Logistic regression on Harass.dat:

The only predictor that contributes significantly is the Of-

fensiveness of the behavior, which has a Wald of 26.43.

The exponentiation of the regression coefficient yields

0.9547. This would suggest that as the offensiveness of

the behavior increases, the likelihood of reporting de-
creases. That’s an odd result. But remember that we have

all variables in the model. If we simply predict reporting

by using Offensiveness, exp(B) 5 1.65, which means that

a 1 point increase in Offensiveness multiplies the odds of

reporting by 1.65. Obviously we have some work to do to

make sense of these data. I leave that to you. 

15.33 It may well be that the frequency of the behavior is tied in

with its offensiveness, which is related to the likelihood of

reporting. In fact, the correlation between those two vari-

ables is .20, which is significant at p , .000. (I think my

explanation would be more convincing if Frequency were

a significant predictor when used on its own.)

15.35 BlamPer and BlamBeh are correlated at a moderate

level (r 5 .52), and once we condition on BlamPer by

including it in the equation, there is little left for Blam-

Beh to explain.

15.37 This problem required you to make up an example. 

15.39 It is impossible to change one of the variables without

changing the interaction in which that variable plays a

role. I can’t think of a sensible interpretation of “hold-

ing all other variables constant” in this situation.

Chapter 16

16.1 Source df SS MS F

Group 2 57.733 28.867 9.312*

Error 12 37.200 3.100

Total 14 94.933

* p , .05 [F
.02(2, 12)

5 3.89]

16.3 (a) Source df SS MS F

Group 2 79.0095 39.5048 14.92*

Error 18 47.6571 2.6476

Total 20 126.6666

** p , .05 [F
.02(2, 18)

5 3.55]

x2

16.5 Source df SS MS F

Gender 1 65.333 65.333 7.730*

SES 2 338.667 169.333 20.034*

G 3 S 2 18.667 9.333 1.104

Error 42 355.000 8.452

Total 47 777.667

* p , .05 [F
.05(1, 35)

5 3.27]

16.7 Source df SS MS F

Gender 1 60.015 60.015 7.21*

SES 2 346.389 173.195 20.80*

G 3 S 2 21.095 10.547 1.27

Error 35 291.467 8.328

Total 40

* p , .05 [F
.05(1, 35)

5 4.12; F
.05(2, 35)

5 3.27]

16.9 

16.11 If we are actually dealing with unweighted means, SS
A

and SS
B

will be 0 because means of means are 7 for all

rows and columns.

16.13

16.15 (a) Design matrix using only the first entry in each

group for illustration purposes:

(b)

Source df SS MS F

Covariate 1 1250.6779 1250.6779 55.81*

A (Group) 2 652.9228 326.4614 14.57*

Error 11 246.5221 22.4111

Total 14 2615.733

* p , .05 [F
.05(1, 11)

5 4.84; F
.05(2, 11)

5 3.98]

X = E 1 0 58 75

. . . . . . . . . . . .

0 1 60 70

. . . . . . . . . . . .

21 21 75 80

U

b2 = -0.167; ab11 = 0.833; ab12 = -0.167

mN = 13.4167; a1 = 1.167; b1 = -3.167
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Results for Exercise 16.19

Tests of Between-Subjects Effects

Dependent Variable:  DV

Type III Sum

Source of Squares df Mean Square F Sig.

Corrected Model 15.728a 3 5.243 8.966 .000

Intercept 2.456 1 2.456 4.201 .048

Daycare 2.640 1 2.640 4.515 .041

Age 11.703 1 11.703 20.016 .000

Daycare 3 Age .037 1 .037 .064 .802

Error 21.050 36 .585

Total 46.111 40

Corrected Total 36.778 39

a R Squared 5 .428 (Adjusted R squared 5 .380)

Results for Exercise 16.21

Tests of Between-Subjects Effects

Dependent Variable:  GSIT

Type III Sum

Source of Squares df Mean Square F Sig.

Corrected Model 1216.924a 5 243.385 2.923 .013

Intercept 1094707.516 1 1094707.516 13146.193 .000

GENDER 652.727 1 652.727 7.839 .005

GROUP 98.343 2 49.172 .590 .555

GENDER 3 GROUP 419.722 2 209.861 2.520 .082

Error 30727.305 369 83.272

Total 1475553.000 375

Corrected Total 31944.229 374

a R Squared 5 .038 (Adjusted R Squared 5 .025)

16.17

The adjusted means are 41.1556, 44.8276, 49.5095,

54.0517, 54.8333, and 61.0333.

16.19 Klemchuk, Bond, and Howell (1990) (see below).

16.21 Analysis of GSIT in Mireault.dat (see below). 

16.23 (a) These data reveal a significant difference between

males and females in terms of YearColl. Females

are slightly ahead of males. If the first year of col-

lege is in fact more stressful than later years, this

could account for some of the difference we found

in Exercise 16.21.

16.25 Everitt compared two therapy groups and a control

group treatment for anorexia. The groups differed

1 6.3740

1 0.5667AB11 1 0.1311AB21 1 0.7260C

YN = -7.9099A1 1 0.8786A2 2 2.4022B significantly in posttest weight when controlling for

pretest weight (F 5 8.71, p , .0001, with the Control

group weighing the least at posttest. When we exam-

ine the difference between just the two treatment

groups at posttest, the F does not reach significant,

F 5 3.745, p 5 .060, though the effect size for the dif-

ference between means (again controlling for pretest

weights) is 0.62 with the Family Therapy group

weighing about six pounds more than the Cognitive

Behavior Therapy group. It is difficult to know just

how to interpret that result given the nonsignificant F.

16.27 A slope of 1.0 would mean that the treatment added a

constant to people’s pretest scores, which seems some-

what unlikely. Students might try taking any of the data

in the book with a pretest and posttest score and plotting

the relationship.

>
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Results for Exercise 16.23

Tests of Between-Subjects Effects

Dependent Variable:  DV

Type III Sum

Source of Squares df Mean Square F Sig.

Corrected Model 13.348a 5 2.670 2.147 .060

Intercept 1665.369 1 1665.369 1339.631 .000

Group .781 2 .390 .314 .731

Gender 5.950 1 5.950 4.768 .029

Group 3 Gender 2.963 2 1.481 1.192 .305

Error 363.001 292 1.243

Total 2524.000 298

Corrected Total 376.349 297

a R Squared 5 .035 (Adjusted R squared 5 .019)   

This relationship between difference scores and

the analysis of covariance would suggest that in general

an analysis of covariance might be the preferred ap-

proach. The only time I might think otherwise is when

the difference score is really the measure of interest.

Chapter 17

17.1 Possible models for data on race, gender, and sexual in-

tercourse.

It is easiest to specify the variables that would need

to be included. Because there are clear differences in

the numbers of whites and blacks, in the choices on In-

tercourse (No’s are much more common), those two

main effects must be included. We also see that there

appears to be a significant interaction of Race and Inter-

course, so that must be included. It would seem that

there is an interaction of Gender and Intercourse, so we

need both that interaction and the main effect of Gender

(because this will be a hierarchical model). It is hard to

tell whether there is likely to be a Race by Gender inter-

action, but we should at least consider including that.

17.3 Optimal model from HILOGLINEAR (see next page).

It is important to remember that you will obtain differ-

ent results depending on how you code the data, but the

expected frequencies and the chi-square values that re-

sult will not be affected.

Step 0 tells us that if we delete the three-way interac-

tion the fit will not deteriorate significantly, so we move

to a model with RI, RG, and GI. Step 1 shows that we can

delete RG without a significant decrease, so we go to step

2 with RI, GI. There we see that if we delete either inter-

action we will have a significant decrement, so our final

model is RI, RG or, if you prefer, R, G, I, RI, RG.

17.5 It is difficult to tell about interactions in such a large table,

but I would expect there to be a motor vehicle 3 injury

interaction (you are more likely to be injured if you are

hit with a car), an age 3 motor vehicle interaction (we

think of kids being more likely to ride out in front of a

car), and we hope for a helmet 3 injury interaction (be-

cause we want to think that helmets will protect us from

injury). There may be at least one higher order interac-

tion, but it is hard to tell from looking at the data.

17.7 Output from SPSS HILOGLINEAR (see p. 756).

17.9 As I predicted, to produce adequate expected values we

need to take into account the fact that there is an Age by

Motor Vehicle interaction, but, contrary to prediction,

children are less likely to be injured by a motor vehicle

(OR 5 0.44). There clearly is a relationship between

Injury and Motor Vehicles, with an OR 5 2.96. It is diffi-

cult to interpret the three-way interaction because the fre-

quency of young children being injured while wearing a

helmet is 0, and no odds or odds ratios can be calculated.

17.11 For adults the odds of an injury|helmet are 4 60 5 0.067.

The odds of injury|no helmet 5 72 595 5 .12. Thus the

odds ratio is 0.067 0.12 5 0.56, meaning that an adult is

about half as likely to be injured when wearing a helmet.

You cannot do this for children because it is impossible

to calculate odds when one of the frequencies is 0.

17.13 Odds ratios of High vs. normal testosterone groups

Odds ratio for delinquency (high normal) by SES:

Low SES 5 .4429 .1721 5 2.57

High SES 5 .0429 .0476 5 .90

For subjects in the low SES group the odds of being

delinquent are 2.57 time higher for high testosterone

men than for normal testosterone men. For the high SES

group this ratio is only .90. The effect of high testos-

terone levels is substantially different in the two SES

groups. Some of this might be due to the fact that men

involved in adult delinquency are much less likely to

appear in the high SES group.

>
>

>

>
>

>
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Chi- Number 

Stepa Effects Squarec df Sig. of Iterations

0 Generating Classb

Deleted Effect 1

1 Generating Classb

Deleted Effect 1

2

3

2 Generating Classb

Deleted Effect 1

2
3 Generating Classb

a At each step, the effect with the largest significance level for the Likelihood Ratio Change is deleted, provided the 
significance level is larger than .050.
b Statistics are displayed for the best model at each step after step 0.
c For ‘Deleted Effect’, this is the change in the Chi-Square after the effect is deleted from the model.

Race*Gender*Intercourse

Race*Gender*Intercourse

Race*Gender,Race*Intercourse, 

Gender*Intercourse

Race*Gender

Race*Intercourse

Gender*Intercourse

Race*Intercourse, 

Gender*Intercourse

Race*Gender

Race*Intercourse

Gender*Intercourse

Race*Intercourse, 

Gender*Intercourse

.000 0

.065 1 .798 2

.065 1 .798

1.686

30.359

8.475 1 .194 2

1 .000 2

1 .004 2

1.752 2 .417

28.977 1

7.093 1 .000 2

1.752 2 .008 2

Backward Elimination Statistics

17.15 We could not include multiple behaviors in the same de-

sign because the observations would not be independent.

Each person would contribute data on each behavior.

17.17 Death penalty data

The optimal model includes DefRace*VictimRace and

VictimRace*DeathPen.

17.19 The answers depend on the software packages the stu-

dent uses.

Chapter 18

18.1 (a) WS 5 23; W
.025

5 27.

(b) Reject H
0

and conclude that older children include

more inferences in their summaries.

18.3 z 5 23.15; reject H
0
.

18.5 (a) T 5 8.5; T
.025

5 8; do not reject H
0
.

(b) We cannot conclude that we have evidence support-

ing the hypothesis that there is a reliable increase in

hypothesis generation and testing over time. (Here is

a case in which alternative methods of breaking ties

could lead to different conclusions.)

18.7 I would randomly assign the order within each pair of

Before and After scores, and for each set of assign-

ments I would calculate a statistic. (That statistic

could be the mean of the difference scores, or a t test

on the difference scores.) I would then calculate the

number of times I came out with a result as extreme

as the one I actually obtained, and that, divided by the

number of resamples, would give me the probability

under the null.

18.9 z 5 22.20; p(z $ 2.20) 5 .0278. Again reject H
0
,

which agrees with our earlier conclusion.

18.11 The scatter plot shows that the difference between the

pairs is heavily dependent upon the score for the first born.

18.13 The Wilcoxon Matched-pairs signed-ranks test tests the

null hypothesis that paired scores were drawn from iden-

tical populations or from symmetric populations with the

same mean (and median). The corresponding t test tests

the null hypothesis that the paired scores were drawn from

populations with the same mean and assumes normality.

18.15 Rejection of the H
0

by a t test is a more specific state-

ment than rejection using the appropriate distribution

free test because, by making assumptions about normal-

ity and homogeneity of variance, the t test refers specif-

ically to population means.

18.17 H 5 6.757; reject H
0
.

18.19 Take the data for all N subjects and shuffle them to ran-

dom order. Then take the first n
1

observations and assign

them to Treatment 1, the next n
2

observations and assign

them to Treatment 2, and so on. Then calculate an F sta-

tistic on that set of resampled data and record the F.

Repeat this a large number of times (e.g.,1000) and look

at the sampling distribution of F. The proportion of F val-

ues that are equal to, or greater than, the F obtained on the

original data will give you the probability under the null.

6

Results for Exercise 17.3



18.21 The study in Exercise 18.18 has an advantage over the

one in Exercise 18.17 in that it eliminates the influence

of individual differences (differences in overall level of

truancy from one person to another).

18.23 These are equivalent tests in this case.
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Chi- Number 

Stepa Effects Squarec df Sig. of Iterations

0 Generating Classb

Deleted Effect 1

1 Generating Classb

Deleted Effect 1

2

3

4

2 Generating Classb

Deleted Effect 1

2

3

3 Generating Classb

Deleted Effect 1

2

3

4 Generating Classb

Deleted Effect 1

2

5 Generating Classb

Deleted Effect 1

2

3

6 Generating Classb

a At each step, the effect with the largest significance level for the Likelihood Ratio Change is deleted, provided the 
significance level is larger than .050.  
b Statistics are displayed for the best model at each step after step 0.
c For “Deleted Effect”, this is the change in the Chi-Square after the effect is deleted from the model.

Age 3 Motorveh 3 Helmet 3 Injury

Age 3 Motorveh 3 Helmet 3 Injury

Age 3 Motorveh 3 Helmet, 

Age 3 Motorveh 3 Injury,

Age 3 Helmet 3 Injury,

Motorveh 3 Helmet 3 Injury

Age 3 Motorveh 3 Helmet

Age 3 Motorveh 3 Injury

Age 3 Helmet 3 Injury

Motorveh 3 Helmet 3 Injury

Age 3 Motorveh 3 Helmet, 

Age 3 Motorveh 3 Injury,

Age 3 Helmet 3 Injury

Age 3 Motorveh 3 Helmet 

Age 3 Motorveh 3 Injury

Age 3 Helmet 3 Injury

Age 3 Motorveh 3 Injury, 

Age 3 Helmet 3 Injury,

Motorveh 3 Helmet

Age 3 Motorveh 3 Injury

Age 3 Helmet 3 Injury

Motorveh 3 Helmet

Age 3 Motorveh 3 Injury, 

Age 3 Helmet 3 Injury

Age 3 Motorveh 3 Injury

Age 3 Helmet 3 Injury

Age 3 Helmet 3 Injury,

Age 3 Motorveh,

Motorveh 3 Injury

Age 3 Helmet 3 Injury

Age 3 Motorveh

Motorveh 3 Injury

Age 3 Helmet 3 Injury,

Age 3 Motorveh,

Motorveh 3 Injury

.000 0

.065 1 .798 2

.000 1 .994

.181 1 .670 2

.768 1 .381 2

4.737 1 .030 2

.074 1 .785 2

.074 2 .964

.226 1 .634 2

.723 1 .395 2

4.688 1 .030 2

.301 3 .960

.870 1 .351 2

4.576 1 .032 2

.002 1 .966 2

.303 4 .990

.847 1 .358 2

4.573 1 .032 2

1.149 5 .950

4.576 1 .032 2

25.514 1 .000 2

25.604 1 .000 2

1.149 5 .950

Step Summary

Results for Exercise 17.7
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2 3 2 tables, 147

2 3 5 factorial, 415

abscissa, 69

accuracy of prediction

errors of prediction as a function of r, 261

r2 and the standard error of estimate, 260

r2 as a measure of predictable variability, 261

standard deviation as a measure of error, 258

the standard error of estimate, 258

additional predictors, 527–529

standardized regression coefficients, 528–529

additive law of probability, 115

additive linear model, 637

additive model, 638

additive rule, 114–115

additivity of simple effects, 426

adjacent values, 49

adjusted correlation coefficient (r
adj

), 253

adjusted means, 600

adjusted r, 252

adjusted sum of squares, 604

adjusted Y means, 600

Akaike’s Information Criterion (AIC), 546

algebraic mean, 636

all subsets regression, 547–548

alpha, 97

alternative correlational techniques, 293–311

analysis of contingency tables with ordered 

variables, 306–309

biserial and tetrachoric correlation: non-Pearson

correlation coefficients, 303

correlation coefficients for ranked data, 303–306

Kendall’s coefficient of concordance (W ), 309–311

point-biserial correlation and Phi, Pearson correlations by

another name, 294–303

alternative experimental designs, 621–622

alternative interpretation of partial and semipartial

correlation, 537–538

alternative view of hypothesis testing, 102–114

alternative way to think of power, 351–353

analysis of contingency tables with ordered variables, 306–309

analysis of covariance, 598

analysis of variance (ANOVA), 318

applied to the effects of smoking, 426–428

on covariate, 607

versus multiple regression, 580

analysis of variance (ANOVA) with unequal 

sample sizes, 593–597

testing the interaction effects, 597

testing the main effects, 597–598

analysis of variance and covariance as general 

linear models, 579–622

alternative experimental designs, 621–622

analysis of variance with unequal sample sizes, 593–595

effect size computation in an analysis of 

covariance, 609–611

factorial analysis of covariance, 612–621

factorial designs, 586–593

general linear model, 580–583

interpreting an analysis of covariance, 611–612

multiple covariates, 621

one-way analysis of covariance, 598–608

one-way analysis of variance, 583–586

reporting the results of an analysis of covariance, 612
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analytic view, 112

approximate regression coefficients, 552–553

a priori comparisons, 365, 369–384

Bonferroni t (Dunn’s test), 377

choice of coefficients, 373

Holm and Larzelere and Mulaik tests, 380

Larzelere and Mulaik test, 381

linear contrasts, 371

multiple t tests, 369

multistage Bonferroni procedures, 379

orthogonal coefficients, 375

orthogonal contrasts, 375

sum of squares for contrasts, 372

test of significance, 373

trimmed means, 383

a priori power, 239

arcsine transformation, 341

array, 264

assessing whether data are normally distributed, 76–79

assumption of independence, 152–153

assumptions, 320, 644

assumptions of chi-square, 152

assumptions underlying regression and 

correlation, 264–266

asymmetric relationships, 631

average deviation, 40

axes in Q-Q plots, 77–79

backward elimination, 548

balanced designs, 332

bar charts, 67

basic laws of probability, 114

Bayes, Thomas, 123

Bayesian statistics, 127

Bayes’ theorem, 123–127

Behrens-Fisher problem, 214

Benjamini and Hochberg’s linear step up 

(LSU) procedure, 397

Benjamini-Hochberg test, 396

Bernoulli trial, 127

beta, 97

bimodal distribution, 27

binomial distribution, 127–131

mean and variance of, 130–131

plotting, 128–130

to test hypotheses, 131–133

biserial and tetrachoric correlation, 303

biserial-correlation coefficient, 303

bivariate normal models, 246

Bonferroni inequality, 377

Bonferroni t (Dunn’s test), 377

bootstrapping as a general approach, 661–663

bootstrapping confidence limits on a correlation 

coefficient, 670–673

bootstrapping with one sample, 663–665

boring is attractive, 403

box-and-whisker plot, 48

boxplots, 48–51

calculating phi, 298

calculating rpb, 295

calculating rs, 304

calculating tau, 305–306

calculation for nested designs, 435–436

calculation of chi-square, 146–147

calculation of simple effects, 425

calculations in the analysis of variance, 324–330

degrees of freedom, 327

F statistic, 328

mean squares, 327

sources of variation, 327

SS
error

, 326

SS
total

, 326

SS
treat

, 326

sum of squares, 324

the summary table, 327

case-control design, 160

casewise deletion, 549

categorical data, 4

categorical data and chi-square, 139–167

4 3 2 design, 148–151

chi-square distribution, 140–141

chi-square for ordinal data, 151–152

chi-square goodness-of-fit test, one-way

classification, 141–145

dependent or repeated measurements, 153–155

effect sizes, 159–165

likelihood ratio tests, 156–157

Mantel-Haenszel statistic, 157–159

measure of agreement, 165–166

one- and two-tailed tests, 155–156

summary of the assumptions of chi-square, 152–153

two way classification variables, contingency table

analysis, 145–148

writing up the results, 167

cell, 145, 416

censored data, 564

center, 558

centering, 54

central limit theorem, 180

chi-square, 140. See also categorical data and chi-square

chi-square assumptions

assumption of independence, 152–153

inclusion of nonoccurrences, 153

chi-square distribution, 140–141

chi-square for ordinal data, 151–152

chi-square goodness-of-fit test, one-way 

classification, 141–145

more than two categories example, 144

tabled chi-square distribution, 143–144
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chi-square test, 141

choice of coefficients, 373

Cochran-Mantel-Haenszel statistic, 157

coded variables, 581

coefficient of variation, 44–45

Cohen’s d, 200

cohort studies, 160

collinearity, 527

column totals, 146

combinations, 122–123

combinatorics, 121

computer programs, 517

computer use, 9–10

conditional array, 264

conditional distributions, 260, 265

conditional equiprobability model, 633–635

conditional means, 562

conditional odds, 642

conditional probability, 101, 117

conditional test, 148

confidence interval, 192, 385

confidence intervals and effect sizes for 

contrasts, 384–387

confidence interval, 385

effect size, 386

confidence limits, 192

confidence limits on Y, 266–268, 276–277

confidence limits versus tests of significance, 277

contingency table, 145

contingency table analysis, 145–148

continuous measure, 565

continuous variables, 4, 118

contrasts, 369

Cook’s D, 541

correcting for continuity, 147

correlation (r), 246, 248

correlation and beta, 257

correlation and regression, 245–285

the accuracy of prediction, 258–264

assumptions underlying regression and 

correlation, 264–266

confidence limits on Y, 266–268

the covariance, 250–252

factors that affect the correlation, 281–283

hypothesis testing, 271–278

other ways of fitting a line to data, 257–258

The Pearson product-moment correlation 

coefficient (r), 252–253

power calculation for Pearson’s r, 283–284

the regression line, 253–257

the relationship between stress and health, 248–250

the role of assumptions in correlation and 

regression, 280–281

scatterplot, 247–249

correlation coefficient in the population r (rho), 252

correlation coefficients for ranked data, 303–306

calculating rs, 304

calculating t, 305–306

Kendall’s tau coefficient (t), 304

ranking data, 304

significance of rs, 304

significance of t, 306

Spearman’s correlation coefficient for ranked 

data (rs), 304

correlation ratio, 344

correlational approach, 307–308

correlational measures, 294

counter variables, 581

covariance, 250–252

covariate, 599

analysis of variance on, 607

described, 601

expected value of, 611

Cramér’s V, 165

criterion, 248

critical value, 96

crossed experimental design, 432

crossed experimental design with a random variable, 432

crossed experimental design with fixed variables, 432

crossed variables, 431

cross-validation, 549–550

curvilinear regression, 344

curvilinear relationships, 280

deciles, 52

decision making, 96

decision tree, 10

defining set, 645

degrees of freedom (df ), 47–48, 143, 147, 198, 207, 327

degrees of freedom (df ) error, 327

degrees of freedom (df ) total, 327

delta (d), 230

DeMoivre, Abraham, 69

density, 119

dependent or repeated measurements, 153–155

dependent variables, 4

deriving models, 648–652

describing distributions, 27–30

descriptive statistics, 5

design matrix, 581

deviation scores, 54, 72

d-family, 159, 160

d-family measures, 440

d-family measures of effect size, 347–348

diagnostic plots, 543–544

dichotomous predictor, 570

dichotomy, 295

differences, 246



differences between log-linear models and the analysis 

of variance, 641

difference scores, 197, 622

directional test, 100

discrete variables, 4

versus continuous variables, 118

discriminant analysis, 562

with dichotomous dependent variable, 571

disordinal interactions, 423

dispersion, 36

distance, 540

distribution assumptions, 531

distribution-free tests, 660

distributions of the two kinds of variables, 118

double subscripts, 30

dummy variables, 581

Dunnett’s test, 377, 395

Dunn-Šidák test, 378

Dunn’s test, 377

effective sample size, 235

effect of heterogeneous subsamples, 282–283

effect of range restrictions, 281

effect size, 104–105, 386

d-family: risks and odds, 160

estimating the effect size, 229–230

example, 159–160

odds ratios in 2 3 2 3 k tables, 163–164

odds ratios in 2 3 k tables, 162–163

phi (f) and Cramér’s V, 164

recombining the effect size and n, 230–231

r-family: phi and Cramér’s V, 164

effect size computation in an analysis of covariance, 609–611

d-family measure, 610–611

r-family measure, 609–610

efficiency, 46

equally weighted means, 444

equal sample sizes, 233

equiprobability model, 633

error rate per comparison (PC), 364

error rates, 364–367

error rate per comparison (PC), 364

familywise error rate (FW), 365

the null hypothesis and error rates, 365

a priori versus post hoc comparisons, 365

significance of the overall F, 366

errors of prediction, 254

errors of prediction as a function of r, 261

error variance, 259, 320

estimating required sample size, 230–232

estimating the effect size, 229–230

eta-squared (h2), 344–345

evaluation of x2, 147

event, 114

examining the saturated model, 647

Excel (commercial software), 9

exhaustive events, 114

expected cell frequencies, 653–654

expected frequencies, 142

expected frequencies for contingency tables, 145–146

expected mean squares, 432

expected mean squares and alternative designs, 430–438

calculation for nested designs, 435–436

crossed experimental design with a random variable, 432

crossed experimental design with fixed variables, 432

nested designs, 435

expected value, 46, 323

exploratory data analysis (EDA), 5, 24

exponentiation, 568

external validity, 3

factorial, 122

factorial analysis of covariance, 612–621

adjusted means, 320–621

testing adjusted means, 619–622

factorial analysis of variance, 413–455

analysis of variance applied to the effects of 

smoking, 426–428

a computer example, 453–455

expected mean squares and alternative designs, 

430–438

extension of the Eysenck study, 416–420

higher-order factorial designs, 446–453

interactions, 421–423

measures of association and effect size, 438–443

multiple comparisons, 428–429

notation, 415

power analysis for factorial experiments, 429–430

reporting the results, 443–444

simple effects, 423–426

structural models and expected mean squares, 420–421

unequal sample sizes, 444–446

factorial designs, 414, 586–593

full model, 587–590

reduced model, 591–593

factors, 414

factors affecting the power of a test, 227–229

basic concept, 227

power as a function of alpha, 227–228

power as a function of H
1
, 228

factors that affect the correlation, 281–283

effect of heterogeneous subsamples, 282–283

effect of range restrictions, 281

failure, 127

false discovery rate (FDR), 396

familywise error rate (FW), 365

first-order interactions, 446

first quartile Q1, 39

Fisher, R. A., 90, 94

Fisher’s arcsine transformation, 670

760 Index
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Fisher’s exact test, 147–148

versus Pearson’s chi square, 148

Fisher’s least significant difference (LSD), 389

Fisher’s protected t, 389

fitting a line to data, 257–258

fitting a normal curve, 21–22

fitting smooth lines to data, 21–24

fixed and random marginals, 148

fixed-model analysis of variance, 343

fixed variable, 246

fixed versus random models, 343

forward selection, 549

fractiles, 52

frequency data, 4

frequency distributions, 17–18

frequentist view, 113

Friedman’s rank test for k correlated samples, 684–686

F statistic, 328

G*Power to simplify calculations, 238–239, 353–354

gain scores, 197

Galton, Francis, 70

gamma function, 140

Gauss, Carl Friedrich, 69

general linear model, 580–583

design matrix, 581–583

linear model, 581

generating class, 645

geometric mean, 636

geometric representation of multiple regression, 535–535

goodness-of-fit test, 142

guesses, 5

harmonic mean, 234

heavy-tailed distributions, 341

heterogeneity of variance, 321

caution, 216

the robustness of t with heterogeneous variances, 215

sampling distribution of , 214

testing for heterogeneity of variance, 214–215

heterogeneous subsamples, 282

heterogeneous variances, 213

heteroscedasticity, 321

hierarchical and nonhierarchical models, 431, 544, 644–645

hierarchical sums of squares, 595

higher-order factorial designs, 446–453

simple effects, 450

simple interaction effects, 451

variables affecting driving performance, 447

Histograms, 18–21

Holm and Larzelere and Mulaik tests, 380

homogeneity of regression, 600

homogeneity of variance, 213, 320

homogeneity of variance in arrays, 264

homoscedasticity, 320

hyperspace, 534

hypothesis testing, 87, 126–127, 271–278

an alternative view of, 102–114

confidence limits on Y, 276–277

confidence limits versus tests of significance, 277

testing the difference between two 

independent bs, 273–274

testing the difference between two independent rs, 275

testing the difference between two 

nonindependent rs, 277–278

testing the hypothesis that r equals any 

specified value, 275–276

testing the significance of b, 272–273

testing the significance of r, 271–272

hypothesis testing, theory

traditional approach to hypothesis testing, 91–92

hypothesis testing revisited, 216–217

hypothesis tests applied to means, 179–217

heterogeneity of variance, the Behrens-Fisher 

Problem, 213–216

hypothesis testing revisited, 216–217

hypothesis tests applied to means, two independent

samples, 203–211

hypothesis tests applied to means, two matched 

samples, 194–203

sampling distribution of the mean, 180–183

testing a sample mean when s is unknown, the one-sample

t test, 185–194

testing hypotheses about means, s known, 183–185

hypothesis tests applied to means, two independent samples

confidence limits on µ
1
– µ

2
, 209

degrees of freedom, 207

distribution of differences between means, 203–205

effect size, 209–210

homophobia and sexual arousal, 207–208

pooling variances, 206–207

reporting results, 210–211

t statistic, 205–206

hypothesis tests applied to means, two matched samples

using computer software for t tests on matched 

samples, 202

confidence limits on d, 201

confidence limits on matched samples, 199

degrees of freedom, 198

d-family of measures, 200–201

difference scores, 197

effect size, 200

matched samples, 201–202

the t statistic, 197

writing up the results of a dependent t, 203

importance, 528

of individual variables, 551–552

measure of, 551

imputing, 549

t¿



inclusion of nonoccurrences, 153

independence, 152

independence of observations, 321

independent events, 114

independent variable, 4

inferential statistics, 5

influence, 540

influence of extreme values on the variance and standard

deviation, 43–44

inner fence, 49

interactions, 414, 421–423

intercept, 254, 256

internal validity, 3

interpretation of simple effects, 425

interpretations of regression, 256

interpreting an analysis of covariance, 611–612

interpreting the model, 654

interquartile range, 38

interquartile range and other range statistics, 38–39

interval, 118

interval scale, 7

iterative solution, 566

joint and conditional probabilities, 116

joint probability (5.2), 116–117

kappa (k), measure of agreement, 165–166

Kendall’s coefficient of concordance (W), 309–311

Kendall’s tau coefficient, 304

kernel density plots, 22–24

Kolmogorov-Smirnov Test, 79

Kruskall-Wallis one-way analysis of variance, 683–684

kurtosis, 29

lambda, 638

Laplace, Pierre-Simon, 69

Larzelere and Mulaik test, 381

leading digits, 24

leaves, 25

leptokurtic distribution, 29

less significant digits, 25

leverage, 540

likelihood ratios, 156

likelihood ratio tests, 156–157, 568

linear combination, 371

linear contrasts, 371

linearity of regression, 280

linear regression

of continuous measure, 565

with dichotomous dependent variable, 571

linear regression models, 246

linear transformations, 53

linear transformations, effect on data by, 52–54

nonlinear transformations, 54

reflection as a transformation, 53–54

standardization, 54

listwise deletion, 549

loess, 257

logarithmic transformation, 338

logic of the analysis of variance, 321–323

logistic regression, 561–570, 571

logit, 566

logit transformation, 566

log-linear analysis, 629–654

deriving models, 648–652

model specification, 637–638

odds and odds ratios, 641–642

testing models, 638–641

three-way tables, 643–648

treatment effects, 652–654

treatment effects (lambda), 642–643

two-way contingency tables, 631–637

log-linear models, 630

log odds, 566

looking at one predictor while controlling for another, 521

magnitude of the experimental effect, 344, 369

main effect, 416

Mallow’s Cp statistic, 547

Mann-Whitney U statistic, 678

Mantel-Haenszel statistic, 157–159

marginal distribution, 265

marginal totals, 146

matched-samples, 194

matched-sample t test, 196

mean, 33, 35

mean, advantages and disadvantages of, 33

mean absolute deviation, 40

mean and variance of a binomial distribution, 130–131

mean square error (MS
error

), 322, 327

mean square error (
error

), 607

mean squares, 327

mean square treatment (MS
treatment

), 322

mean square within (MS
within

), 322

measurement data, 4

measurement scales, 6–9

measure of agreement, 165–166

measure of importance, 551

measures of association, 159, 294

measures of association and effect size, 438–443

d-family measures, 440

partial effects, 440

r-family measures, 438

measures of central tendency

mean, 33, 35

median, 32, 34

mode, 32, 34

relative advantages and disadvantages of the mode, the

median, and the mean, 33

trimmed mean, 35–36

measures of central tendency and dispersion 

using SPSS, 51–52

MS¿
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measures of location, 30

measures of variability

average deviation, 40

coefficient of variation, 44–45

degrees of freedom, 47–48

efficiency, 46

influence of extreme values on the variance and standard

deviation, 43–44

interquartile range and other range statistics, 38–39

mean absolute deviation, 40

range, 38

resistance, 46–47

sample variance as an estimator of the 

population variance, 47

standard deviation, 41–42

sufficiency, 45

unbiasedness, 46

variance, 40

measures related to z, 79

median, 32, 34

median, advantages and disadvantages of, 33

mediating and moderating relationships

mediation, 555–559

moderating relationships, 559–563

mediating relationship, 555

mediation, 555–559

mesokurtic distribution, 29

Method I, 595

Method II, 594

Method III, 594

midpoints, 20

Minitab (commercial software), 9, 517

missing observations, 552–553

mixed models, 431

modaliity, 27

mode, 32, 34

mode, advantages and disadvantages of, 33

modeling discussion, 580

model selection, 547

model specification, 637–638

moderating relationships, 557–561

more than two categories example, 144

most significant digits, 24

multicollinearity, 527, 551, 558

multinomial distribution, 133–134

multiple comparisons, 428–429

multiple comparisons among treatment means, 363–408

comparison of the alternative procedures, 397–398

computer solutions, 399–402

confidence intervals and effect sizes for 

contrasts, 384–387

error rates, 364–367

multiple comparisons in a simple experiment on morphine

tolerance, 367–369

post hoc comparisons, 389–397

a priori comparisons, 369–384

reporting results, 387–389

test selection, 398

trend analysis, 402–408

multiple correlation coefficient, 532–534

sample sizes, 533–534

testing the significance of r2, 533

multiple covariates, use of, 621

multiple linear regression, 516–527

looking at one predictor while controlling 

for another, 521

multiple regression, another interpretation of, 524–525

multiple regression, final way to think of, 525–526

multiple regression equation, 521–524

regression equation, 516–519

two variable relationships, 520–521

multiple regression, 515–571

additional predictors, 527–529

versus analysis of variance, 580

another interpretation, 524–525

approximate regression coefficients, 552–553

constructing a regression equation, 546–550

distribution assumptions, 531

final way to think, 525–526

geometric representation of multiple 

regression, 534–535

“importance” of individual variables, 551–552

logistic regression, 561–570

mediating and moderating relationships, 553–561

multiple correlation coefficient, 532–534

multiple linear regression, 516–527

partial and semipartial correlation, 535–538

regression diagnostics, 539–546

residual variance, 530–531

standard errors and tests of regression 

coefficients, 529–530

suppressor variables, 538–539

multiple regression equation, 521–524

multiple t tests, 369

multiplicative independence model, 637

multiplicative law of probability, 115

multistage Bonferroni procedures, 379

multi-tailed test, 155

multivariate normal, 531

multivariate outliers, 540

mutual dependence model, 635–636

mutually exclusive events, 114

natural logarithm, 566

negatively skewed, 27

nested designs, 431, 435

nested models, 544

Newman-Keuls test, 393

nominal scales, 6

noncentral F distribution, 348



noncentrality parameters (NCPs), 232–233, 349

nondirectional test, 100

nonequivalent groups design, 611

nonlinear transformations, 54

nonoccurrences, 153

nonparametric tests, 660

non-Pearson correlation coefficients, 303

normal approximation, 675–677, 681–682

normal distribution, 21–22, 65–71

normal equations, 255

normality, 321

normality in arrays, 264

notation

double subscripts, 31

factorial analysis of variance, 415

summation notation, 30–31

of variables, 30

null hypothesis, 91, 321, 677

about, 92–93

and error rates, 365

making decisions about, 95–96

statistical conclusions, 93–94

null hypothesis rejection, 101–102

observations, 152

observed frequencies, 142

odds, 161

odds ratios, 161, 565, 641–642

in 2 3 2 3 k tables, 163–164

in 2 3 k tables, 162–163

omega-squared (v2), 346–347

omnibus F test, 609

one- and two-tailed tests, 99–101, 155–156

one-tailed test (directional test), 100

one-way analysis of covariance, 598–608

adjusted means, 605–608

assumptions of the analysis of covariance, 600

calculating the analysis of covariance, 601–605

one-way analysis of variance, 318, 583–586

ordinal interactions, 423

ordinal scales, 6–7

ordinal variables, 654

ordinate, 69

orthogonal coefficients, 375

orthogonal contrasts, 375

outliers, 21

pairwise deletion, 549

parameter, 5

parametric tests, 660

part correlation, 555

partial and semipartial correlation, 535–538

alternative interpretation of partial and semipartial

correlation, 537–538

considerations about, 538

partial correlation, 535

semipartial correlation, 535–537

partial correlation, 535

partial effects, 440

partitioning, 371

Pearson, 90, 94

Pearson correlations by another name, 294–303

Pearson product-moment correlation 

coefficient (r), 252–253

Pearson’s chi-square, 140

Pearson’s chi-square versus Fisher’s exact test, 148

percent reduction in error (PRE), 346

percentage of agreement, 165

percentiles, 52, 79

percentiles, quartiles, and deciles, 52

permutation tests, 661

permutations, 661

permutations and combinations, 120–123

f2 as a measure of the practical significance of x2, 300

phi (f) and Cramér’s V, 164

phi (f) coefficient, 154, 164, 298, 299

pivotal statistic, 72

platykurtic distribution, 29

p level, 194

plotting binomial distributions, 128–130

plotting data, 16–17

point-biserial coefficient (rpb), 295

point-biserial correlation and Phi, Pearson correlations by

another name, 294–303

calculating f, 299

calculating rpb, 295

f2 as a measure of the practical significance of x2, 301

point-biserial correlation (rpb), 295

r2
pb and effect size r2, 298

relationship between f and x2, 300

relationship between rpb and t, 297

significance of f, 300

testing the significance of , 298

point estimate, 192

polynomial trend coefficients, 405

pooled variance estimate, 206

population, 2

population variance, 40

positively skewed, 27

possible models, 645–646

posterior probability, 124

post hoc comparisons, 365, 389–397

Benjamini-Hochberg test, 396

Dunnett’s test for comparing all treatments 

with a control, 395

Fisher’s least significant difference procedure, 389

Newman-Keuls test, 393

Ryan Procedure (REGWQ), 393

Scheffé test, 394

Studentized range statistic (q), 389

r2
pb
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Tukey’s test, 391

unequal sample sizes and heterogeneity of variance, 392

post hoc power, 239

power, 225–241, 348–354

an alternative way to think of power, 351–353

effect size, 229–231

example, 349

factors affecting the power of a test, 227–229

G*Power to simplify calculations, 238–239, 353–354

power calculations, 350–351

power calculations for differences between two

independent means, 236

power calculations for matched-sample t, 236–237

power calculations for the one-sample t, 231–236

power calculations in more complex designs, 238

retrospective power, 239–241

writing up the results of a power analysis, 241

power analysis for factorial experiments, 429–430

power as a function of alpha, 227–228

power as a function of H
1
, 228

power calculation for Pearson’s r, 283–284

power calculations, 350–351

power calculations for differences between two independent

means, 236

equal sample sizes, 233

unequal sample sizes, 234

power calculations for matched-sample t, 236–237

power calculations for the one-sample t, 231–236

estimating required sample size, 230–232

noncentrality parameters, 232–233

power calculations in more complex designs, 238

power of a test, 99

prediction, 246

predictor, 248

PRESS (Predicted RESidual Sum of Squares), 545

probability, 112–113

generic formula for, 126

probability, basic concepts of, 111–134

about, 111–112

basic terminology and rules, 114–117

Bayes’ theorem, 123–127

binomial distribution, 127–131

binomial distribution to test hypotheses, 131–133

discrete versus continuous variables, 118

multinomial distribution, 133–134

permutations and combinations, 120–123

probability, 112–113

probability distributions for continuous variables, 119–120

probability distributions for discrete variables, 118–119

probability distributions for continuous variables, 119–120

probability distributions for discrete variables, 118–119

probable limits on an observation, 75–76

Q-Q plots, 77

proportional improvement in prediction (PIP), 263

proportional reduction in error (PRE), 263

prospective study, 159

Q-Q (quantile-quantile) plots, 77–79

quadratic functions, 402

qualitative data, 4

quantiles, 52

quantitative data, 4

quartile location, 49

Quetelet, Adolph, 70

r2 and the standard error of estimate, 260

r2 as a measure of predictable variability, 261

and effect size r2, 298

random assignment, 2, 3, 612

random designs, 431

random factor, 431

randomization tests, 661

randomized clinical trial, 160

random-model analysis of variance, 341

random sample, 2

random variable, 246

range, 38

range restrictions, 281

ranking, 304

ranking data, 304

rank-randomization tests, 677

ratio scale, 7–8

real lower limit, 19

real upper limit, 19

reciprocal transformation, 340–341

recombining the effect size and n, 230–231

reflection, 54

reflection as a transformation, 53–54

regression, 246

regression coefficients, 523

regression diagnostics, 539–546

comparing models, 544–546

diagnostic plots, 543–544

regression equation, 516–519

regression equation construction, 546–550

all subsets regression, 547–548

cross-validation, 549–550

missing observations, 550–551

selection methods, 546–547

stepwise regression, 549

regression lines, 248

correlation and beta, 257

intercept, 256

interpretations of regression, 256

a note of caution, 257

slope, 256

standardized regression coefficients, 257

regression surface, 534

REGWQ (Ryan Procedure), 394

rejection level, 96

rejection region, 96

related samples, 194

relationship between f and x2, 300

r 2
pb



relationship between rpb and t, 297

relationship between stress and health, 248–250

relationships and differences, 246

relative advantages and disadvantages of the mode, 

the median, and the mean, 33

relative risk, 161

repeated measures, 194

repeated-measures designs, 414

replacement, 663

replicate, 341

reporting results

of an analysis of covariance, 612

for an analysis of variance, 330

on Holm’s procedure, 387–389

measures of association and effect size, 443–444

for a t test on two independent samples, 210

resampling, 342–343

resampling and nonparametric approaches to data, 659–686

bootstrapping as a general approach, 661–663

bootstrapping confidence limits on a correlation

coefficient, 670–673

bootstrapping with one sample, 663–665

Friedman’s rank test for k correlated samples, 659–686

Kruskall-Wallis one-way analysis of variance, 683–684

resampling with two independent samples, 668–670

resampling with two related samples, 665–668

sign test, 682–683

Wilcoxon’s matched-pairs signed-ranks test, 678–682

Wilcoxon’s rank-sum test, 673–678

resampling bias, 663

resampling procedures, 660

resampling statistics, 342

resampling with two independent samples, 668–670

resampling with two related samples, 665–668

research hypothesis, 91

residual error, 524, 530

residuals, 254, 525

residual variance, 259, 530–531

resistance, 46–47

retrospective power, 239–241

retrospective study, 160

r-family, 159, 164

r-family measures, 438

risk, 160

risk difference, 160

risk ratio, 161

robust, 215

role of assumptions in correlation and regression, 280–281

root-mean-square standardized effect (RMSSE), 347

row totals, 146

Ryan procedure (REGWQ), 393, 394

sample mean testing when s is unknown— 

the one-sample t test, 185

confidence interval on µ, 192–194

degrees of freedom, 187

moon illusion, 190–192

psychomotor abilities of low-birthweight infants, 187–189

sampling distribution of s2, 185

using SPSS to run one-sample t tests, 194

the t statistic, 185–187

sample sizes, 180, 533–534

sample statistics, 95

sample variance, 40

sample variance as an estimator of the population 

variance, 47

sample without replacement, 116

sample with replacement, 113

samples, 2

sampling distribution, 129

of differences between means, 89, 203

of the mean, 180–183

sampling error, 86

sampling without replacement, 661

sampling with replacement, 116, 661

SAS (commercial software), 9, 517, 593

saturated model, 635, 638

scatter diagram, 247

scatterplot, 247–249

scatterplot smoothers, 257

Scheffé test, 394

Scholastic Aptitude Test (SAT), 44

second-order interactions, 446

second quartile Q2, 39

selection methods, 546–547

semipartial correlations, 535–537, 552, 555

sequential sums of squares, 595

sigma, 30

sigmoidal curve, 563

significance level, 96

significance of f, 300

significance of rs, 304

significance of tau, 306

significance of the overall F, 366

sign test, 132–133, 682–683

simple analysis of variance, 317–354

calculations in the analysis of variance, 324–330

computer analyses and solutions, 330–332, 354–355

example, 318–319

fixed versus random models, 343

the logic of the analysis of variance, 321–323

power, 348–354

size of an experimental effect, 343–348

transformations, 336–343

the underlying model, 319–321

unequal sample sizes, 332–334

violations of assumptions, 334–336

writing up the results, 330

simple effects, 416, 450

additivity of simple effects, 426

calculations, 425

interpretations, 425
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simple interaction effects, 451

simple main effects, 451

Simpson’s paradox, 157

simultaneous knowledge, 516

singular covariance, 528

size of an experimental effect, 343–348

d-family measures of effect size, 347–348

eta-squared (h2), 344–345

omega-squared (v2), 346–347

skewness, 27

slope, 254, 256

small expected frequencies, 151

software, 560

sources of variation, 327

sparse matrices, 644

Spearman’s correlation coefficient for ranked data (rs), 304

Spearman’s rho, 304

splines, 257

S-Plus (commercial software), 9

SPSS (commercial software), 9, 517, 593

square-root transformation, 340

SS
cells

, 418

SS
error

, 326

S-shaped curve, 563

SS
total

, 326

SS
treat

, 326

standard deviation, 41–42

standard deviation as a measure of error, 258

standard error, 88, 183

alternative approaches to, 557

of beta, 556

of differences between means, 205

of estimate, 258, 259

and tests of regression coefficients, 529–530

standardization, 54

standardized regression coefficients, 257, 528–529

standard normal distribution, 71–72

using the tables of, 73–75

standard scores, 54, 79

standard set, 373

statistic, 5

statistical conclusions, 93–94

statistical software packages, 9, 560, 580

stem, 24

stem-and-leaf displays, 24–27

stepwise procedures, 548, 650–652

stepwise regression, 547, 549

Sternberg, Saul, 16

Stevens, S. S., 6

stratification, 621

structural equation modeling, 580

structural model, 320

structural models and expected mean squares, 420–421

Studentized range statistic (q), 389

Studentized residual, 542

Student’s t distribution, 186

subjective probability, 113

success, 127

sufficiency, 45

sufficient statistic, 45

summary of the assumptions of chi-square, 152–153

summary table, 327

summation notation, 30–31

sum of squares, 324

sum of squares for contrasts, 372

sum of squares of y, 259

suppressor relationship, 548

suppressor variables, 538–539

symmetric and asymmetric models, 631

symmetric distribution, 27

symmetric relationships, 631

tabled chi-square distribution, 143–144

tables of standard normal distribution, 73–75

terminology and rules, 114–117

terms, 2–5

testing hypotheses about means, standard deviation 

known, 183–185

testing models, 638–641

testing the difference between two independent bs, 273–274

testing the difference between two independent rs, 275

testing the difference between two 

nonindependent rs, 277–278

testing the hypothesis that r equals any specified 

value, 275–276

testing the significance of b, 272–273

testing the significance of r, 271–272

testing the significance of r2, 533

testing the significance of , 298

test of significance, 373

test selection, 398

test statistics, 95

test statistics and their sampling distributions, 95

tetrachoric correlation coefficient, 303

the additive rule, 114–115

third quartile Q3, 39

three-way example, 645

three-way tables, 643–649

assumptions, 644

examining the saturated model, 647

hierarchical and nonhierarchical models, 644–645

possible models, 645–646

three-way example, 645

ties, 680–681

tolerance, 527

traditional approach to hypothesis testing, 91–92

trailing digits, 25

transformations, 336–343

the arcsine transformation, 341

logarithmic transformation, 338

r2
pb



reciprocal transformation, 340–341

resampling, 342–343

square-root transformation, 340

trimmed samples, 341

when to transform and how to choose a transformation, 342

treatment effects (lambda), 323, 642–643, 652–654

expected cell frequencies, 653–654

interpreting the model, 654

ordinal variables, 654

treatment of ties, 677

trend, 402

trend analysis, 402–408

unequal intervals, 408

trimmed means, 35–36, 383

trimmed samples, 341

true-score analysis of covariance, 611

T scores, 79

Tukey HSD (honestly significant difference) test, 391

Tukey’s test, 391

two-tailed test (nondirectional test), 100

two variable relationships, 520–521

two-way classification variables, contingency table 

analysis, 145–148

2 3 2 tables are special cases, 147

calculation of chi-square, 146–147

correcting for continuity, 147

degrees of freedom, 147

evaluation of x2, 147

expected frequencies for contingency tables, 145–146

Fisher’s exact test, 147–148

Fisher’s exact test versus Pearson’s chi square, 148

two-way contingency tables, 631–637

conditional equiprobability model, 633–635

equiprobability model, 633

mutual dependence model, 635–636

two-way factorial design, 414

type I errors, 96–99

type II errors, 96–99

type I SS, 595

unbalanced design, 441

unbiased estimator, 46

unbiasedness, 46

unconditional probability, 117

underlying model, 319–321

assumptions, 320

homogeneity of variance, 320

independence of observations, 321

normality, 321

the null hypothesis, 321

unequal intervals, 408

unequal sample sizes, 234, 332–334, 444–446, 580, 592

effective therapies for anorexia, 332

and heterogeneity of variance, 392

uniform (rectangular) distribution, 181

unimodal distribution, 27

unweighted means, 444, 598

validity, 294

variable, 4

variance, 40

variance estimation, 323

variance sum law, 204

Venn diagrams, 537

VIF (variance inflation factor), 527

violations of assumptions, 334–336

weighted average, 206

Welch procedure, 335–336

Welch-Satterthwaite solution, 214

when to transform and how to choose a transformation, 342

whiskers, 50

Wilcoxon’s matched-pairs signed-ranks test, 679–682

normal approximation, 681–682

ties, 680–681

Wilcoxon’s rank-sum test, 673–678

Mann-Whitney U statistic, 678

the normal approximation, 675–677

null hypothesis, 677

treatment of ties, 677

Wilcoxon’s test and resampling procedures, 677–678

Wilcoxon’s test and resampling procedures, 677–678

Winsorized samples, 39, 341

worked examples

SPSS analysis, 211–212

writing up the results, 167, 213–214, 241, 330

WSD (wholly significant difference) test, 391

Yates’ correction for continuity, 147

z score, 72
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Glossary of Symbols

Greek Letter Symbols

a Alpha: level of significance, probability of a Type I error

ai Treatment effect for the ith level of A

b Beta: probability of a Type II error

bi Standardized regression coefficient; treatment effect for the ith level of B

G Gamma function (related to factorial)

d Delta: noncentrality parameter; population effect size

Epsilon: symbols for correction factors for degrees of freedom in repeated-measures

analysis of variance

h2 Eta squared: squared correlation ratio

Mu: population mean

Mean of the sampling distribution of means

r Rho: population correlation coefficient

Sigma (lower case): population standard deviation

Population variance

Error variance

Sigma (upper case): summation notation; variance-covariance matrix

t Kendall’s tau: a nonparametric measure of correlation

Treatment effect for the jth treatment

f Phi coefficient: a correlation coefficient computed for a 2 3 2 contingency table

Cramér’s phi: an extension of phi to contingency tables larger than 2 3 2

Chi-square statistic: most commonly used as test of contingency table

Friedman’s 

c Psi: linear contrast

Omega-squared: most often an r-family measure of effect size

English Letter Symbols

a Intercept; number of levels of variable A

Regression coefficient—slope; number of levels of variable B

Intercept in multiple regression

d Effect size estimate

df Degrees of freedom

Unit of error associated with subject i in treatment j

E(MS) Expected mean square

eij

b0

b, bi

v2

x2x2
F

x2

fC

tj

g
s2

e

s2, s2
X

s, sX

mX

m, mX

Ń, ´~ 



F F statistic

FW Familywise error rate

GM Grand mean

H Kruskal–Wallis statistic

Null hypothesis; alternative hypothesis

ln Natural logarithm

MS Mean square

Number of cases in a sample

N Total sample size

N(0, 1) Read “normally distributed with m 5 0 and s2 5 1”

p General symbol for probability; in binomial, probability of success

q Studentized range statistic; probability of failure

Correlation coefficient

Fisher’s transformation of r

Biserial, point-biserial, and tetrachoric correlation coefficient

Spearman’s correlation coefficient

Multiple correlation coefficient

Partial correlation coefficient

Semipartial correlation coefficient

Population correlation coefficient

R2 using predictors associated with variables A, B, and the AB interaction

Standard deviation

Standard deviation of difference scores

Pooled sample variance

; Standard error of mean; standard error of mean differences

Standard error of estimate

Variance of X

Sum of squares of variable A

Interaction sum of squares

Error sum of squares 

Sum of squares due to regression

Sum of squares residual (not accounted for by regression)

t Student’s t statistic

t statistic with heterogeneous variances

td Dunnett’s t statistic

T Wilcoxon’s matched-pairs signed-ranks statistic

W Kendall’s coefficient of concordance

Wr Critical width for range tests

WS Wilcoxon’s rank-sum statistic

Sample mean

Harmonic mean

Predicted value of Y

z Normal deviate (also called a standard score)

YN, YNi

Xh

X, X1

t¿

SSresidual

SSregression

SSerror

SSAB

SSA

s2
X

sY #X

s
X1 2X2

s
X

s2
p

sD

s, sX

Ra,b,ab

R*, R*
0.123

r0(1.234)

01.234

R, R0.1234

rS

rb; rpb; rt

r¿

r, rXY

n, ni, Ni

H0; H1


